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C h a p t e r

1
ASPECTS OF MULTIVARIATE
ANALYSIS

1.1 Introduction
Scientific inquiry is an iterative learning process. Objectives pertaining to the expla-
nation of a social or physical phenomenon must be specified and then tested by
gathering and analyzing data. In turn, an analysis of the data gathered by experi-
mentation or observation will usually suggest a modified explanation of the phe-
nomenon. Throughout this iterative learning process, variables are often added or
deleted from the study. Thus, the complexities of most phenomena require an inves-
tigator to collect observations on many different variables. This book is concerned
with statistical methods designed to elicit information from these kinds of data sets.
Because the data include simultaneous measurements on many variables, this body
of methodology is called multivariate analysis.

The need to understand the relationships between many variables makes multi-
variate analysis an inherently difficult subject. Often, the human mind is over-
whelmed by the sheer bulk of the data. Additionally, more mathematics is required
to derive multivariate statistical techniques for making inferences than in a univari-
ate setting. We have chosen to provide explanations based upon algebraic concepts
and to avoid the derivations of statistical results that require the calculus of many
variables. Our objective is to introduce several useful multivariate techniques in a
clear manner, making heavy use of illustrative examples and a minimum of mathe-
matics. Nonetheless, some mathematical sophistication and a desire to think quanti-
tatively will be required.

Most of our emphasis will be on the analysis of measurements obtained with-
out actively controlling or manipulating any of the variables on which the mea-
surements are made. Only in Chapters 6 and 7 shall we treat a few experimental
plans (designs) for generating data that prescribe the active manipulation of im-
portant variables. Although the experimental design is ordinarily the most impor-
tant part of a scientific investigation, it is frequently impossible to control the
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Chapter 1 Aspects of Multivariate Analysis

generation of appropriate data in certain disciplines. (This is true, for example, in
business, economics, ecology, geology, and sociology.) You should consult [6] and
[7] for detailed accounts of design principles that, fortunately, also apply to multi-
variate situations.

It will become increasingly clear that many multivariate methods are based
upon an underlying probability model known as the multivariate normal distribution.
Other methods are ad hoc in nature and are justified by logical or commonsense
arguments. Regardless of their origin, multivariate techniques must, invariably,
be implemented on a computer. Recent advances in computer technology have
been accompanied by the development of rather sophisticated statistical software
packages, making the implementation step easier.

Multivariate analysis is a “mixed bag.” It is difficult to establish a classification
scheme for multivariate techniques that is both widely accepted and indicates the
appropriateness of the techniques. One classification distinguishes techniques de-
signed to study interdependent relationships from those designed to study depen-
dent relationships. Another classifies techniques according to the number of
populations and the number of sets of variables being studied. Chapters in this text
are divided into sections according to inference about treatment means, inference
about covariance structure, and techniques for sorting or grouping. This should not,
however, be considered an attempt to place each method into a slot. Rather, the
choice of methods and the types of analyses employed are largely determined by
the objectives of the investigation. In Section 1.2, we list a smaller number of
practical problems designed to illustrate the connection between the choice of a sta-
tistical method and the objectives of the study.These problems, plus the examples in
the text, should provide you with an appreciation of the applicability of multivariate
techniques across different fields.

The objectives of scientific investigations to which multivariate methods most
naturally lend themselves include the following:
1. Data reduction or structural simplification. The phenomenon being studied is

represented as simply as possible without sacrificing valuable information. It is
hoped that this will make interpretation easier.

2. Sorting and grouping. Groups of “similar” objects or variables are created,
based upon measured characteristics. Alternatively, rules for classifying objects
into well-defined groups may be required.

3. Investigation of the dependence among variables. The nature of the relation-
ships among variables is of interest. Are all the variables mutually independent
or are one or more variables dependent on the others? If so, how?

4. Prediction. Relationships between variables must be determined for the pur-
pose of predicting the values of one or more variables on the basis of observa-
tions on the other variables.

5. Hypothesis construction and testing. Specific statistical hypotheses, formulated
in terms of the parameters of multivariate populations, are tested. This may be
done to validate assumptions or to reinforce prior convictions.

We conclude this brief overview of multivariate analysis with a quotation from
F. H. C. Marriott [19], page 89. The statement was made in a discussion of cluster
analysis, but we feel it is appropriate for a broader range of methods. You should
keep it in mind whenever you attempt or read about a data analysis. It allows one to

2



Applications of Multivariate Techniques

maintain a proper perspective and not be overwhelmed by the elegance of some of
the theory:

If the results disagree with informed opinion, do not admit a simple logical interpreta-
tion, and do not show up clearly in a graphical presentation, they are probably wrong.
There is no magic about numerical methods, and many ways in which they can break
down. They are a valuable aid to the interpretation of data, not sausage machines
automatically transforming bodies of numbers into packets of scientific fact.

1.2 Applications of Multivariate Techniques
The published applications of multivariate methods have increased tremendously in
recent years. It is now difficult to cover the variety of real-world applications of
these methods with brief discussions, as we did in earlier editions of this book. How-
ever, in order to give some indication of the usefulness of multivariate techniques,
we offer the following short descriptions of the results of studies from several disci-
plines. These descriptions are organized according to the categories of objectives
given in the previous section. Of course, many of our examples are multifaceted and
could be placed in more than one category.

Data reduction or simplification

• Using data on several variables related to cancer patient responses to radio-
therapy, a simple measure of patient response to radiotherapy was constructed.
(See Exercise 1.15.)

• Track records from many nations were used to develop an index of perfor-
mance for both male and female athletes. (See [8] and [22].)

• Multispectral image data collected by a high-altitude scanner were reduced to a
form that could be viewed as images (pictures) of a shoreline in two dimensions.
(See [23].)

• Data on several variables relating to yield and protein content were used to cre-
ate an index to select parents of subsequent generations of improved bean
plants. (See [13].)

• A matrix of tactic similarities was developed from aggregate data derived from
professional mediators. From this matrix the number of dimensions by which
professional mediators judge the tactics they use in resolving disputes was
determined. (See [21].)

Sorting and grouping

• Data on several variables related to computer use were employed to create
clusters of categories of computer jobs that allow a better determination of
existing (or planned) computer utilization. (See [2].)

• Measurements of several physiological variables were used to develop a screen-
ing procedure that discriminates alcoholics from nonalcoholics. (See [26].)

• Data related to responses to visual stimuli were used to develop a rule for sepa-
rating people suffering from a multiple-sclerosis-caused visual pathology from
those not suffering from the disease. (See Exercise 1.14.)
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Chapter 1 Aspects of Multivariate Analysis

• The U.S. Internal Revenue Service uses data collected from tax returns to sort
taxpayers into two groups: those that will be audited and those that will not.
(See [31].)

Investigation of the dependence among variables

• Data on several variables were used to identify factors that were responsible for
client success in hiring external consultants. (See [12].)

• Measurements of variables related to innovation, on the one hand, and vari-
ables related to the business environment and business organization, on the
other hand, were used to discover why some firms are product innovators and
some firms are not. (See [3].)

• Measurements of pulp fiber characteristics and subsequent measurements of
characteristics of the paper made from them are used to examine the relations
between pulp fiber properties and the resulting paper properties. The goal is to
determine those fibers that lead to higher quality paper. (See [17].)

• The associations between measures of risk-taking propensity and measures of
socioeconomic characteristics for top-level business executives were used to
assess the relation between risk-taking behavior and performance. (See [18].)

Prediction

• The associations between test scores, and several high school performance vari-
ables, and several college performance variables were used to develop predic-
tors of success in college. (See [10].)

• Data on several variables related to the size distribution of sediments were used to
develop rules for predicting different depositional environments. (See [7] and [20].)

• Measurements on several accounting and financial variables were used to de-
velop a method for identifying potentially insolvent property-liability insurers.
(See [28].)

• cDNA microarray experiments (gene expression data) are increasingly used to
study the molecular variations among cancer tumors. A reliable classification of
tumors is essential for successful diagnosis and treatment of cancer. (See [9].)

Hypotheses testing

• Several pollution-related variables were measured to determine whether levels
for a large metropolitan area were roughly constant throughout the week, or
whether there was a noticeable difference between weekdays and weekends.
(See Exercise 1.6.)

• Experimental data on several variables were used to see whether the nature of
the instructions makes any difference in perceived risks, as quantified by test
scores. (See [27].)

• Data on many variables were used to investigate the differences in structure of
American occupations to determine the support for one of two competing soci-
ological theories. (See [16] and [25].)

• Data on several variables were used to determine whether different types of
firms in newly industrialized countries exhibited different patterns of innova-
tion. (See [15].)
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The Organization of Data

The preceding descriptions offer glimpses into the use of multivariate methods
in widely diverse fields.

1.3 The Organization of Data
Throughout this text, we are going to be concerned with analyzing measurements
made on several variables or characteristics.These measurements (commonly called
data) must frequently be arranged and displayed in various ways. For example,
graphs and tabular arrangements are important aids in data analysis. Summary num-
bers, which quantitatively portray certain features of the data, are also necessary to
any description.

We now introduce the preliminary concepts underlying these first steps of data
organization.

Arrays

Multivariate data arise whenever an investigator, seeking to understand a social or
physical phenomenon, selects a number of variables or characters to record.
The values of these variables are all recorded for each distinct item, individual, or
experimental unit.

We will use the notation to indicate the particular value of the kth variable
that is observed on the jth item, or trial. That is,

Consequently, n measurements on p variables can be displayed as follows:

Variable 1 Variable 2 Variable k Variable p
Item 1:
Item 2:

Item j:

Item n:

Or we can display these data as a rectangular array, called , of n rows and p
columns:

The array , then, contains the data consisting of all of the observations on all of
the variables.

X

= F
x1 1 x1 2

Á x1 k
Á x1 p

x2 1 x2 2
Á x2 k

Á x2 p

o o  o  o

xj 1 xj 2
Á xj k

Á xj p

o o  o  o

xn 1 xn 2
Á xn k

Á xn p

VX

X

xn p
Áxn k

Áxn 2xn 1

ooooo

xj p
Áxj k

Áxj 2xj 1

ooooo

x2 p
Áx2 k

Áx2 2x2 1

x1 p
Áx1 k

Áx1 2x1 1

ÁÁ

xj k = measurement of the kth variable on the jth item

xj k

p Ú 1
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Chapter 1 Aspects of Multivariate Analysis

Example 1.1 (A data array) A selection of four receipts from a university bookstore
was obtained in order to investigate the nature of book sales. Each receipt provided,
among other things, the number of books sold and the total amount of each sale. Let
the first variable be total dollar sales and the second variable be number of books
sold. Then we can regard the corresponding numbers on the receipts as four mea-
surements on two variables. Suppose the data, in tabular form, are

Using the notation just introduced, we have

and the data array is

with four rows and two columns. �

Considering data in the form of arrays facilitates the exposition of the subject
matter and allows numerical calculations to be performed in an orderly and efficient
manner. The efficiency is twofold, as gains are attained in both (1) describing nu-
merical calculations as operations on arrays and (2) the implementation of the cal-
culations on computers, which now use many languages and statistical packages to
perform array operations. We consider the manipulation of arrays of numbers in
Chapter . At this point, we are concerned only with their value as devices for dis-
playing data.

Descriptive Statistics

A large data set is bulky, and its very mass poses a serious obstacle to any attempt to
visually extract pertinent information. Much of the information contained in the
data can be assessed by calculating certain summary numbers, known as descriptive
statistics. For example, the arithmetic average, or sample mean, is a descriptive sta-
tistic that provides a measure of location—that is, a “central value” for a set of num-
bers. And the average of the squares of the distances of all of the numbers from the
mean provides a measure of the spread, or variation, in the numbers.

We shall rely most heavily on descriptive statistics that measure location, varia-
tion, and linear association. The formal definitions of these quantities follow.

Let be n measurements on the first variable. Then the arith-
metic average of these measurements is

x–1 =

1
n

 a
n

j = 1
 xj 1

x1 1 , x2 1 , Á , xn 1

X = D42 4
52 5
48 4
58 3

T
X

x1 1 = 42 x2 1 = 52 x3 1 = 48 x4 1 = 58
x1 2 = 4 x2 2 = 5 x3 2 = 4 x4 2 = 3

Variable 1 1dollar sales2:
Variable 2 1number of books2:

42
4

52
5

48
4

58
3

3
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The Organization of Data

If the n measurements represent a subset of the full set of measurements that
might have been observed, then is also called the sample mean for the first vari-
able. We adopt this terminology because the bulk of this book is devoted to proce-
dures designed to analyze samples of measurements from larger collections.

The sample mean can be computed from the n measurements on each of the
p variables, so that, in general, there will be p sample means:

(1-1)

A measure of spread is provided by the sample variance, defined for n measure-
ments on the first variable as

where is the sample mean of the ’s. In general, for p variables, we have

(1-2)

Two comments are in order. First, many authors define the sample variance with a
divisor of rather than n. Later we shall see that there are theoretical reasons
for doing this, and it is particularly appropriate if the number of measurements, n, is
small. The two versions of the sample variance will always be differentiated by dis-
playing the appropriate expression.

Second, although the notation is traditionally used to indicate the sample
variance, we shall eventually consider an array of quantities in which the sample vari-
ances lie along the main diagonal. In this situation, it is convenient to use double
subscripts on the variances in order to indicate their positions in the array. There-
fore, we introduce the notation to denote the same variance computed from
measurements on the kth variable, and we have the notational identities

(1-3)

The square root of the sample variance, is known as the sample standard
deviation.This measure of variation uses the same units as the observations.

Consider n pairs of measurements on each of variables 1 and 2:

That is, and are observed on the jth experimental item A
measure of linear association between the measurements of variables 1 and 2 is pro-
vided by the sample covariance

s1 2 =

1
n

 a
n

j = 1
 1xj 1 - x–12 1xj 2 - x–22

1j = 1, 2, Á , n2.xj 2xj 1

Bx1 1

x1 2
R  , Bx2 1

x2 2
R  , Á , Bxn 1

xn 2
R

1sk k ,

sk
2

= sk k =

1
n

 a
n

j = 1
 1xj k - x–k2

2 k = 1, 2, Á , p

sk k

s2

n - 1

sk
2

=

1
n

 a
n

j = 1
 1xj k - x–k2

2 k = 1, 2, Á , p

xj 1 x–1

s1
2

=

1
n

 a
n

j = 1
 1xj 1 - x–12

2

x–k =

1
n

 a
n

j = 1
 xj k k = 1, 2, Á , p

x–1
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Chapter 1 Aspects of Multivariate Analysis

or the average product of the deviations from their respective means. If large values for
one variable are observed in conjunction with large values for the other variable, and
the small values also occur together, will be positive. If large values from one vari-
able occur with small values for the other variable, will be negative. If there is no
particular association between the values for the two variables, will be approxi-
mately zero.

The sample covariance

(1-4)

measures the association between the ith and kth variables. We note that the covari-
ance reduces to the sample variance when Moreover, for all i and k.

The final descriptive statistic considered here is the sample correlation coeffi-
cient (or Pearson’s product-moment correlation coefficient; see [14]). This measure
of the linear association between two variables does not depend on the units of
measurement. The sample correlation coefficient for the ith and kth variables is
defined as

(1-5)

for and Note for all i and k.
The sample correlation coefficient is a standardized version of the sample co-

variance, where the product of the square roots of the sample variances provides the
standardization. Notice that has the same value whether n or is chosen as
the common divisor for and 

The sample correlation coefficient can also be viewed as a sample covariance.
Suppose the original values and are replaced by standardized values

and The standardized values are commensurable be-
cause both sets are centered at zero and expressed in standard deviation units.The sam-
ple correlation coefficient is just the sample covariance of the standardized observations.

Although the signs of the sample correlation and the sample covariance are the
same, the correlation is ordinarily easier to interpret because its magnitude is
bounded. To summarize, the sample correlation r has the following properties:

1. The value of r must be between and 
2. Here r measures the strength of the linear association. If this implies a

lack of linear association between the components. Otherwise, the sign of r indi-
cates the direction of the association: implies a tendency for one value in
the pair to be larger than its average when the other is smaller than its average;
and implies a tendency for one value of the pair to be large when the
other value is large and also for both values to be small together.

3. The value of remains unchanged if the measurements of the ith variable
are changed to = = and the values of the kth vari-
able are changed to = = provided that the con-
stants a and c have the same sign.

1, 2, Á , n,cxj k + d, jyj k

1, 2, Á , n,axj i + b, jyj i

ri k

r 7 0

r 6 0

r = 0,
+1 inclusive.-1

1xj k - x–k2>1sk k .1xj i - x–i2>1si i

xj kxj i

ri k

si k .si i , sk k ,
n - 1ri k

ri k = rk ik = 1, 2, Á , p.i = 1, 2, Á , p

ri k =

si k1si i 1sk k
=

a
n

j = 1
 1xj i - x–i2 1xj k - x–k2Banj = 1

 1xj i - x–i2
2 Banj = 1

 1xj k - x–k2
2

si k = sk ii = k.

si k =

1
n

 a
n

j = 1
 1xj i - x–i2 1xj k - x–k2 i = 1, 2, Á , p, k = 1, 2, Á , p

s1 2

s1 2

s1 2
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The Organization of Data

The quantities and do not, in general, convey all there is to know about
the association between two variables. Nonlinear associations can exist that are not
revealed by these descriptive statistics. Covariance and correlation provide mea-
sures of linear association, or association along a line. Their values are less informa-
tive for other kinds of association. On the other hand, these quantities can be very
sensitive to “wild” observations (“outliers”) and may indicate association when, in
fact, little exists. In spite of these shortcomings, covariance and correlation coeffi-
cients are routinely calculated and analyzed. They provide cogent numerical sum-
maries of association when the data do not exhibit obvious nonlinear patterns of
association and when wild observations are not present.

Suspect observations must be accounted for by correcting obvious recording
mistakes and by taking actions consistent with the identified causes. The values of

and should be quoted both with and without these observations.
The sum of squares of the deviations from the mean and the sum of cross-

product deviations are often of interest themselves. These quantities are

(1-6)

and

(1-7)

The descriptive statistics computed from n measurements on p variables can
also be organized into arrays.

Arrays of Basic Descriptive Statistics

Sample means

(1-8)

Sample correlations  R = D 1 r1 2
Á r1 p

r2 1 1 Á r2 p

o o ∞ o

rp 1 rp 2
Á 1

T

 Sn = D s1 1 s1 2
Á s1 p

s2 1 s2 2
Á s2 p

o o ∞ o

sp 1 sp 2
Á sp p

TSample variances
and covariances

x– = Dx–1

x–2

o

x–p

T

wi k = a
n

j = 1
 1xj i - x–i2 1xj k - x–k2 i = 1, 2, Á , p, k = 1, 2, Á , p

wk k = a
n

j = 1
 1xj k - x–k2

2 k = 1, 2, Á , p

ri ksi k

ri ksi k
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Chapter 1 Aspects of Multivariate Analysis

The sample mean array is denoted by the sample variance and covariance
array by the capital letter and the sample correlation array by R.The subscript n
on the array is a mnemonic device used to remind you that n is employed as a di-
visor for the elements The size of all of the arrays is determined by the number
of variables, p.

The arrays and R consist of p rows and p columns. The array is a single
column with p rows. The first subscript on an entry in arrays and R indicates 
the row; the second subscript indicates the column. Since and 
for all i and k, the entries in symmetric positions about the main northwest–
southeast diagonals in arrays and R are the same, and the arrays are said to be
symmetric.

Example 1.2 (The arrays and R for bivariate data) Consider the data intro-
duced in Example 1.1. Each receipt yields a pair of measurements, total dollar
sales, and number of books sold. Find the arrays and R.

Since there are four receipts, we have a total of four measurements (observa-
tions) on each variable.

The sample means are

The sample variances and covariances are

and

Sn = B 34 -1.5
-1.5 .5

R
 s2 1 = s1 2

      + 148 - 502 14 - 42 + 158 - 502 13 - 422 = -1.5

 =
1
4 1142 - 502 14 - 42 + 152 - 502 15 - 42

 s1 2 =
1
4 a

4

j = 1
 1xj 1 - x–121xj 2 - x–22

 =
1
4 114 - 422 + 15 - 422 + 14 - 422 + 13 - 4222 = .5

 s2 2 =
1
4 a

4

j = 1
 1xj 2 - x–22

2

 =
1
4 1142 - 5022 + 152 - 5022 + 148 - 5022 + 158 - 50222 = 34

 s1 1 =
1
4 a

4

j = 1
 1xj 1 - x–12

2

 x– = Bx–1

x–2
R = B50

4
R

 x–2 =
1
4 a

4

j = 1
 xj 2 =

1
4 14 + 5 + 4 + 32 = 4

 x–1 =
1
4 a

4

j = 1
 xj 1 =

1
4 142 + 52 + 48 + 582 = 50

x–, Sn ,

x–, Sn,

Sn

ri k = rk isi k = sk i

Sn

x–Sn

si k .
Sn

Sn ,
x–,
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Graphical Techniques

Plots are important, but frequently neglected, aids in data analysis.Although it is im-
possible to simultaneously plot all the measurements made on several variables and
study the configurations, plots of individual variables and plots of pairs of variables
can still be very informative. Sophisticated computer programs and display equip-
ment allow one the luxury of visually examining data in one, two, or three dimen-
sions with relative ease. On the other hand, many valuable insights can be obtained
from the data by constructing plots with paper and pencil. Simple, yet elegant and
effective, methods for displaying data are available in [29]. It is good statistical prac-
tice to plot pairs of variables and visually inspect the pattern of association. Consid-
er, then, the following seven pairs of measurements on two variables:

Variable 1 3 4 2 6 8 2 5

Variable 2 5 5.5 4 7 10 5 7.5

These data are plotted as seven points in two dimensions (each axis represent-
ing a variable) in Figure 1.1. The coordinates of the points are determined by the
paired measurements: p , The resulting two-dimensional
plot is known as a scatter diagram or scatter plot.

15, 7.52.14, 5.52,13, 52,

1x22:

1x12:

R = B 1 - .36
- .36 1

R
 r2 1 = r1 2

 r1 2 =

s1 21s1 1 1s2 2
=

-1.513 4 1.5
= - .36
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2

2

10

8

6

4

0 4 6 8 10

x2

x1

2

10

8

6

4

x2

2 4 6 8 10
x1

Figure 1.2 Scatter plot
and dot diagrams for
rearranged data.

Also shown in Figure 1.1 are separate plots of the observed values of variable 1
and the observed values of variable 2, respectively.These plots are called (marginal)
dot diagrams. They can be obtained from the original observations or by projecting
the points in the scatter diagram onto each coordinate axis.

The information contained in the single-variable dot diagrams can be used to
calculate the sample means and and the sample variances and (See Ex-
ercise 1.1.) The scatter diagram indicates the orientation of the points, and their co-
ordinates can be used to calculate the sample covariance In the scatter diagram
of Figure 1.1, large values of occur with large values of and small values of 
with small values of Hence, will be positive.

Dot diagrams and scatter plots contain different kinds of information. The in-
formation in the marginal dot diagrams is not sufficient for constructing the scatter
plot. As an illustration, suppose the data preceding Figure 1.1 had been paired dif-
ferently, so that the measurements on the variables and were as follows:

Variable 1 5 4 6 2 2 8 3

Variable 2 5 5.5 4 7 10 5 7.5

(We have simply rearranged the values of variable 1.) The scatter and dot diagrams
for the “new” data are shown in Figure 1.2. Comparing Figures 1.1 and 1.2, we find
that the marginal dot diagrams are the same, but that the scatter diagrams are decid-
edly different. In Figure 1.2, large values of are paired with small values of and
small values of with large values of Consequently, the descriptive statistics for
the individual variables and remain unchanged, but the sample covari-
ance which measures the association between pairs of variables, will now be
negative.

The different orientations of the data in Figures 1.1 and 1.2 are not discernible
from the marginal dot diagrams alone. At the same time, the fact that the marginal
dot diagrams are the same in the two cases is not immediately apparent from the
scatter plots. The two types of graphical procedures complement one another; they
are not competitors.

The next two examples further illustrate the information that can be conveyed
by a graphic display.

s1 2 ,
s2 2x–1 , x–2 , s1 1 ,

x2 .x1

x2x1

1x22:

1x12:

x2x1

s1 2x2 .
x1x2x1

s1 2 .

s2 2 .s1 1x–2x–1
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The Organization of Data

Example 1.3 (The effect of unusual observations on sample correlations) Some fi-
nancial data representing jobs and productivity for the 16 largest publishing firms
appeared in an article in Forbes magazine on April 30, 1990. The data for the pair of
variables (jobs) and per employee (productivity) are
graphed in Figure 1.3. We have labeled two “unusual” observations. Dun & Brad-
street is the largest firm in terms of number of employees, but is “typical” in terms of
profits per employee. Time Warner has a “typical” number of employees, but com-
paratively small (negative) profits per employee.

x2 = profitsx1 = employees

�10
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Figure 1.3 Profits per employee
and number of employees for 16
publishing firms.

The sample correlation coefficient computed from the values of and is

It is clear that atypical observations can have a considerable effect on the sample
correlation coefficient. �

Example 1.4 (A scatter plot for baseball data) In a July 17, 1978, article on money in
sports, Sports Illustrated magazine provided data on payroll for Nation-
al League East baseball teams.

We have added data on won–lost percentage for 1977. The results are
given in Table 1.1.

The scatter plot in Figure 1.4 supports the claim that a championship team can
be bought. Of course, this cause–effect relationship cannot be substantiated, be-
cause the experiment did not include a random assignment of payrolls. Thus, statis-
tics cannot answer the question: Could the Mets have won with $4 million to spend
on player salaries?

x2 =

x1 = player

r1 2 = d - .39 for all 16 firms
- .56 for all firms but Dun & Bradstreet
- .39 for all firms but Time Warner
- .50 for all firms but Dun & Bradstreet and Time Warner

x2x1
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Chapter 1 Aspects of Multivariate Analysis

Table 1.1 1977 Salary and Final Record for the National League East

won–lost
Team percentage

Philadelphia Phillies 3,497,900 .623
Pittsburgh Pirates 2,485,475 .593
St. Louis Cardinals 1,782,875 .512
Chicago Cubs 1,725,450 .500
Montreal Expos 1,645,575 .463
New York Mets 1,469,800 .395

x1 = player payroll
x2 =

Player payroll in millions of dollars

W
on

–l
os

t p
er

ce
nt

ag
e

x2

x1
1.00 2.0 3.0 4.0

.400

.800

Figure 1.4 Salaries
and won–lost
percentage from
Table 1.1.

�

To construct the scatter plot in Figure 1.4, we have regarded the six paired ob-
servations in Table 1.1 as the coordinates of six points in two-dimensional space.The
figure allows us to examine visually the grouping of teams with respect to the vari-
ables total payroll and won–lost percentage.

Example 1.5 (Multiple scatter plots for paper strength measurements) Paper is man-
ufactured in continuous sheets several feet wide. Because of the orientation of fibers
within the paper, it has a different strength when measured in the direction pro-
duced by the machine than when measured across, or at right angles to, the machine
direction. Table 1.2 shows the measured values of

A novel graphic presentation of these data appears in Figure 1.5, page 16. The
scatter plots are arranged as the off-diagonal elements of a covariance array and
box plots as the diagonal elements. The latter are on a different scale with this

 x3 = strength 1pounds2 in the cross direction

 x2 = strength 1pounds2 in the machine direction

 x1 = density 1grams>cubic centimeter2
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Table 1.2 Paper-Quality Measurements

Strength

Specimen Density Machine direction Cross direction

1 .801 121.41 70.42
2 .824 127.70 72.47
3 .841 129.20 78.20
4 .816 131.80 74.89
5 .840 135.10 71.21
6 .842 131.50 78.39
7 .820 126.70 69.02
8 .802 115.10 73.10
9 .828 130.80 79.28

10 .819 124.60 76.48
11 .826 118.31 70.25
12 .802 114.20 72.88
13 .810 120.30 68.23
14 .802 115.70 68.12
15 .832 117.51 71.62
16 .796 109.81 53.10
17 .759 109.10 50.85
18 .770 115.10 51.68
19 .759 118.31 50.60
20 .772 112.60 53.51
21 .806 116.20 56.53
22 .803 118.00 70.70
23 .845 131.00 74.35
24 .822 125.70 68.29
25 .971 126.10 72.10
26 .816 125.80 70.64
27 .836 125.50 76.33
28 .815 127.80 76.75
29 .822 130.50 80.33
30 .822 127.90 75.68
31 .843 123.90 78.54
32 .824 124.10 71.91
33 .788 120.80 68.22
34 .782 107.40 54.42
35 .795 120.70 70.41
36 .805 121.91 73.68
37 .836 122.31 74.93
38 .788 110.60 53.52
39 .772 103.51 48.93
40 .776 110.71 53.67
41 .758 113.80 52.42

Source: Data courtesy of SONOCO Products Company.
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Figure 1.5 Scatter plots and boxplots of paper-quality data from Table 1.2.

software, so we use only the overall shape to provide information on symmetry
and possible outliers for each individual characteristic. The scatter plots can be in-
spected for patterns and unusual observations. In Figure 1.5, there is one unusual
observation: the density of specimen 25. Some of the scatter plots have patterns
suggesting that there are two separate clumps of observations.

These scatter plot arrays are further pursued in our discussion of new software
graphics in the next section. �

In the general multiresponse situation, p variables are simultaneously recorded
on n items. Scatter plots should be made for pairs of important variables and, if the
task is not too great to warrant the effort, for all pairs.

Limited as we are to a three-dimensional world, we cannot always picture an
entire set of data. However, two further geometric representations of the data pro-
vide an important conceptual framework for viewing multivariable statistical meth-
ods. In cases where it is possible to capture the essence of the data in three
dimensions, these representations can actually be graphed.

16
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Table 1.3 Lizard Size Data

Lizard Mass SVL HLS Lizard Mass SVL HLS

1 5.526 59.0 113.5 14 10.067 73.0 136.5
2 10.401 75.0 142.0 15 10.091 73.0 135.5
3 9.213 69.0 124.0 16 10.888 77.0 139.0
4 8.953 67.5 125.0 17 7.610 61.5 118.0
5 7.063 62.0 129.5 18 7.733 66.5 133.5
6 6.610 62.0 123.0 19 12.015 79.5 150.0
7 11.273 74.0 140.0 20 10.049 74.0 137.0
8 2.447 47.0 97.0 21 5.149 59.5 116.0
9 15.493 86.5 162.0 22 9.158 68.0 123.0
10 9.004 69.0 126.5 23 12.132 75.0 141.0
11 8.199 70.5 136.0 24 6.978 66.5 117.0
12 6.601 64.5 116.0 25 6.890 63.0 117.0
13 7.622 67.5 135.0

Source: Data courtesy of Kevin E. Bonine.

Points in Dimensions ( -Dimensional Scatter Plot). Consider the natural exten-
sion of the scatter plot to p dimensions, where the p measurements

on the jth item represent the coordinates of a point in p-dimensional space. The co-
ordinate axes are taken to correspond to the variables, so that the jth point is 
units along the first axis, units along the second, units along the pth axis.
The resulting plot with n points not only will exhibit the overall pattern of variabili-
ty, but also will show similarities (and differences) among the n items. Groupings of
items will manifest themselves in this representation.

The next example illustrates a three-dimensional scatter plot.

Example 1.6 (Looking for lower-dimensional structure) A zoologist obtained mea-
surements on lizards known scientifically as Cophosaurus texanus. The
weight, or mass, is given in grams while the snout-vent length (SVL) and hind limb
span (HLS) are given in millimeters. The data are displayed in Table 1.3.

Although there are three size measurements, we can ask whether or not most of
the variation is primarily restricted to two dimensions or even to one dimension.

To help answer questions regarding reduced dimensionality, we construct the
three-dimensional scatter plot in Figure 1.6. Clearly most of the variation is scatter
about a one-dimensional straight line. Knowing the position on a line along the
major axes of the cloud of points would be almost as good as knowing the three
measurements Mass, SVL, and HLS.

However, this kind of analysis can be misleading if one variable has a much
larger variance than the others. Consequently, we first calculate the standardized
values, = so the variables contribute equally to the variation1xj k - x–k2>1sk k ,zj k

n = 25

Á , xj pxj 2

xj 1

1xj 1 , xj 2 , Á , xj p2

ppn
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in the scatter plot. Figure 1.7 gives the three-dimensional scatter plot for the stan-
dardized variables. Most of the variation can be explained by a single variable de-
termined by a line through the cloud of points.

�

A three-dimensional scatter plot can often reveal group structure.

Example 1.7 (Looking for group structure in three dimensions) Referring to Exam-
ple 1.6, it is interesting to see if male and female lizards occupy different parts of the
three-dimensional space containing the size data. The gender, by row, for the lizard
data in Table 1.3 are

m m m f m m m f f m f f

f m f f m f m f m f m f m
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Figure 1.8 3D scatter plot of male and female lizards. �

Figure 1.8 repeats the scatter plot for the original variables but with males
marked by solid circles and females by open circles. Clearly, males are typically larg-
er than females.

Points in Dimensions. The n observations of the p variables can also be re-
garded as p points in n-dimensional space. Each column of determines one of the
points. The ith column,

consisting of all n measurements on the ith variable, determines the ith point.
In Chapter 2, we show how the closeness of points in n dimensions can be relat-

ed to measures of association between the corresponding variables.

1.4 Data Displays and Pictorial Representations
The rapid development of powerful personal computers and workstations has led to
a proliferation of sophisticated statistical software for data analysis and graphics. It
is often possible, for example, to sit at one’s desk and examine the nature of multidi-
mensional data with clever computer-generated pictures. These pictures are valu-
able aids in understanding data and often prevent many false starts and subsequent
inferential problems.

As we shall see in Chapters 8 and 12, there are several techniques that seek to
represent p-dimensional observations in few dimensions such that the original dis-
tances (or similarities) between pairs of observations are (nearly) preserved. In gen-
eral, if multidimensional observations can be represented in two dimensions, then
outliers, relationships, and distinguishable groupings can often be discerned by eye.
We shall discuss and illustrate several methods for displaying multivariate data in
two dimensions. One good source for more discussion of graphical methods is [11].

Dx1 i

x2 i

o

xn i

T
X

np
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Linking Multiple Two-Dimensional Scatter Plots

One of the more exciting new graphical procedures involves electronically connect-
ing many two-dimensional scatter plots.

Example 1.8 (Linked scatter plots and brushing) To illustrate linked two-dimensional
scatter plots, we refer to the paper-quality data in Table 1.2. These data represent
measurements on the variables in the machine direction,
and in the cross direction. Figure 1.9 shows two-dimensional scatter
plots for pairs of these variables organized as a array. For example, the picture
in the upper left-hand corner of the figure is a scatter plot of the pairs of observations

That is, the values are plotted along the horizontal axis, and the values
are plotted along the vertical axis.The lower right-hand corner of the figure contains a
scatter plot of the observations That is, the axes are reversed. Corresponding
interpretations hold for the other scatter plots in the figure. Notice that the variables
and their three-digit ranges are indicated in the boxes along the SW–NE diagonal.The
operation of marking (selecting), the obvious outlier in the scatter plot of
Figure 1.9 creates Figure 1.10(a), where the outlier is labeled as specimen 25 and the
same data point is highlighted in all the scatter plots. Specimen 25 also appears to be
an outlier in the scatter plot but not in the scatter plot.The operation
of deleting this specimen leads to the modified scatter plots of Figure 1.10(b).

From Figure 1.10, we notice that some points in, for example, the scatter
plot seem to be disconnected from the others. Selecting these points, using the
(dashed) rectangle (see page 22), highlights the selected points in all of the other
scatter plots and leads to the display in Figure 1.11(a). Further checking revealed
that specimens 16–21, specimen 34, and specimens 38–41 were actually specimens

1x2 , x32

1x2 , x321x1 , x22

1x1 , x32

1x3 , x12.

x3x11x1 , x32.

3 * 3
x3 = strength

x2 = strengthx1 = density,
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Cross
(x3)
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(x1)
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Figure 1.9 Scatter
plots for the paper-
quality data of
Table 1.2.
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Figure 1.10 Modified
scatter plots for the
paper-quality data
with outlier (25)
(a) selected and
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from an older roll of paper that was included in order to have enough plies in the
cardboard being manufactured. Deleting the outlier and the cases corresponding to
the older paper and adjusting the ranges of the remaining observations leads to the
scatter plots in Figure 1.11(b).

The operation of highlighting points corresponding to a selected range of one of
the variables is called brushing. Brushing could begin with a rectangle, as in Figure
1.11(a), but then the brush could be moved to provide a sequence of highlighted
points. The process can be stopped at any time to provide a snapshot of the current
situation. �

Scatter plots like those in Example 1.8 are extremely useful aids in data analy-
sis. Another important new graphical technique uses software that allows the data
analyst to view high-dimensional data as slices of various three-dimensional per-
spectives. This can be done dynamically and continuously until informative views
are obtained. A comprehensive discussion of dynamic graphical methods is avail-
able in [1]. A strategy for on-line multivariate exploratory graphical analysis, moti-
vated by the need for a routine procedure for searching for structure in multivariate
data, is given in [32].

Example 1.9 (Rotated plots in three dimensions) Four different measurements of
lumber stiffness are given in Table 4.3, page 186. In Example 4.14, specimen (board)
16 and possibly specimen (board) 9 are identified as unusual observations. Fig-
ures 1.12(a), (b), and (c) contain perspectives of the stiffness data in the 
space. These views were obtained by continually rotating and turning the three-
dimensional coordinate axes. Spinning the coordinate axes allows one to get a better

x1 , x2 , x3

x2

x2

x4

x2

x3

x3

x1

x1

x2

x3

x1
x3

9

9

16
9

16

16

169

(a) (b)Outliers clear.

(c) Specimen 9 large.
(d)

Outliers masked.

Good view of
x2, x3, x4 space.

Figure 1.12 Three-dimensional perspectives for the lumber stiffness data.
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Table 1.4 Female Bear Data

Bear Wt2 Wt3 Wt4 Wt5 Lngth 2 Lngth 3 Lngth 4 Lngth 5

1 48 59 95 82 141 157 168 183
2 59 68 102 102 140 168 174 170
3 61 77 93 107 145 162 172 177
4 54 43 104 104 146 159 176 171
5 100 145 185 247 150 158 168 175
6 68 82 95 118 142 140 178 189
7 68 95 109 111 139 171 176 175

Source: Data courtesy of H. Roberts.

understanding of the three-dimensional aspects of the data. Figure 1.12(d) gives 
one picture of the stiffness data in space. Notice that Figures 1.12(a) and
(d) visually confirm specimens 9 and 16 as outliers. Specimen 9 is very large in all
three coordinates. A counterclockwiselike rotation of the axes in Figure 1.12(a)
produces Figure 1.12(b), and the two unusual observations are masked in this view.
A further spinning of the axes gives Figure 1.12(c); one of the outliers (16) is
now hidden.

Additional insights can sometimes be gleaned from visual inspection of the
slowly spinning data. It is this dynamic aspect that statisticians are just beginning to
understand and exploit. �

Plots like those in Figure 1.12 allow one to identify readily observations that do
not conform to the rest of the data and that may heavily influence inferences based
on standard data-generating models.

Graphs of Growth Curves

When the height of a young child is measured at each birthday, the points can be
plotted and then connected by lines to produce a graph. This is an example of a
growth curve. In general, repeated measurements of the same characteristic on the
same unit or subject can give rise to a growth curve if an increasing, decreasing, or
even an increasing followed by a decreasing, pattern is expected.

Example 1.10 (Arrays of growth curves) The Alaska Fish and Game Department
monitors grizzly bears with the goal of maintaining a healthy population. Bears are
shot with a dart to induce sleep and weighed on a scale hanging from a tripod. Mea-
surements of length are taken with a steel tape. Table 1.4 gives the weights (wt) in
kilograms and lengths (lngth) in centimeters of seven female bears at 2, 3, 4, and 5
years of age.

First, for each bear, we plot the weights versus the ages and then connect the
weights at successive years by straight lines. This gives an approximation to growth
curve for weight. Figure 1.13 shows the growth curves for all seven bears. The notice-
able exception to a common pattern is the curve for bear 5. Is this an outlier or just
natural variation in the population? In the field, bears are weighed on a scale that

x2 , x3

x2 , x3 , x4
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Figure 1.13 Combined
growth curves for weight
for seven female grizzly
bears.

reads pounds. Further inspection revealed that, in this case, an assistant later failed to
convert the field readings to kilograms when creating the electronic database. The
correct weights are kilograms.

Because it can be difficult to inspect visually the individual growth curves in a
combined plot, the individual curves should be replotted in an array where similari-
ties and differences are easily observed. Figure 1.14 gives the array of seven curves
for weight. Some growth curves look linear and others quadratic.
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Figure 1.14 Individual growth curves for weight for female grizzly bears.
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Figure 1.15 Individual growth curves for length for female grizzly bears. �

Figure 1.15 gives a growth curve array for length. One bear seemed to get shorter
from 2 to 3 years old, but the researcher knows that the steel tape measurement of
length can be thrown off by the bear’s posture when sedated.

We now turn to two popular pictorial representations of multivariate data in
two dimensions: stars and Chernoff faces.

Stars

Suppose each data unit consists of nonnegative observations on variables. In
two dimensions, we can construct circles of a fixed (reference) radius with p equally
spaced rays emanating from the center of the circle. The lengths of the rays represent
the values of the variables.The ends of the rays can be connected with straight lines to
form a star. Each star represents a multivariate observation, and the stars can be
grouped according to their (subjective) similarities.

It is often helpful, when constructing the stars, to standardize the observations.
In this case some of the observations will be negative. The observations can then be
reexpressed so that the center of the circle represents the smallest standardized
observation within the entire data set.

Example 1.11 (Utility data as stars) Stars representing the first 5 of the 22 public
utility firms in Table 12.4, page 688, are shown in Figure 1.16. There are eight vari-
ables; consequently, the stars are distorted octagons.

p Ú 2
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Figure 1.16 Stars for the first five public utilities.

The observations on all variables were standardized. Among the first five utili-
ties, the smallest standardized observation for any variable was Treating this
value as zero, the variables are plotted on identical scales along eight equiangular
rays originating from the center of the circle. The variables are ordered in a clock-
wise direction, beginning in the 12 o’clock position.

At first glance, none of these utilities appears to be similar to any other. However,
because of the way the stars are constructed, each variable gets equal weight in the vi-
sual impression. If we concentrate on the variables 6 (sales in kilowatt-hour [kWh] use
per year) and 8 (total fuel costs in cents per kWh), then Boston Edison and Consoli-
dated Edison are similar (small variable 6, large variable 8), and Arizona Public Ser-
vice, Central Louisiana Electric, and Commonwealth Edison are similar (moderate
variable 6, moderate variable 8). �

Chernoff Faces

People react to faces. Chernoff [4] suggested representing p-dimensional observa-
tions as a two-dimensional face whose characteristics (face shape, mouth curvature,
nose length, eye size, pupil position, and so forth) are determined by the measure-
ments on the p variables.

-1.6.
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As originally designed, Chernoff faces can handle up to 18 variables.The assign-
ment of variables to facial features is done by the experimenter, and different choic-
es produce different results. Some iteration is usually necessary before satisfactory
representations are achieved.

Chernoff faces appear to be most useful for verifying (1) an initial grouping sug-
gested by subject-matter knowledge and intuition or (2) final groupings produced
by clustering algorithms.

Example 1.12 (Utility data as Chernoff faces) From the data in Table 12.4, the 22
public utility companies were represented as Chernoff faces. We have the following
correspondences:

Variable Facial characteristic

Fixed-charge coverage Half-height of face
Rate of return on capital Face width
Cost per kW capacity in place Position of center of mouth
Annual load factor Slant of eyes

Peak kWh demand growth from 1974 Eccentricity of eyes

Sales (kWh use per year) Half-length of eye
Percent nuclear Curvature of mouth
Total fuel costs (cents per kWh) Length of nose

The Chernoff faces are shown in Figure 1.17. We have subjectively grouped
“similar” faces into seven clusters. If a smaller number of clusters is desired, we
might combine clusters 5, 6, and 7 and, perhaps, clusters 2 and 3 to obtain four or five
clusters. For our assignment of variables to facial features, the firms group largely
according to geographical location. �

Constructing Chernoff faces is a task that must be done with the aid of a com-
puter. The data are ordinarily standardized within the computer program as part of
the process for determining the locations, sizes, and orientations of the facial char-
acteristics. With some training, we can use Chernoff faces to communicate similari-
ties or dissimilarities, as the next example indicates.

Example 1.13 (Using Chernoff faces to show changes over time) Figure 1.18 illus-
trates an additional use of Chernoff faces. (See [24].) In the figure, the faces are used
to track the financial well-being of a company over time. As indicated, each facial
feature represents a single financial indicator, and the longitudinal changes in these
indicators are thus evident at a glance. �

4X8 :
4X7 :
4X6 :

a
height
width

b4X5 :

4X4 :
4X3 :
4X2 :
4X1 :
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Figure 1.17 Chernoff faces for 22 public utilities.
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Figure 1.18 Chernoff faces over time.
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Figure 1.19 Distance given
by the Pythagorean theorem.

Chernoff faces have also been used to display differences in multivariate obser-
vations in two dimensions. For example, the two-dimensional coordinate axes might
represent latitude and longitude (geographical location), and the faces might repre-
sent multivariate measurements on several U.S. cities. Additional examples of this
kind are discussed in [30].

There are several ingenious ways to picture multivariate data in two dimensions.
We have described some of them. Further advances are possible and will almost
certainly take advantage of improved computer graphics.

1.5 Distance
Although they may at first appear formidable, most multivariate techniques are based
upon the simple concept of distance. Straight-line, or Euclidean, distance should be
familiar. If we consider the point in the plane, the straight-line distance,

from P to the origin is, according to the Pythagorean theorem,

(1-9)

The situation is illustrated in Figure 1.19. In general, if the point P has p coordi-
nates so that the straight-line distance from P to the origin

is

(1-10)

(See Chapter 3.) All points that lie a constant squared distance, such
as from the origin satisfy the equation

(1-11)

Because this is the equation of a hypersphere (a circle if ), points equidistant
from the origin lie on a hypersphere.

The straight-line distance between two arbitrary points P and Q with coordi-
nates and is given by

(1-12)

Straight-line, or Euclidean, distance is unsatisfactory for most statistical purpos-
es. This is because each coordinate contributes equally to the calculation of Euclid-
ean distance. When the coordinates represent measurements that are subject to
random fluctuations of differing magnitudes, it is often desirable to weight coordi-
nates subject to a great deal of variability less heavily than those that are not highly
variable. This suggests a different measure of distance.

Our purpose now is to develop a “statistical” distance that accounts for differ-
ences in variation and, in due course, the presence of correlation. Because our

d1P, Q2 = 31x1 - y12
2

+ 1x2 - y22
2

+
Á

+ 1xp - yp2
2

Q = 1y1 , y2 , Á , yp2P = 1x1 , x2 , Á , xp2

p = 2

d21O, P2 = x1
2

+ x2
2

+
Á

+ xp
2

= c2

c2,
1x1 , x2 , Á , xp2

d1O, P2 = 3x1
2

+ x2
2

+
Á

+ xp
2

O = 10, 0, Á , 02
P = 1x1 , x2 , Á , xp2,

d1O, P2 = 3x1
2

+ x2
2

O = 10, 02d1O, P2,
P = 1x1 , x22
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1At this point, “independently” means that the measurements cannot be predicted with any
accuracy from the measurements, and vice versa.x1

x2

choice will depend upon the sample variances and covariances, at this point we use
the term statistical distance to distinguish it from ordinary Euclidean distance. It is
statistical distance that is fundamental to multivariate analysis.

To begin, we take as fixed the set of observations graphed as the p-dimensional
scatter plot. From these, we shall construct a measure of distance from the origin to
a point In our arguments, the coordinates of P
can vary to produce different locations for the point. The data that determine dis-
tance will, however, remain fixed.

To illustrate, suppose we have n pairs of measurements on two variables each
having mean zero. Call the variables and and assume that the measurements
vary independently of the measurements.1 In addition, assume that the variability
in the measurements is larger than the variability in the measurements.A scatter
plot of the data would look something like the one pictured in Figure 1.20.

x2x1

x2

x1x2 ,x1

1x1 , x2 , Á , xp2P = 1x1 , x2 , Á , xp2.

x2

x1

Figure 1.20 A scatter plot with
greater variability in the direction
than in the direction.x2

x1

Glancing at Figure 1.20, we see that values which are a given deviation from the
origin in the direction are not as “surprising” or “unusual” as are values equidis-
tant from the origin in the direction.This is because the inherent variability in the

direction is greater than the variability in the direction. Consequently, large 
coordinates (in absolute value) are not as unexpected as large coordinates. It
seems reasonable, then, to weight an coordinate more heavily than an coordi-
nate of the same value when computing the “distance” to the origin.

One way to proceed is to divide each coordinate by the sample standard devia-
tion. Therefore, upon division by the standard deviations, we have the “standard-
ized” coordinates and The standardized coordinates
are now on an equal footing with one another. After taking the differences in vari-
ability into account, we determine distance using the standard Euclidean formula.

Thus,a statistical distance of the point from the origin can
be computed from its standardized coordinates and as

(1-13)
 = C ¢ x11s1 1

≤2

+ ¢ x21s2 2
≤2

= C x1
2

s1 1
+

x2
2

s2 2

 d1O, P2 = 31x1
…2

2
+ 1x2

…2
2

x2
…

= x2>1s2 2x1
…

= x1>1s1 1

O = 10, 02P = 1x1 , x22

x2
…

= x2>1s2 2 .x1
…

= x1>1s1 1

x1x2

x2

x1x2x1

x2

x1
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s22�c

�c s11

Figure 1.21 The ellipse of constant
statistical distance
d21O, P2 = x1

2>s1 1 + x2
2>s2 2 = c2.

Example 1.14 (Calculating a statistical distance) A set of paired measurements
on two variables yields and Suppose the 

measurements are unrelated to the measurements; that is, measurements within a
pair vary independently of one another. Since the sample variances are unequal, we
measure the square of the distance of an arbitrary point to the origin

by

All points that are a constant distance 1 from the origin satisfy the equation

The coordinates of some points a unit distance from the origin are presented in the
following table:

x1
2

4
+

x2
2

1
= 1

1x1 , x22

d21O, P2 =

x1
2

4
+

x2
2

1

O = 10, 02
P = 1x1 , x22

x2

x1s2 2 = 1.s1 1 = 4,x–1 = x–2 = 0,1x1 , x22

Comparing (1-13) with (1-9), we see that the difference between the two expres-
sions is due to the weights and attached to and in (1-13).
Note that if the sample variances are the same, then and will receive
the same weight. In cases where the weights are the same, it is convenient to ignore the
common divisor and use the usual Euclidean distance formula. In other words, if 
the variability in the direction is the same as the variability in the direction,
and the values vary independently of the values, Euclidean distance is
appropriate.

Using (1-13), we see that all points which have coordinates and are a
constant squared distance from the origin must satisfy

(1-14)

Equation (1-14) is the equation of an ellipse centered at the origin whose major and
minor axes coincide with the coordinate axes. That is, the statistical distance in
(1-13) has an ellipse as the locus of all points a constant distance from the origin.
This general case is shown in Figure 1.21.

x1
2

s1 1
+

x2
2

s2 2
= c2

c2
1x1 , x22

x2x1

x2x1

x2
2x1

2k1 = k2 ,
x2

2x1
2k2 = 1>s2 2k1 = 1>s1 1
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x2

x1
2�2 �1

�1

1

1

Figure 1.22 Ellipse of unit

distance,
x1

2

4
+

x2
2

1
= 1.

Coordinates: Distance:

A plot of the equation is an ellipse centered at whose
major axis lies along the coordinate axis and whose minor axis lies along the 
coordinate axis. The half-lengths of these major and minor axes are and

respectively.The ellipse of unit distance is plotted in Figure 1.22.All points
on the ellipse are regarded as being the same statistical distance from the origin—in
this case, a distance of 1. �
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The expression in (1-13) can be generalized to accommodate the calculation of
statistical distance from an arbitrary point to any fixed point

If we assume that the coordinate variables vary independently of one
another, the distance from P to Q is given by

(1-15)

The extension of this statistical distance to more than two dimensions is
straightforward. Let the points P and Q have p coordinates such that

and Suppose Q is a fixed point [it may be
the origin ] and the coordinate variables vary independently of one
another. Let be sample variances constructed from n measurements
on respectively. Then the statistical distance from P to Q is

(1-16)d1P, Q2 = C1x1 - y12
2

s1 1
+

1x2 - y22
2

s2 2
+

Á
+

1xp - yp2
2

sp p

x1 , x2 , Á , xp ,
s1 1 , s2 2 , Á , sp p

O = 10, 0, Á , 02
Q = 1y1 , y2 , Á , yp2.P = 1x1 , x2 , Á , xp2

d1P, Q2 = C1x1 - y12
2

s1 1
+

1x2 - y22
2

s2 2

Q = 1y1 , y22.
P = 1x1 , x22
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~
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θ

Figure 1.23 A scatter plot for
positively correlated
measurements and a rotated
coordinate system.

All points P that are a constant squared distance from Q lie on a hyperellipsoid
centered at Q whose major and minor axes are parallel to the coordinate axes. We
note the following:

1. The distance of P to the origin O is obtained by setting = = 0
in (1-16).

2. If the Euclidean distance formula in (1-12) is appropriate.

The distance in (1-16) still does not include most of the important cases we shall
encounter, because of the assumption of independent coordinates. The scatter plot
in Figure 1.23 depicts a two-dimensional situation in which the measurements do
not vary independently of the measurements. In fact, the coordinates of the pairs

exhibit a tendency to be large or small together, and the sample correlation
coefficient is positive. Moreover, the variability in the direction is larger than the
variability in the direction.

What is a meaningful measure of distance when the variability in the direc-
tion is different from the variability in the direction and the variables and 
are correlated? Actually, we can use what we have already introduced, provided that
we look at things in the right way. From Figure 1.23, we see that if we rotate the orig-
inal coordinate system through the angle while keeping the scatter fixed and label
the rotated axes and the scatter in terms of the new axes looks very much like
that in Figure 1.20. (You may wish to turn the book to place the and axes in
their customary positions.) This suggests that we calculate the sample variances
using the and coordinates and measure distance as in Equation (1-13). That is,
with reference to the and axes, we define the distance from the point

to the origin as

(1-17)

where and denote the sample variances computed with the and 
measurements.
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2Specifically,

and

 a1 2 =

cos1u2 sin1u2

cos21u2s1 1 + 2 sin1u2 cos1u2s1 2 + sin21u2s2 2

-

sin1u2 cos1u2

cos21u2s2 2 - 2 sin1u2 cos1u2s1 2 + sin21u2s1 1

 a2 2 =

sin21u2

cos21u2s1 1 + 2 sin1u2 cos1u2s1 2 + sin21u2s2 2

+

cos21u2

cos21u2s2 2 - 2 sin1u2 cos1u2s1 2 + sin21u2s1 1

 a1 1 =

cos21u2

cos21u2s1 1 + 2 sin1u2 cos1u2s1 2 + sin21u2s2 2

+

sin21u2

cos21u2s2 2 - 2 sin1u2 cos1u2s1 2 + sin21u2s1 1

The relation between the original coordinates and the rotated coordi-
nates is provided by

(1-18)

Given the relations in (1-18), we can formally substitute for and in (1-17)
and express the distance in terms of the original coordinates.

After some straightforward algebraic manipulations, the distance from
to the origin can be written in terms of the original coordi-

nates and of P as

(1-19)

where the a’s are numbers such that the distance is nonnegative for all possible val-
ues of and Here and are determined by the angle and 
and calculated from the original data.2 The particular forms for and 
are not important at this point. What is important is the appearance of the cross-
product term necessitated by the nonzero correlation 

Equation (1-19) can be compared with (1-13). The expression in (1-13) can be
regarded as a special case of (1-19) with and 

In general, the statistical distance of the point from the fixed point
for situations in which the variables are correlated has the general

form

(1-20)

and can always be computed once and are known. In addition, the coor-
dinates of all points that are a constant squared distance from Q
satisfy

(1-21)

By definition, this is the equation of an ellipse centered at Q. The graph of such an
equation is displayed in Figure 1.24.The major (long) and minor (short) axes are in-
dicated. They are parallel to the and axes. For the choice of and in
footnote 2, the and axes are at an angle with respect to the and axes.

The generalization of the distance formulas of (1-19) and (1-20) to p dimen-
sions is straightforward. Let be a point whose coordinates
represent variables that are correlated and subject to inherent variability. Let

P = 1x1 , x2 , Á , xp2
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Figure 1.24 Ellipse of points
a constant distance from the
point Q.

3The algebraic expressions for the squares of the distances in (1-22) and (1-23) are known as qua-
dratic forms and, in particular, positive definite quadratic forms. It is possible to display these quadratic
forms in a simpler manner using matrix algebra; we shall do so in Section 3.3 of Chapter 3.

denote the origin, and let be a specified
fixed point. Then the distances from P to O and from P to Q have the general
forms

(1-22)
and

(1-23)

where the a’s are numbers such that the distances are always nonnegative.3

We note that the distances in (1-22) and (1-23) are completely determined by
the coefficients (weights) These coefficients can
be set out in the rectangular array

(1-24)

where the ’s with are displayed twice, since they are multiplied by 2 in the
distance formulas. Consequently, the entries in this array specify the distance func-
tions. The ’s cannot be arbitrary numbers; they must be such that the computed
distance is nonnegative for every pair of points. (See Exercise 1.10.)

Contours of constant distances computed from (1-22) and (1-23) are
hyperellipsoids. A hyperellipsoid resembles a football when it is impossible
to visualize in more than three dimensions.

p = 3;
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x2

x1
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Q

Figure 1.25 A cluster of points
relative to a point P and the origin.

The need to consider statistical rather than Euclidean distance is illustrated
heuristically in Figure 1.25. Figure 1.25 depicts a cluster of points whose center of
gravity (sample mean) is indicated by the point Q. Consider the Euclidean distances
from the point Q to the point P and the origin O. The Euclidean distance from Q to
P is larger than the Euclidean distance from Q to O. However, P appears to be more
like the points in the cluster than does the origin. If we take into account the vari-
ability of the points in the cluster and measure distance by the statistical distance in
(1-20), then Q will be closer to P than to O. This result seems reasonable, given the
nature of the scatter.

Other measures of distance can be advanced. (See Exercise 1.12.) At times, it is
useful to consider distances that are not related to circles or ellipses. Any distance
measure between two points P and Q is valid provided that it satisfies the
following properties, where R is any other intermediate point:

(1-25)

1.6 Final Comments
We have attempted to motivate the study of multivariate analysis and to provide
you with some rudimentary, but important, methods for organizing, summarizing,
and displaying data. In addition, a general concept of distance has been introduced
that will be used repeatedly in later chapters.

Exercises

1.1. Consider the seven pairs of measurements plotted in Figure 1.1:

Calculate the sample means and the sample variances and and the sample
covariance s1 2 .

s2 2 ,s1 1x–2 ,x–1

3 4 2 6 8 2 5

5 5.5 4 7 10 5 7.5x2

x1

1x1 , x22

 d1P, Q2 … d1P, R2 + d1R, Q2  1triangle inequality2

 d1P, Q2 = 0 if P = Q

 d1P, Q2 7 0 if P Z Q

 d1P, Q2 = d1Q, P2

d1P, Q2
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1.2. A morning newspaper lists the following used-car prices for a foreign compact with age
measured in years and selling price measured in thousands of dollars:

(a) Construct a scatter plot of the data and marginal dot diagrams.

(b) Infer the sign of the sample covariance from the scatter plot.

(c) Compute the sample means and and the sample variances and Com-
pute the sample covariance and the sample correlation coefficient Interpret
these quantities.

(d) Display the sample mean array the sample variance-covariance array and the
sample correlation array R using (1-8).

1.3. The following are five measurements on the variables and 

Find the arrays and R.

1.4. The world’s 10 largest companies yield the following data:

The World’s 10 Largest Companies1

Company (billions) (billions) (billions)

Citigroup 108.28 17.05 1,484.10
General Electric 152.36 16.59 750.33
American Intl Group 95.04 10.91 766.42
Bank of America 65.45 14.14 1,110.46
HSBC Group 62.97 9.52 1,031.29
ExxonMobil 263.99 25.33 195.26
Royal Dutch/Shell 265.19 18.54 193.83
BP 285.06 15.73 191.11
ING Group 92.01 8.10 1,175.16
Toyota Motor 165.68 11.13 211.15

1From www.Forbes.com partially based on Forbes The Forbes Global 2000,
April 18, 2005.

(a) Plot the scatter diagram and marginal dot diagrams for variables and Com-
ment on the appearance of the diagrams.

(b) Compute and Interpret 

1.5. Use the data in Exercise 1.4.

(a) Plot the scatter diagrams and dot diagrams for and Comment on
the patterns.

(b) Compute the and R arrays for 1x1 , x2 , x32.x–, Sn ,

1x1 , x32.1x2 , x32

r1 2 .r1 2 .s2 2 , s1 2 ,x–1 , x–2 , s1 1 ,

x2 .x1

x3 = assetsx2 = profitsx1 = sales

x–, Sn ,

9 2 6 5 8

12 8 6 4 10

3 4 0 2 1x3

x2

x1

x3 :x1 , x2 ,

Sn ,x–,

r1 2 .s1 2

s2 2 .s1 1x–2x–1

s1 2

1 2 3 3 4 5 6 8 9 11

18.95 19.00 17.95 15.54 14.00 12.95 8.94 7.49 6.00 3.99x2

x1

x2x1
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1.6. The data in Table 1.5 are 42 measurements on air-pollution variables recorded at 12:00
noon in the Los Angeles area on different days. (See also the air-pollution data on the
web at www.prenhall.com/statistics.)
(a) Plot the marginal dot diagrams for all the variables.

(b) Construct the and R arrays, and interpret the entries in R.x–, Sn ,

Table 1.5 Air-Pollution Data

Solar
Wind radiation 

8 98 7 2 12 8 2
7 107 4 3 9 5 3
7 103 4 3 5 6 3

10 88 5 2 8 15 4
6 91 4 2 8 10 3
8 90 5 2 12 12 4
9 84 7 4 12 15 5
5 72 6 4 21 14 4
7 82 5 1 11 11 3
8 64 5 2 13 9 4
6 71 5 4 10 3 3
6 91 4 2 12 7 3
7 72 7 4 18 10 3

10 70 4 2 11 7 3
10 72 4 1 8 10 3
9 77 4 1 9 10 3
8 76 4 1 7 7 3
8 71 5 3 16 4 4
9 67 4 2 13 2 3
9 69 3 3 9 5 3

10 62 5 3 14 4 4
9 88 4 2 7 6 3
8 80 4 2 13 11 4
5 30 3 3 5 2 3
6 83 5 1 10 23 4
8 84 3 2 7 6 3
6 78 4 2 11 11 3
8 79 2 1 7 10 3
6 62 4 3 9 8 3

10 37 3 1 7 2 3
8 71 4 1 10 7 3
7 52 4 1 12 8 4
5 48 6 5 8 4 3
6 75 4 1 10 24 3

10 35 4 1 6 9 2
8 85 4 1 9 10 2
5 86 3 1 6 12 2
5 86 7 2 13 18 2
7 79 7 4 9 25 3
7 79 5 2 8 6 2
6 68 6 2 11 14 3
8 40 4 3 6 5 2

Source: Data courtesy of Professor G. C. Tiao.

HC 1x72O3 1x62NO2 1x52NO 1x42CO 1x321x221x12
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1.7. You are given the following observations on variables:

Variable 1:

Variable 2:

(a) Plot the pairs of observations in the two-dimensional “variable space.” That is, con-
struct a two-dimensional scatter plot of the data.

(b) Plot the data as two points in the three-dimensional “item space.”

1.8. Evaluate the distance of the point to the point using the Eu-
clidean distance formula in (1-12) with and using the statistical distance in (1-20)
with and Sketch the locus of points that are a con-
stant squared statistical distance 1 from the point Q.

1.9. Consider the following eight pairs of measurements on two variables and 

(a) Plot the data as a scatter diagram, and compute and 

(b) Using (1-18), calculate the corresponding measurements on variables and as-
suming that the original coordinate axes are rotated through an angle of 
[given and ].

(c) Using the and measurements from (b), compute the sample variances
and

(d) Consider the new pair of measurements Transform these to
measurements on and using (1-18), and calculate the distance of the
new point from the origin using (1-17).
Note: You will need and from (c).

(e) Calculate the distance from to the origin using (1-19) and
the expressions for and in footnote 2.
Note: You will need and from (a).
Compare the distance calculated here with the distance calculated using the and 
values in (d). (Within rounding error, the numbers should be the same.)

1.10. Are the following distance functions valid for distance from the origin? Explain.

(a)

(b)

1.11. Verify that distance defined by (1-20) with and satisfies the
first three conditions in (1-25). (The triangle inequality is more difficult to verify.)

1.12. Define the distance from the point to the origin as

(a) Compute the distance from to the origin.

(b) Plot the locus of points whose squared distance from the origin is 1.

(c) Generalize the foregoing distance expression to points in p dimensions.

1.13. A large city has major roads laid out in a grid pattern, as indicated in the following dia-
gram. Streets 1 through 5 run north–south (NS), and streets A through E run east–west
(EW). Suppose there are retail stores located at intersections and 1C, 52.1E, 32,1A, 22,

P = 1- 3, 42

d1O, P2 = max1 ƒ x1 ƒ , ƒ x2 ƒ2

O = 10, 02P = 1x1 , x22

a1 2 = - 1a1 1 = 4, a2 2 = 1,

x1
2

- 2x2
2

= 1distance22
x1

2
+ 4x2

2
+ x1 x2 = 1distance22

x
'

2x
'

1

s1 2s1 1 , s2 2 ,
a1 2a1 1 , a2 2 ,

O = 10, 02P = 14, - 22

s
'

2 2s
'

1 1

O = 10, 02P = 1x
'

1 , x
'

22
d1O, P2x

'

2x
'

1

1x1 , x22 = 14, - 22.

s
'

2 2 .
s
'

1 1x
'

2x
'

1

sin 126°2 = .438cos 126°2 = .899
u = 26°

x
'

2 ,x
'

1

s1 2 .s1 1 , s2 2 ,

1 2 5 6 8

1 2 1 5 3-1-3-2x2

-2-3-6x1

x2 :x1

a1 2 = 1>9.a2 2 = 4>27,a1 1 = 1>3,
p = 2

Q = 11, 02P = 1- 1, - 12

x3 2 = 4x2 2 = 2x1 2 = 1

x3 1 = 4x2 1 = 3x1 1 = 2

p = 2n = 3

40



Exercises

1 2 3 4 5

A

B

C

D

E

Assume the distance along a street between two intersections in either the NS or EW di-
rection is 1 unit. Define the distance between any two intersections (points) on the grid
to be the “city block” distance. [For example, the distance between intersections 
and which we might call is given by
= ± = Also, =

± = ]1 + 1 = 2.d11C, 12, 1C, 222d11D, 12, 1C, 122
d11D, 12, 1C, 2221 + 1 = 2.d11D, 22, 1C, 222d11D, 12, 1D, 222

d11D, 12, 1C, 222d11D, 12, 1C, 222,1C, 22,
1D, 12

Locate a supply facility (warehouse) at an intersection such that the sum of the dis-
tances from the warehouse to the three retail stores is minimized.

The following exercises contain fairly extensive data sets.A computer may be necessary for
the required calculations.

1.14. Table 1.6 contains some of the raw data discussed in Section 1.2. (See also the multiple-
sclerosis data on the web at www.prenhall.com/statistics.) Two different visual stimuli
(S1 and S2) produced responses in both the left eye and the right eye of sub-
jects in the study groups. The values recorded in the table include (subject’s age);
(total response of both eyes to stimulus S1, that is, ); (difference between
responses of eyes to stimulus ); and so forth.

(a) Plot the two-dimensional scatter diagram for the variables and for the
multiple-sclerosis group. Comment on the appearance of the diagram.

(b) Compute the and R arrays for the non-multiple-sclerosis and multiple-
sclerosis groups separately.

1.15. Some of the 98 measurements described in Section 1.2 are listed in Table 1.7 (See also
the radiotherapy data on the web at www.prenhall.com/statistics.) The data consist of av-
erage ratings over the course of treatment for patients undergoing radiotherapy. Vari-
ables measured include (number of symptoms, such as sore throat or nausea);
(amount of activity, on a 1–5 scale); (amount of sleep, on a 1–5 scale); (amount of
food consumed, on a 1–3 scale); (appetite, on a 1–5 scale); and (skin reaction, on a
0–3 scale).

(a) Construct the two-dimensional scatter plot for variables and and the marginal
dot diagrams (or histograms). Do there appear to be any errors in the data?

(b) Compute the and R arrays. Interpret the pairwise correlations.

1.16. At the start of a study to determine whether exercise or dietary supplements would slow
bone loss in older women, an investigator measured the mineral content of bones by
photon absorptiometry. Measurements were recorded for three bones on the dominant
and nondominant sides and are shown in Table 1.8. (See also the mineral-content data
on the web at www.prenhall.com/statistics.)

Compute the and R arrays. Interpret the pairwise correlations.x–, Sn ,

x–, Sn ,
x3

x3x2

x6x5

x4x3

x2x1

x–, Sn ,

x4x2

S1, ƒ S1L - S1R ƒ

x3S1L + S1R
x2x1

1R21L2
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Chapter 1 Aspects of Multivariate Analysis

Table 1.7 Radiotherapy Data

Symptoms Activity Sleep Eat Appetite Skin reaction

.889 1.389 1.555 2.222 1.945 1.000
2.813 1.437 .999 2.312 2.312 2.000
1.454 1.091 2.364 2.455 2.909 3.000
.294 .941 1.059 2.000 1.000 1.000

2.727 2.545 2.819 2.727 4.091 .000

4.100 1.900 2.800 2.000 2.600 2.000
.125 1.062 1.437 1.875 1.563 .000

6.231 2.769 1.462 2.385 4.000 2.000
3.000 1.455 2.090 2.273 3.272 2.000
.889 1.000 1.000 2.000 1.000 2.000

Source: Data courtesy of Mrs. Annette Tealey, R.N. Values of and less than 1.0 are due to errors
in the data-collection process. Rows containing values of and less than 1.0 may be omitted.x3x2

x3x2

oooooo

x6x5x4x3x2x1

Table 1.6 Multiple-Sclerosis Data

Non-Multiple-Sclerosis Group Data

Subject
number (Age)

1 18 152.0 1.6 198.4 .0
2 19 138.0 .4 180.8 1.6
3 20 144.0 .0 186.4 .8
4 20 143.6 3.2 194.8 .0
5 20 148.8 .0 217.6 .0

65 67 154.4 2.4 205.2 6.0
66 69 171.2 1.6 210.4 .8
67 73 157.2 .4 204.8 .0
68 74 175.2 5.6 235.6 .4
69 79 155.0 1.4 204.4 .0

Multiple-Sclerosis Group Data

Subject
number

1 23 148.0 .8 205.4 .6
2 25 195.2 3.2 262.8 .4
3 25 158.0 8.0 209.8 12.2
4 28 134.4 .0 198.4 3.2
5 29 190.2 14.2 243.8 10.6

25 57 165.6 16.8 229.2 15.6
26 58 238.4 8.0 304.4 6.0
27 58 164.0 .8 216.8 .8
28 58 169.8 .0 219.2 1.6
29 59 199.8 4.6 250.2 1.0

Source: Data courtesy of Dr. G. G. Celesia.

oooooo

x5x4x3x2x1

oooooo

ƒ S2L - S2R ƒ1S2L + S2R2ƒ S1L - S1R ƒ1S1L + S1R2
x5x4x3x2x1
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Exercises

Table 1.8 Mineral Content in Bones

Subject Dominant Dominant Dominant
number radius Radius humerus Humerus ulna Ulna

1 1.103 1.052 2.139 2.238 .873 .872
2 .842 .859 1.873 1.741 .590 .744
3 .925 .873 1.887 1.809 .767 .713
4 .857 .744 1.739 1.547 .706 .674
5 .795 .809 1.734 1.715 .549 .654
6 .787 .779 1.509 1.474 .782 .571
7 .933 .880 1.695 1.656 .737 .803
8 .799 .851 1.740 1.777 .618 .682
9 .945 .876 1.811 1.759 .853 .777

10 .921 .906 1.954 2.009 .823 .765
11 .792 .825 1.624 1.657 .686 .668
12 .815 .751 2.204 1.846 .678 .546
13 .755 .724 1.508 1.458 .662 .595
14 .880 .866 1.786 1.811 .810 .819
15 .900 .838 1.902 1.606 .723 .677
16 .764 .757 1.743 1.794 .586 .541
17 .733 .748 1.863 1.869 .672 .752
18 .932 .898 2.028 2.032 .836 .805
19 .856 .786 1.390 1.324 .578 .610
20 .890 .950 2.187 2.087 .758 .718
21 .688 .532 1.650 1.378 .533 .482
22 .940 .850 2.334 2.225 .757 .731
23 .493 .616 1.037 1.268 .546 .615
24 .835 .752 1.509 1.422 .618 .664
25 .915 .936 1.971 1.869 .869 .868

Source: Data courtesy of Everett Smith.

1.17. Some of the data described in Section 1.2 are listed in Table 1.9. (See also the national-
track-records data on the web at www.prenhall.com/statistics.) The national track
records for women in 54 countries can be examined for the relationships among the run-
ning events. Compute the and R arrays. Notice the magnitudes of the correlation
coefficients as you go from the shorter (100-meter) to the longer (marathon) running
distances. Interpret these pairwise correlations.

1.18. Convert the national track records for women in Table 1.9 to speeds measured in meters
per second. For example, the record speed for the 100-m dash for Argentinian women is
100 m>11.57 m>sec. Notice that the records for the 800-m, 1500-m, 3000-m
and marathon runs are measured in minutes. The marathon is 26.2 miles, or 42,195
meters, long. Compute the and R arrays. Notice the magnitudes of the correlation
coefficients as you go from the shorter (100 m) to the longer (marathon) running distances.
Interpret these pairwise correlations. Compare your results with the results you obtained
in Exercise 1.17.

1.19. Create the scatter plot and boxplot displays of Figure 1.5 for (a) the mineral-content
data in Table 1.8 and (b) the national-track-records data in Table 1.9.

x–, Sn ,

sec = 8.643

x–, Sn ,
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Chapter 1 Aspects of Multivariate Analysis

Table 1.9 National Track Records for Women

100 m 200 m 400 m 800 m 1500 m 3000 m Marathon
Country (s) (s) (s) (min) (min) (min) (min)

Argentina 11.57 22.94 52.50 2.05 4.25 9.19 150.32
Australia 11.12 22.23 48.63 1.98 4.02 8.63 143.51
Austria 11.15 22.70 50.62 1.94 4.05 8.78 154.35
Belgium 11.14 22.48 51.45 1.97 4.08 8.82 143.05
Bermuda 11.46 23.05 53.30 2.07 4.29 9.81 174.18
Brazil 11.17 22.60 50.62 1.97 4.17 9.04 147.41
Canada 10.98 22.62 49.91 1.97 4.00 8.54 148.36
Chile 11.65 23.84 53.68 2.00 4.22 9.26 152.23
China 10.79 22.01 49.81 1.93 3.84 8.10 139.39
Columbia 11.31 22.92 49.64 2.04 4.34 9.37 155.19
Cook Islands 12.52 25.91 61.65 2.28 4.82 11.10 212.33
Costa Rica 11.72 23.92 52.57 2.10 4.52 9.84 164.33
Czech Republic 11.09 21.97 47.99 1.89 4.03 8.87 145.19
Denmark 11.42 23.36 52.92 2.02 4.12 8.71 149.34
Dominican Republic 11.63 23.91 53.02 2.09 4.54 9.89 166.46
Finland 11.13 22.39 50.14 2.01 4.10 8.69 148.00
France 10.73 21.99 48.25 1.94 4.03 8.64 148.27
Germany 10.81 21.71 47.60 1.92 3.96 8.51 141.45
Great Britain 11.10 22.10 49.43 1.94 3.97 8.37 135.25
Greece 10.83 22.67 50.56 2.00 4.09 8.96 153.40
Guatemala 11.92 24.50 55.64 2.15 4.48 9.71 171.33
Hungary 11.41 23.06 51.50 1.99 4.02 8.55 148.50
India 11.56 23.86 55.08 2.10 4.36 9.50 154.29
Indonesia 11.38 22.82 51.05 2.00 4.10 9.11 158.10
Ireland 11.43 23.02 51.07 2.01 3.98 8.36 142.23
Israel 11.45 23.15 52.06 2.07 4.24 9.33 156.36
Italy 11.14 22.60 51.31 1.96 3.98 8.59 143.47
Japan 11.36 23.33 51.93 2.01 4.16 8.74 139.41
Kenya 11.62 23.37 51.56 1.97 3.96 8.39 138.47
Korea, South 11.49 23.80 53.67 2.09 4.24 9.01 146.12
Korea, North 11.80 25.10 56.23 1.97 4.25 8.96 145.31
Luxembourg 11.76 23.96 56.07 2.07 4.35 9.21 149.23
Malaysia 11.50 23.37 52.56 2.12 4.39 9.31 169.28
Mauritius 11.72 23.83 54.62 2.06 4.33 9.24 167.09
Mexico 11.09 23.13 48.89 2.02 4.19 8.89 144.06
Myanmar(Burma) 11.66 23.69 52.96 2.03 4.20 9.08 158.42
Netherlands 11.08 22.81 51.35 1.93 4.06 8.57 143.43
New Zealand 11.32 23.13 51.60 1.97 4.10 8.76 146.46
Norway 11.41 23.31 52.45 2.03 4.01 8.53 141.06
Papua New Guinea 11.96 24.68 55.18 2.24 4.62 10.21 221.14
Philippines 11.28 23.35 54.75 2.12 4.41 9.81 165.48
Poland 10.93 22.13 49.28 1.95 3.99 8.53 144.18
Portugal 11.30 22.88 51.92 1.98 3.96 8.50 143.29
Romania 11.30 22.35 49.88 1.92 3.90 8.36 142.50
Russia 10.77 21.87 49.11 1.91 3.87 8.38 141.31
Samoa 12.38 25.45 56.32 2.29 5.42 13.12 191.58

(continues)

44



Exercises

Singapore 12.13 24.54 55.08 2.12 4.52 9.94 154.41
Spain 11.06 22.38 49.67 1.96 4.01 8.48 146.51
Sweden 11.16 22.82 51.69 1.99 4.09 8.81 150.39
Switzerland 11.34 22.88 51.32 1.98 3.97 8.60 145.51
Taiwan 11.22 22.56 52.74 2.08 4.38 9.63 159.53
Thailand 11.33 23.30 52.60 2.06 4.38 10.07 162.39
Turkey 11.25 22.71 53.15 2.01 3.92 8.53 151.43
U.S.A. 10.49 21.34 48.83 1.94 3.95 8.43 141.16

Source: IAAF/ATFS Track and Field Handbook for Helsinki 2005 (courtesy of Ottavio Castellini).

1.20. Refer to the bankruptcy data in Table 11.4, page 657, and on the following website
www.prenhall.com/statistics. Using appropriate computer software,

(a) View the entire data set in space. Rotate the coordinate axes in various
directions. Check for unusual observations.

(b) Highlight the set of points corresponding to the bankrupt firms. Examine various
three-dimensional perspectives. Are there some orientations of three-dimensional
space for which the bankrupt firms can be distinguished from the nonbankrupt
firms? Are there observations in each of the two groups that are likely to have a sig-
nificant impact on any rule developed to classify firms based on the sample means,
variances, and covariances calculated from these data? (See Exercise 11.24.)

1.21. Refer to the milk transportation-cost data in Table 6.10, page 345, and on the web at
www.prenhall.com/statistics. Using appropriate computer software,

(a) View the entire data set in three dimensions. Rotate the coordinate axes in various
directions. Check for unusual observations.

(b) Highlight the set of points corresponding to gasoline trucks. Do any of the gasoline-
truck points appear to be multivariate outliers? (See Exercise 6.17.) Are there some
orientations of space for which the set of points representing gasoline
trucks can be readily distinguished from the set of points representing diesel trucks?

1.22. Refer to the oxygen-consumption data in Table 6.12, page 348, and on the web at
www.prenhall.com/statistics. Using appropriate computer software,
(a) View the entire data set in three dimensions employing various combinations of

three variables to represent the coordinate axes. Begin with the space.
(b) Check this data set for outliers.

1.23. Using the data in Table 11.9, page 666, and on the web at www.prenhall.com/
statistics, represent the cereals in each of the following ways.
(a) Stars.
(b) Chernoff faces. (Experiment with the assignment of variables to facial characteristics.)

1.24. Using the utility data in Table 12.4, page 688, and on the web at www.prenhall.
com/statistics, represent the public utility companies as Chernoff faces with assign-
ments of variables to facial characteristics different from those considered in Exam-
ple 1.12. Compare your faces with the faces in Figure 1.17. Are different groupings
indicated?

x1 , x2 , x3

x1 , x2 , x3

x1 , x2 , x3

100 m 200 m 400 m 800 m 1500 m 3000 m Marathon
Country (s) (s) (s) (min) (min) (min) (min)
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1.25. Using the data in Table 12.4 and on the web at www.prenhall.com/statistics, represent the
22 public utility companies as stars. Visually group the companies into four or five
clusters.

1.26. The data in Table 1.10 (see the bull data on the web at www.prenhall.com/statistics) are
the measured characteristics of 76 young (less than two years old) bulls sold at auction.
Also included in the table are the selling prices (SalePr) of these bulls.The column head-
ings (variables) are defined as follows:

(a) Compute the and R arrays. Interpret the pairwise correlations. Do some of
these variables appear to distinguish one breed from another?

(b) View the data in three dimensions using the variables Breed, Frame, and BkFat. Ro-
tate the coordinate axes in various directions. Check for outliers.Are the breeds well
separated in this coordinate system?

(c) Repeat part b using Breed, FtFrBody, and SaleHt. Which three-dimensional display
appears to result in the best separation of the three breeds of bulls?

xq, Sn ,

SaleWt =

 

Sale weight
1pounds2

SaleHt =

 

Sale height at
shoulder 1inches2

BkFat =

 

Back fat
1inches2

Frame =

 

Scale from 1 1small2
to 8 1large2

PrctFFB =

 

Percent fat-free
body

FtFrBody =

 

Fat free body
1pounds2

YrHgt =

 

Yearling height at
shoulder 1inches2

Breed = c 1 Angus
5 Hereford
8 Simental

Table 1.10 Data on Bulls

Breed SalePr YrHgt FtFrBody PrctFFB Frame BkFat SaleHt SaleWt

1 2200 51.0 1128 70.9 7 .25 54.8 1720
1 2250 51.9 1108 72.1 7 .25 55.3 1575
1 1625 49.9 1011 71.6 6 .15 53.1 1410
1 4600 53.1 993 68.9 8 .35 56.4 1595
1 2150 51.2 996 68.6 7 .25 55.0 1488

8 1450 51.4 997 73.4 7 .10 55.2 1454
8 1200 49.8 991 70.8 6 .15 54.6 1475
8 1425 50.0 928 70.8 6 .10 53.9 1375
8 1250 50.1 990 71.0 6 .10 54.9 1564
8 1500 51.7 992 70.6 7 .15 55.1 1458

Source: Data courtesy of Mark Ellersieck.

ooooooooo

1.27. Table 1.11 presents the 2005 attendance (millions) at the fifteen most visited national
parks and their size (acres).

(a) Create a scatter plot and calculate the correlation coefficient.

46



References

Table 1.11 Attendance and Size of National Parks

National Park Size (acres) Visitors (millions)

Arcadia 47.4 2.05
Bryce Canyon 35.8 1.02
Cuyahoga Valley 32.9 2.53
Everglades 1508.5 1.23
Grand Canyon 1217.4 4.40
Grand Teton 310.0 2.46
Great Smoky 521.8 9.19
Hot Springs 5.6 1.34
Olympic 922.7 3.14
Mount Rainier 235.6 1.17
Rocky Mountain 265.8 2.80
Shenandoah 199.0 1.09
Yellowstone 2219.8 2.84
Yosemite 761.3 3.30
Zion 146.6 2.59

(b) Identify the park that is unusual. Drop this point and recalculate the correlation
coefficient. Comment on the effect of this one point on correlation.

(c) Would the correlation in Part b change if you measure size in square miles instead of
acres? Explain.
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SAMPLE GEOMETRY
AND RANDOM SAMPLING

Introduction

into the geometrical interpretations of the descriptive statistics and R; we do so in
Section 2.2. Many of our explanations use the representation of the columns of X as p
vectors in n dimensions. In Section 2.3 we introduce the assumption that the observa-
tions constitute a random sample. Simply stated, random sampling implies that (1) mea-
surements taken on different items (or trials) are unrelated to one another and (2) the
joint distribution of all p variables remains the same for all items. Ultimately, it is this
structure of the random sample that justifies a particular choice of distance and dictates
the geometry for the n-dimensional representation of the data. Furthermore, when data
can be treated as a random sample, statistical inferences are based on a solid foundation.

Returning to geometric interpretations in Section 2.4, we introduce a single
number, called generalized variance, to describe variability. This generalization of
variance is an integral part of the comparison of multivariate means. In later sec-
tions we use matrix algebra to provide concise expressions for the matrix products
and sums that allow us to calculate and directly from the data matrix X. The
connection between and the means and covariances for linear combinations
of variables is also clearly delineated, using the notion of matrix products.

The Geometry of the Sample
A single multivariate observation is the collection of measurements on p different
variables taken on the same item or trial. As in Chapter 1, if n observations have
been obtained, the entire data set can be placed in an array (matrix):

X
1n * p2

= Dx1 1 x1 2
Á x1 p

x2 1 x2 2
Á x2 p

o o ∞ o

xn 1 xn 2
Á xn p

T
n * p

Sn ,x–,
Snx–

Sn ,x–,

C h a p t e r

2
2.1

2.2
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With the vector concepts which will be introduced in chapter 3, we can now delve deeper



Chapter Sample Geometry and Random Sampling

Each row of X represents a multivariate observation. Since the entire set of
measurements is often one particular realization of what might have been
observed, we say that the data are a sample of size n from a p-variate 
“population.” The sample then consists of n measurements, each of which has p
components.

As we have seen, the data can be plotted in two different ways. For the
p-dimensional scatter plot, the rows of X represent n points in p-dimensional
space. We can write

(2-1)

The row vector representing the jth observation, contains the coordinates of a
point.

The scatter plot of n points in p-dimensional space provides information on the
locations and variability of the points. If the points are regarded as solid spheres,
the sample mean vector given by (1-8), is the center of balance. Variability occurs
in more than one direction, and it is quantified by the sample variance–covariance
matrix A single numerical measure of variability is provided by the determinant
of the sample variance–covariance matrix. When p is greater than 3, this scatter 
plot representation cannot actually be graphed. Yet the consideration of the data 
as n points in p dimensions provides insights that are not readily available from
algebraic expressions. Moreover, the concepts illustrated for or remain
valid for the other cases.

Example 2.1 (Computing the mean vector) Compute the mean vector from the
data matrix.

Plot the data points in space, and locate on the resulting diagram.
The first point, has coordinates Similarly, the remaining two

points are and Finally,

x– = D4 - 1 + 3
3

1 + 3 + 5
3

T = B2
3
R

xœ

3 = 73, 58.xœ

2 = 7-1, 38 xœ

1 = 74, 18.x1 ,
x–p = 2n = 3

X = C 4 1
-1 3

3 5
S

x–

p = 3p = 2

Sn .

x–,

xœ

j ,

X
1n * p2

= Dx1 1 x1 2
Á x1 p

x2 1 x2 2
Á x2 p

o o ∞ o

xn 1 xn 2
Á xn p

T = Dxœ

1

xœ

2

o

xœ

n

T ; 1st 1multivariate2 observation
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The Geometry of the Sample

Figure 2.1 shows that is the balance point (center of gravity) of the scatter
plot. ■

The alternative geometrical representation is constructed by considering the
data as p vectors in n-dimensional space. Here we take the elements of the columns
of the data matrix to be the coordinates of the vectors. Let

( -2)

Then the coordinates of the first point are the n measure-
ments on the first variable. In general, the ith point is
determined by the n-tuple of all measurements on the ith variable. In this geo-
metrical representation, we depict as vectors rather than points, as in the
p-dimensional scatter plot. We shall be manipulating these quantities shortly using
the algebra of vectors discussed in Chapter 3.

Example 2.2 (Data as p vectors in n dimensions) Plot the following data as 
vectors in space:

X = C 4 1
-1 3

3 5
S

n = 3
p = 2

y1 , Á , yp

yœ

i = 7x1 i , x2 i , Á , xn i8yœ

1 = 7x1 1 , x2 1 , Á , xn 18
X
1n * p2

= Dx1 1 x1 2
Á x1 p

x2 1 x2 2
Á x2 p

o o ∞ o

xn 1 xn 2
Á xn p

T = 7y1 y2 Á  yp8

x–

�2 �1 1 2

2

3 4 5

�2

�1

1

1

2

3

4

5 x3

x1

x2 x

Figure 2.1 A plot of the data
matrix X as points in 
space.

p = 2n = 3

2
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Chapter 2 Sample Geometry and Random Sampling

Here and These vectors are shown in Figure 2.2. ■

Many of the algebraic expressions we shall encounter in multivariate analysis
can be related to the geometrical notions of length, angle, and volume. This is im-
portant because geometrical representations ordinarily facilitate understanding and
lead to further insights.

Unfortunately, we are limited to visualizing objects in three dimensions, and
consequently, the n-dimensional representation of the data matrix X may not seem
like a particularly useful device for It turns out, however, that geometrical
relationships and the associated statistical concepts depicted for any three vectors
remain valid regardless of their dimension.This follows because three vectors, even if
n dimensional, can span no more than a three-dimensional space, just as two vectors
with any number of components must lie in a plane. By selecting an appropriate
three-dimensional perspective—that is, a portion of the n-dimensional space con-
taining the three vectors of interest—a view is obtained that preserves both lengths
and angles.Thus, it is possible, with the right choice of axes, to illustrate certain alge-
braic statistical concepts in terms of only two or three vectors of any dimension n.
Since the specific choice of axes is not relevant to the geometry, we shall always
label the coordinate axes 1, 2, and 3.

It is possible to give a geometrical interpretation of the process of finding a sam-
ple mean. We start by defining the vector (To simplify the
notation, the subscript n will be dropped when the dimension of the vector is
clear from the context.) The vector 1 forms equal angles with each of the n
coordinate axes, so the vector has unit length in the equal-angle direction.
Consider the vector The projection of on the unit vector

is, by (2-8),

(2-3)

That is, the sample mean corresponds to the
multiple of 1 required to give the projection of onto the line determined by 1.yi

x–i = 1x1 i + x2 i +
Á

+ xn i2>n = yœ

i  1>n

yœ

i  ¢ 11n
  1≤   

11n
  1 =

x1 i + x2 i +
Á

+ xn i

n
 1 = x–i 1

A1>1n B1
yiyœ

i = 7x1 i , x2 i , Á , xn i8.A1>1n B1

1n

1œ

n = 71, 1, Á , 18.n * 1

n 7 3.

yœ

2 = 71, 3, 58.yœ

1 = 74, -1, 38

1 3 4 5 6

1
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Figure 2.2 A plot of the data
matrix X as vectors in

space.n = 3
p = 2
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The Geometry of the Sample

Further, for each we have the decompositionyi ,

0 1 x11

y1 2 x11
y1

y3

y2

d2

d1

d3

y1

3

1

1

2

x 11

x 12

x 13

Figure .3 The decomposition
of into a mean component

and a deviation component
i = 1, 2, 3.di = yi - –xi1,

x– i1
yi

Example .3 (Decomposing a vector into its mean and deviation components) Let
us carry out the decomposition of into and for the data
given in Example 2.2:

Here, and so

x–11 = 2 C1
1
1
S = C2

2
2
S x–21 = 3 C1

1
1
S = C3

3
3
S

x–2 = 11 + 3 + 52>3 = 3,x–1 = 14 - 1 + 32>3 = 2

X = C 4 1
-1 3

3 5
S

i = 1, 2,di = yi - x–i1,x–i1yi

where is perpendicular to The deviation, or mean corrected, vector is

(2-4)

The elements of are the deviations of the measurements on the ith variable from
their sample mean. Decomposition of the vectors into mean components and
deviation from the mean components is shown in Figure 2.3 for and n = 3.p = 3

yi

di

di = yi - x–i1 = D
x1 i - x–i

x2 i - x–i

o
xni - x–i

T
yi - x–i1.x–i1

yi
yi - x–i1.

x–i11
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Chapter 2 Sample Geometry and Random Sampling

Consequently,

and

We note that and are perpendicular, because

A similar result holds for and The decomposition is

�

For the time being, we are interested in the deviation (or residual) vectors
A plot of the deviation vectors of Figure 2.3 is given in Figure 2.4.di = yi - x–i 1.

 y2 = C1
3
5
S = C3

3
3
S + C -2

0
2
S

 y1 = C 4
-1

3
S = C2

2
2
S + C 2

-3
1
S

d2 = y2 - x–2 1.x–2 1

1x–1 12œ1y1 - x–1 12 = 72 2 28 C 2
-3

1
S = 4 - 6 + 2 = 0

d1 = y1 - x–1 1x–1 1

d2 = y2 - x–2 1 = C1
3
5
S - C3

3
3
S = C -2

0
2
S

d1 = y1 - x–1 1 = C 4
-1

3
S - C2

2
2
S = C 2

-3
1
S

d2

d1

d3

3

1

2

Figure 2.4 The deviation
vectors from Figure 2.3.d i
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The Geometry of the Sample

We have translated the deviation vectors to the origin without changing their lengths
or orientations.

Now consider the squared lengths of the deviation vectors. Using (2-5) and
(2-4), we obtain

(2-5)

From (1-3), we see that the squared length is proportional to the variance of 
the measurements on the ith variable. Equivalently, the length is proportional to 
the standard deviation. Longer vectors represent more variability than shorter
vectors.

For any two deviation vectors and 

(2-6)

Let denote the angle formed by the vectors and From (2-6), we get

or, using (2-5) and (2-6), we obtain

so that [see (1-5)]

(2-7)

The cosine of the angle is the sample correlation coefficient. Thus, if the two
deviation vectors have nearly the same orientation, the sample correlation will be
close to 1. If the two vectors are nearly perpendicular, the sample correlation will
be approximately zero. If the two vectors are oriented in nearly opposite directions,
the sample correlation will be close to 

Example 2.4 (Calculating and R from deviation vectors) Given the deviation vec-
tors in Example 2.3, let us compute the sample variance–covariance matrix and
sample correlation matrix R using the geometrical concepts just introduced.

From Example 2.3,

d1 = C 2
-3

1
S and d2 = C -2

0
2
S

Sn

Sn

-1.

ri k =

si k1si i 1sk k
= cos 1ui k2

a
n

j = 1
 1xj i - x–i2 1xj k - x–k2 = Banj = 1

 1xj i - x–i2
2
 Banj = 1

 1xj k - x–k2
2
  cos 1ui k2

dœ

i  dk = Ldi
 Ldk

 cos 1ui k2

dk .diui k

dœ

i  dk = a
n

j = 1
 1xj i - x–i2 1xj k - x–k2

dk ,di

1Length of deviation vector22 = sum of squared deviations

Ldi
2

= dœ

i  di = a
n

j = 1
 1xj i - x–i2

2
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Chapter 2 Sample Geometry and Random Sampling

These vectors, translated to the origin, are shown in Figure 2.5. Now,

or Also,

or Finally,

or Consequently,

and

�Sn = B 14
3 -  

2
3

-  
2
3  

8
3
R , R = B1 - .189

- .189 1
R

r1 2 =

s1 21s1 1 1s2 2
=

-  
2
3214

3  28
3

= - .189

s1 2 = -  
2
3 .

dœ

1 d2 = 72 -3 18 C -2
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2
S = -2 = 3s1 2

s2 2 =
8
3 .

dœ
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S = 8 = 3s2 2
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Figure 2.5 The deviation vectors
and d2.d1
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Random Samples and the Expected Values of the Sample Mean and Covariance Matrix

The concepts of length, angle, and projection have provided us with a geometrical
interpretation of the sample. We summarize as follows:

Geometrical Interpretation of the Sample

1. The projection of a column of the data matrix X onto the equal angular
vector 1 is the vector The vector has length Therefore, the
ith sample mean, is related to the length of the projection of on 1.

2. The information comprising is obtained from the deviation vectors =

= The square of the length of 
is and the (inner) product between and is 1

3. The sample correlation is the cosine of the angle between and 

Random Samples and the Expected Values of 
the Sample Mean and Covariance Matrix

In order to study the sampling variability of statistics such as and with the ulti-
mate aim of making inferences, we need to make assumptions about the variables
whose observed values constitute the data set X.

Suppose, then, that the data have not yet been observed, but we intend to collect
n sets of measurements on p variables. Before the measurements are made, their
values cannot, in general, be predicted exactly. Consequently, we treat them as ran-
dom variables. In this context, let the -th entry in the data matrix be the
random variable Each set of measurements on p variables is a random vec-
tor, and we have the random matrix

(2-8)

A random sample can now be defined.
If the row vectors in (2-8) represent independent observations

from a common joint distribution with density function =

then are said to form a random sample from Mathematically,
form a random sample if their joint density function is given by the

product where is the density func-
tion for the jth row vector.

Two points connected with the definition of random sample merit special attention:

1. The measurements of the p variables in a single trial, such as =

will usually be correlated. Indeed, we expect this to be the
case. The measurements from different trials must, however, be independent.
7Xj 1 , Xj 2 , Á , Xj p8, Xœ

j

f1xj2 = f1xj 1 , xj 2 , Á , xj p2f1x12f1x22Á f1xn2,
X1 , X2 , Á , Xn

f1x2.X1 , X2 , Á , Xn

f1x1 , x2 , Á , xp2,f1x2
Xœ

1 , Xœ

2 , Á , Xœ

n

X
1n * p2

= DX1 1 X1 2
Á X1 p

X2 1 X2 2
Á X2 p

o o ∞ o

Xn 1 Xn 2
Á Xn p

T = DXœ

1

Xœ

2

o

Xœ

n

T
XjXj k .

1j, k2

Snx–

dk .diri k

nsi k .dkdinsi i ,
di7x1 i - x–i , x

–
2 i - x–i , Á , xn i - x–i8œ.yi - x–i 1

diSn

yix–i ,
1n ƒ  x–i ƒ .x–i 1x–i 1.

yi

1 The square of the length and the inner product are and respectively, when
the divisor is used in the definitions of the sample variance and covariance.n - 1

1n - 12si k ,1n - 12si i

2.3
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Chapter 2 Sample Geometry and Random Sampling

2. The independence of measurements from trial to trial may not hold when the
variables are likely to drift over time, as with sets of p stock prices or p eco-
nomic indicators. Violations of the tentative assumption of independence can
have a serious impact on the quality of statistical inferences.

The following examples illustrate these remarks.

Example 2.5 (Selecting a random sample) As a preliminary step in designing a
permit system for utilizing a wilderness canoe area without overcrowding, a natural-
resource manager took a survey of users. The total wilderness area was divided into
subregions, and respondents were asked to give information on the regions visited,
lengths of stay, and other variables.

The method followed was to select persons randomly (perhaps using a random
number table) from all those who entered the wilderness area during a particular
week. All persons were equally likely to be in the sample, so the more popular
entrances were represented by larger proportions of canoeists.

Here one would expect the sample observations to conform closely to the crite-
rion for a random sample from the population of users or potential users. On the
other hand, if one of the samplers had waited at a campsite far in the interior of the
area and interviewed only canoeists who reached that spot, successive measurements
would not be independent. For instance, lengths of stay in the wilderness area for dif-
ferent canoeists from this group would all tend to be large. ■

Example 2.6 (A nonrandom sample) Because of concerns with future solid-waste
disposal, an ongoing study concerns the gross weight of municipal solid waste gen-
erated per year in the United States (Environmental Protection Agency). Estimated
amounts attributed to and paperboard waste and waste, in
millions of tons, are given for selected years in Table 2.1. Should these measure-
ments on be treated as a random sample of size No! In fact,
except for a slight but fortunate downturn in paper and paperboard waste in 2003,
both variables are increasing over time.

n = 7?X¿ = 7X1 , X28 x2 = plasticx1 = paper

Table 2.1 Solid Waste

Year 1960 1970 1980 1990 1995 2000 2003

(paper) 29.2 44.3 55.2 72.7 81.7 87.7 83.1

(plastics) .4 2.9 6.8 17.1 18.9 24.7 26.7x2

x1

■

As we have argued heuristically in Chapter 1, the notion of statistical indepen-
dence has important implications for measuring distance. Euclidean distance appears
appropriate if the components of a vector are independent and have the same vari-
ances. Suppose we consider the location of the kth column 
of X, regarded as a point in n dimensions. The location of this point is determined by
the joint probability distribution When the measure-
ments are a random sample, = =

and, consequently, each coordinate contributes equally
to the location through the identical marginal distributions fk1xj k2.

xj kfk1x1 k2fk1x2 k2Á fk1xn k2
f1x1 k , x2 k , Á , xn k2f1yk2X1 k , X2 k , Á , Xn k

f1yk2 = f1x1 k , x2 k , Á , xn k2.

Yœ

k = 7X1 k , X2 k , Á , Xn k8
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Random Samples and the Expected Values of the Sample Mean and Covariance Matrix

If the n components are not independent or the marginal distributions are not
identical, the influence of individual measurements (coordinates) on location is
asymmetrical. We would then be led to consider a distance function in which the
coordinates were weighted unequally, as in the “statistical” distances or quadratic
forms introduced in Chapters 1 and 3.

Certain conclusions can be reached concerning the sampling distributions of
and without making further assumptions regarding the form of the underlying
joint distribution of the variables. In particular, we can see how and fare as point
estimators of the corresponding population mean vector and covariance matrix

Result 2.1. Let be a random sample from a joint distribution that
has mean vector and covariance matrix Then is an unbiased estimator of 
and its covariance matrix is

That is,

(population mean vector)

(2-9)

For the covariance matrix 

Thus,

(2-10)

so is an unbiased estimator of while is a biased estimator with
=

Proof. Now, The repeated use of the properties of
expectation in (2-24) for two vectors gives

Next,
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- M2¿

 1  X - M2 1  X - M2œ = a
1
n

 a
n

j = 1
 1Xj - M2b

  

a
1
n

 a
n

/ = 1
 1X

/
- M2b

¿

 = M

 =

1
n

 E1X12 +

1
n

 E1X22 +
Á

+

1
n

 E1Xn2 =

1
n

 M +

1
n

 M +
Á

+

1
n

 M

 = E a
1
n

 X1b + E a
1
n

 X2b +
Á

+ E a
1
n

 Xnb

 E1 X 2 = E a
1
n

 X1 +

1
n

 X2 +
Á

+

1
n

 Xnb
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Chapter 2 Sample Geometry and Random Sampling

so

For each entry in is zero because the entry is the
covariance between a component of and a component of and these are
independent. [See Exercise 2.17 and (2-29).]

Therefore,

Since is the common population covariance matrix for
each we have

To obtain the expected value of we first note that is
the th element of The matrix representing sums of
squares and cross products can then be written as

since and Therefore, its expected value is

For any random vector V with and we have =

(See Exercise 2.16.) Consequently,

Using these results, we obtain

and thus, since it follows immediately that

�
E1Sn2 =

1n - 12
n

 �

Sn = 11>n2 aa
n

j = 1
 Xj Xœ

j - nX X¿ b ,

a
n
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 E1Xj Xœ

j2 - nE1 X X¿2 = n� + nMM ¿ - n a
1
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 � + MM ¿ b = 1n - 12�

E1Xj X
œ
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Generalized Variance

Result 2.1 shows that the th entry, of 

is an unbiased estimator of However, the individual sample stan-
dard deviations calculated with either n or as a divisor, are not unbiased
estimators of the corresponding population quantities Moreover, the correla-
tion coefficients are not unbiased estimators of the population quantities 

However, the bias or can usually be ignored if the
sample size n is moderately large.

Consideration of bias motivates a slightly modified definition of the sample
variance–covariance matrix. Result .1 provides us with an unbiased estimator S of

(Unbiased) Sample Variance–Covariance Matrix

(2-11)

Here S, without a subscript, has th entry 

This definition of sample covariance is commonly used in many multivariate test
statistics. Therefore, it will replace as the sample covariance matrix in most of the
material throughout the rest of this book.

Generalized Variance
With a single variable, the sample variance is often used to describe the amount of
variation in the measurements on that variable. When p variables are observed on
each unit, the variation is described by the sample variance–covariance matrix

The sample covariance matrix contains p variances and potentially
different covariances. Sometimes it is desirable to assign a single numerical value for
the variation expressed by S. One choice for a value is the determinant of S, which
reduces to the usual sample variance of a single characteristic when This
determinant2 is called the generalized sample variance:

(2-12)Generalized sample variance = ƒ  S ƒ

p = 1.

1
2 p1p - 12

S = D s1 1 s1 2
Á s1 p

s1 2 s2 2
Á s2 p

o o ∞ o

s1 p s2 p
Á sp p

T = e si k =

1
n - 1

 a
n

j = 1
 1xj i - x–i2 1xj k - x–k2 f

Sn

1n - 12-1 a
n

j = 1
 1Xj i -  Xi2 1Xj k -  Xk2.1i, k2

S = a
n

n - 1
b  Sn =

1
n - 1

 a
n

j = 1
 1Xj - X 2 1Xj - X 2œ

�:

E1ri k2 - ri k ,E A1si i B - 1si i ,

ri k .ri k

1si i .
n - 11sii ,

si k .7n>1n - 128Sn

1n - 12-1 a
n

j = 1
 1Xj i -  Xi2 1Xj k -  Xk2,1i, k2

2 Definition 3A.24 defines “determinant” and indicates one method for calculating the value of a
determinant.

2

2.4
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Chapter 2 Sample Geometry and Random Sampling

Example 2.7 (Calculating a generalized variance) Employees and profits per
employee for the 16 largest publishing firms in the United States are shown in
Figure 1.3. The sample covariance matrix, obtained from the data in the April 30,
1990, Forbes magazine article, is

Evaluate the generalized variance.
In this case, we compute

■

The generalized sample variance provides one way of writing the information
on all variances and covariances as a single number. Of course, when some
information about the sample is lost in the process. A geometrical interpretation of

will help us appreciate its strengths and weaknesses as a descriptive summary.
Consider the area generated within the plane by two deviation vectors

and Let be the length of and the length of
By elementary geometry, we have the diagram

and the area of the trapezoid is Since we can
express this area as

From (2-5) and (2-7),

and

Therefore,

(2-13)

Also,

(2-14) = s1 1 s2 2 - s1 1 s2 2 
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2 2
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= Banj = 1
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cos21u2 + sin21u2 = 1,ƒ Ld1
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θHeight = Ld1 sin ( )

d2 .
Ld2

d1Ld1
d2 = y2 - x–2 1.d1 = y1 - x–1 1

ƒ S ƒ

p 7 1,

ƒ S ƒ = 1252.042 1123.672 - 1-68.432 1-68.432 = 26,487

S = B 252.04 -68.43
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R
1x22
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Generalized Variance

If we compare (2-14) with (2-13), we see that

Assuming now that = holds for the volume gener-
ated in n space by the deviation vectors we can establish the
following general result for p deviation vectors by induction (see [1], p. 266):

(2-15)

Equation (2-15) says that the generalized sample variance, for a fixed set of data, is
proportional to the square of the volume generated by the p deviation vectors3

– = Figures .6(a) and (b) show
trapezoidal regions, generated by residual vectors, corresponding to “large”
and “small” generalized variances.

For a fixed sample size, it is clear from the geometry that volume, or will
increase when the length of any (or ) is increased. In addition,
volume will increase if the residual vectors of fixed length are moved until they are
at right angles to one another, as in Figure 2.6(a). On the other hand, the volume,
or will be small if just one of the is small or one of the deviation vectors lies
nearly in the (hyper) plane formed by the others, or both. In the second case, the
trapezoid has very little height above the plane.This is the situation in Figure 2.6(b),
where lies nearly in the plane formed by and d2 .d1d3

si iƒ  S ƒ ,

1si idi = yi - x–i 1
ƒ S ƒ ,

p = 3
yp - x–p 1.x–2 1, Á , dpd2 = y2d1 = y1 - x–1 1,

Generalized sample variance = ƒ S ƒ = 1n - 12-p
 1volume22

d1 , d2 , Á , dp - 1 ,p - 1
1n - 12-1p - 12

 1volume22ƒ S ƒ

ƒ S ƒ = 1area22>1n - 122

d1

d2

d3

1

2

3

(a)

Figure 2.6 (a) “Large” generalized sample variance for 
(b) “Small” generalized sample variance for p = 3.

p = 3.

d2

3

2

1

d3

d1

(b)

3 If generalized variance is defined in terms of the sample covariance matrix then,

using Result 3A.11, = = = Consequently,

using (2-15), we can also write the following: Generalized sample = n-p1volume22 .variance = ƒ Sn ƒ

71n - 12>n8p ƒ S ƒ .ƒ 71n - 12>n8Ip ƒ ƒ S ƒƒ 71n - 12>n8Ip S ƒƒ Sn ƒ

Sn = 71n - 12>n8S,

2
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Chapter 2 Sample Geometry and Random Sampling

Generalized variance also has interpretations in the p-space scatter plot representa-
tion of the data. The most intuitive interpretation concerns the spread of the scatter
about the sample mean point Consider the measure of distance-
given in the comment below (2-19), with playing the role of the fixed point and
playing the role of A. With these choices, the coordinates of the
points a constant distance c from satisfy

(2-16)

[When = is the squared distance from 
to in standard deviation units.]

Equation (2-16) defines a hyperellipsoid (an ellipse if ) centered at It
can be shown using integral calculus that the volume of this hyperellipsoid is related
to In particular,

(2-17)

or

where the constant is rather formidable.4 A large volume corresponds to a large
generalized variance.

Although the generalized variance has some intuitively pleasing geometrical
interpretations, it suffers from a basic weakness as a descriptive summary of the
sample covariance matrix S, as the following example shows.

Example 2.8 (Interpreting the generalized variance) Figure 2.7 gives three scatter
plots with very different patterns of correlation.

All three data sets have and the covariance matrices are

Each covariance matrix S contains the information on the variability of the
component variables and also the information required to calculate the correla-
tion coefficient. In this sense, S captures the orientation and size of the pattern 
of scatter.

The eigenvalues and eigenvectors extracted from S further describe the pattern
in the scatter plot. For

S = B5 4
4 5

R  , the eigenvalues satisfy   
0 = 1l - 522 - 42

 

= 1l - 92 1l - 12

S = B5 4
4 5

R  , r = .8 S = B3 0
0 3

R  , r = 0 S = B 5 -4
-4 5

R  , r = - .8

x– ¿ = 72, 18,

kp

1Volume of ellipsoid22 = 1constant2 1generalized sample variance2

Volume of 5x: 1x - x–2œ S-11x - x–2 … c26 = kp ƒ S ƒ
1>2

 cp

ƒ  S ƒ .

x–.p = 2
x–1

x11x1 - x–12
2
>s1 11x - x–2œ  S-11x - x–2p = 1,

1x - x–2œ  S-11x - x–2 = c2

x–
x¿ = 7x1 , x2 , Á , xp8 S-1Mx–

x– ¿ = 7x–1 , x–2 , Á , x–p8.

4 For those who are curious, where denotes the gamma function evaluated
at z.

≠1z2kp = 2pp>2>p ≠1p>22,
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Generalized Variance

and we determine the eigenvalue–eigenvector pairs = and
=

The mean-centered ellipse, with center for all three cases, is

To describe this ellipse, as in Section 3.3, with we notice that if is an
eigenvalue–eigenvector pair for S, then is an eigenvalue–eigenvector pair for

That is, if then multiplying on the left by gives or
Therefore, using the eigenvalues from S, we know that the ellipse

extends in the direction of from x–.eic1li

S-1
 e = l-1

 e.
S-1

 Se = lS-1
 e,S-1Se = le,S-1.

1l-1, e2
1l, e2A = S-1,

1x - x–2œ  S-11x - x–2 … c2

x– ¿ = 32, 14
C1>12, -1>12 D .eœ

2l2 = 1,
C1>12, 1>12 Deœ

1l1 = 9,

x2

x1
7

7

(b)

x2

x1
7

7

(c)

x2

x1
7

7

(a)

Figure 2.7 Scatter plots with three different orientations.
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Chapter 2 Sample Geometry and Random Sampling

In dimensions, the choice will produce an ellipse that contains
approximately 95% of the observations. The vectors and are
drawn in Figure 2.8(a). Notice how the directions are the natural axes for the ellipse,
and observe that the lengths of these scaled eigenvectors are comparable to the size
of the pattern in each direction.

Next, for

and we arbitrarily choose the eigenvectors so that and 
The vectors and are drawn in Figure 2.8(b).13 15.99 e213 15.99 e1eœ

2 = [0, 1].
l2 = 3,eœ

1 = [1, 0]l1 = 3,

S = B3 0
0 3

R  , the eigenvalues satisfy 0 = 1l - 322

15.99 e2315.99 e1

c2
= 5.99p = 2

x2

x1
7

7

(a)

Figure 2.8 Axes of the mean-centered 95% ellipses for the scatter plots in 
Figure 2.7.

x2

x1
7

7

(b)

x2

x1
7

7

(c)
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Generalized Variance

Finally, for

and we determine the eigenvalue–eigenvector pairs = and
= The scaled eigenvectors and are

drawn in Figure 2.8(c).
In two dimensions, we can often sketch the axes of the mean-centered ellipse by

eye. However, the eigenvector approach also works for high dimensions where the
data cannot be examined visually.

Note: Here the generalized variance gives the same value, for all
three patterns. But generalized variance does not contain any information on the
orientation of the patterns. Generalized variance is easier to interpret when the two
or more samples (patterns) being compared have nearly the same orientations.

Notice that our three patterns of scatter appear to cover approximately the
same area. The ellipses that summarize the variability

do have exactly the same area [see (2-17)], since all have ■

As Example 3.8 demonstrates, different correlation structures are not detected
by The situation for can be even more obscure.

Consequently, it is often desirable to provide more than the single number 
as a summary of S. From Exercise 3.12, can be expressed as the product 

of the eigenvalues of S. Moreover, the mean-centered ellipsoid based on
[see (2-16)] has axes whose lengths are proportional to the square roots of the 

’s (see Section 3.3). These eigenvalues then provide information on the variability
in all directions in the p-space representation of the data. It is useful, therefore, to
report their individual values, as well as their product. We shall pursue this topic
later when we discuss principal components.

Situations in which the Generalized Sample Variance Is Zero

The generalized sample variance will be zero in certain situations. A generalized
variance of zero is indicative of extreme degeneracy, in the sense that at least one
column of the matrix of deviations,

(2-18)

can be expressed as a linear combination of the other columns. As we have shown
geometrically, this is a case where one of the deviation vectors—for instance, =

—lies in the (hyper) plane generated by p ,
p , dp .di + 1 ,

di - 1 ,d1 ,7x1 i - x–i , Á , xn i - x–i8 dœ

i

 = X
1n * p2

- 1
1n * 12

xœ

11 * p2

 Dxœ

1 - x– ¿

xœ

2 - x– ¿

o

xœ

n - x– ¿

T = Dx1 1 - x–1 x1 2 - x–2
Á x1 p - x–p

x2 1 - x–1 x2 2 - x–2
Á x2 p - x–p

o o ∞ o

xn 1 - x–1 xn 2 - x–2
Á xn p - x–p

T

li

S-1
l1 l2

Á lp

ƒ S ƒ

ƒ S ƒ

p 7 2ƒ S ƒ .

ƒ S ƒ = 9.

1x - x–2œ S-11x - x–2 … c2

ƒ S ƒ = 9,ƒ S ƒ

15.99 e2315.99 e171>12, 1>128.eœ

2l2 = 1,
71>12, -1>128eœ

1l1 = 9,

S = B 5 -4
-4 5

R  , the eigenvalues satisfy  0 = 1l - 522 - 1-422  

= 1l - 92 1l - 12
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Chapter 2 Sample Geometry and Random Sampling

Result 2.2. The generalized variance is zero when, and only when, at least one de-
viation vector lies in the (hyper) plane formed by all linear combinations of the
others—that is, when the columns of the matrix of deviations in (2-18) are linearly
dependent.

Proof. If the columns of the deviation matrix are linearly dependent,
there is a linear combination of the columns such that

But then, as you may verify, = and

so the same a corresponds to a linear dependency, ± =

in the columns of S. So, by Result 3A.9,
In the other direction, if then there is some linear combination Sa of the

columns of S such that That is, =

Premultiplying by yields

and, for the length to equal zero, we must have Thus, the columns
of are linearly dependent. �

Example 2.9 (A case where the generalized variance is zero) Show that for

and determine the degeneracy.
Here so

The deviation (column) vectors are and
Since there is column degeneracy. (Note that there

is row degeneracy also.) This means that one of the deviation vectors—for example,
—lies in the plane generated by the other two residual vectors. Consequently, the

three-dimensional volume is zero. This case is illustrated in Figure 2.9 and may be
verified algebraically by showing that We have

S
13 * 32

= C 3 -  
3
2 0

-  
3
2 1 1

2

0 1
2 1

S
ƒ  S ƒ = 0.

d3

d3 = d1 + 2d2 ,dœ

3 = 70, 1, -18. dœ

2 = 71, 0, -18,dœ

1 = 7-2, 1, 18,
X - 1x– ¿ = C1 - 3 2 - 1 5 - 5

4 - 3 1 - 1 6 - 5
4 - 3 0 - 1 4 - 5

S = C -2 1 0
1 0 1
1 -1 -1

S
x– ¿ = 73, 1, 58,

X
13 * 32

= C1 2 5
4 1 6
4 0 4

S
ƒ  S ƒ = 0

1X - 1x– ¿2
1X - 1x– ¿2 a = 0.

0 = a¿1X - 1x– ¿2
œ 

1X - 1x– ¿2 a = L1X - 1x– ¿2
 
a

2

a¿

1X - 1x– ¿2
œ 

1X - 1x– ¿2  a.0 = 1n - 12SaSa = 0.
ƒ S ƒ = 0,

ƒ S ƒ = 0.S a = 0,

Á
+ ap colp1S2a1 col11S2

1n - 12Sa = 1X - 1x– ¿2
œ 

1X - 1x– ¿2 a = 0

1X - 1x– ¿2
œ 

1X - 1x– ¿21n - 12S

 = 1X - 1x– ¿2 a for some a Z 0

 0 = a1 col11X - 1x– ¿2 +
Á

+ ap colp1X - 1x– ¿2

1X - 1x– ¿2
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Generalized Variance

and from Definition 3A.24,

�

When large data sets are sent and received electronically, investigators are
sometimes unpleasantly surprised to find a case of zero generalized variance, so that
S does not have an inverse.We have encountered several such cases, with their asso-
ciated difficulties, before the situation was unmasked. A singular covariance matrix
occurs when, for instance, the data are test scores and the investigator has included
variables that are sums of the others. For example, an algebra score and a geometry
score could be combined to give a total math score, or class midterm and final exam
scores summed to give total points. Once, the total weight of a number of chemicals
was included along with that of each component.

This common practice of creating new variables that are sums of the original
variables and then including them in the data set has caused enough lost time that
we emphasize the necessity of being alert to avoid these consequences.

Example 2.10 (Creating new variables that lead to a zero generalized variance)
Consider the data matrix

where the third column is the sum of first two columns. These data could be the num-
ber of successful phone solicitations per day by a part-time and a full-time employee,
respectively, so the third column is the total number of successful solicitations per day.

Show that the generalized variance and determine the nature of the
dependency in the data.

ƒ S ƒ = 0,

X = E1 9 10
4 12 16
2 10 12
5 8 13
3 11 14

U

 = 3 A1 -
1
4 B + A32 B   A -  

3
2 - 0 B + 0 =

9
4 -

9
4 = 0

 ƒ  S ƒ = 3 `
1 1

2
1
2 1

`  1-122 + A -  
3
2 B  `

-  
3
2

1
2

0 1
`  1-123 + 102 `

-  
3
2 1
0 1

2
`  1-124

1 2
2

2
3

3

4

4

5 6

1

1

2
3

3

4
5
6

d1

d2 d3 Figure 2.9 A case where the
three-dimensional volume is zero
1 ƒ S ƒ = 02.
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Chapter 2 Sample Geometry and Random Sampling

We find that the mean corrected data matrix, with entries is

The resulting covariance matrix is

We verify that, in this case, the generalized variance

In general, if the three columns of the data matrix X satisfy a linear constraint
± a constant for all j, then ± so that

for all j. That is,

and the columns of the mean corrected data matrix are linearly dependent.Thus, the
inclusion of the third variable, which is linearly related to the first two, has led to the
case of a zero generalized variance.

Whenever the columns of the mean corrected data matrix are linearly dependent,

and establishes the linear dependency of the columns of S. Hence,
Since we see that a is a scaled eigenvector of S associated with an

eigenvalue of zero. This gives rise to an important diagnostic: If we are unaware of
any extra variables that are linear combinations of the others, we can find them by
calculating the eigenvectors of S and identifying the one associated with a zero
eigenvalue. That is, if we were unaware of the dependency in this example, a com-
puter calculation would find an eigenvalue proportional to since

The coefficients reveal that

In addition, the sum of the first two variables minus the third is a constant c for all n
units. Here the third variable is actually the sum of the first two variables, so the
columns of the original data matrix satisfy a linear constraint with Because
we have the special case the constraint establishes the fact that the columns
of the data matrix are linearly dependent. ■

c = 0,
c = 0.

11xj 1 - x–12 + 11xj 2 - x–22 + 1-12 1xj 3 - x–32 = 0 for all j

S a = C2.5 0 2.5
0 2.5 2.5
2.5 2.5 5.0

S   C 1
1

-1
S = C0

0
0
S = 0 C 1

1
-1
S

a¿ = 71, 1, -18,
S a = 0 = 0  a,

ƒ S ƒ = 0.S a = 0

1n - 12Sa = 1X - 1x– ¿2
œ 

1X - 1x– ¿2 a = 1X - 1x– ¿2 0 = 0

1X - 1x– ¿2 a = 0

a11xj 1 - x–12 + a21xj 2 - x–22 + a31xj 3 - x–32 = 0

a3 x–3 = c,a1 x–1 + a2 x–2a3 xj 3 = c,a1 xj 1 + a2 xj 2

ƒ S ƒ = 2.52
* 5 + 0 + 0 - 2.53

- 2.53
- 0 = 0

S = C2.5 0 2.5
0 2.5 2.5
2.5 2.5 5.0

S

X - 1x– ¿ = E -2 -1 -3
1 2 3

-1 0 -1
2 -2 0
0 1 1

U
xj k - xqk ,
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Generalized Variance

Let us summarize the important equivalent conditions for a generalized vari-
ance to be zero that we discussed in the preceding example. Whenever a nonzero
vector a satisfies one of the following three conditions, it satisfies all of them:

We showed that if condition (3) is satisfied—that is, if the values for one variable
can be expressed in terms of the others—then the generalized variance is zero
because S has a zero eigenvalue. In the other direction, if condition (1) holds,
then the eigenvector a gives coefficients for the linear dependency of the mean
corrected data.

In any statistical analysis, means that the measurements on some vari-
ables should be removed from the study as far as the mathematical computations
are concerned. The corresponding reduced data matrix will then lead to a covari-
ance matrix of full rank and a nonzero generalized variance. The question of which
measurements to remove in degenerate cases is not easy to answer. When there is a
choice, one should retain measurements on a (presumed) causal variable instead of
those on a secondary characteristic. We shall return to this subject in our discussion
of principal components.

At this point, we settle for delineating some simple conditions for S to be of full
rank or of reduced rank.

Result 2.3. If that is, (sample size) (number of variables), then 
for all samples.

Proof. We must show that the rank of S is less than or equal to p and then apply
Result 3A.9.

For any fixed sample, the n row vectors in (2-18) sum to the zero vector. The
existence of this linear combination means that the rank of is less than or
equal to which, in turn, is less than or equal to because Since

the kth column of S, can be written as a linear combination of the columns
of In particular,

Since the column vectors of sum to the zero vector, we can write, for
example, as the negative of the sum of the remaining column vectors.
After substituting for in the preceding equation, we can express

as a linear combination of the at most linearly independent row vec-
tors p , The rank of S is therefore less than or equal
to which—as noted at the beginning of the proof—is less than or equal to

and S is singular. This implies, from Result 3A.9, that �ƒ S ƒ = 0.p - 1,
n - 1,

coln1X - 1x– ¿2
œ.col21X - 1x– ¿2

œ,
n - 1colk1S2

row11X - 1x– ¿2
œ

col11X - 1x– ¿2
œ

1X - 1x– ¿2
œ

 = 1x1 k - x–k2 col11X - 1x– ¿2
œ

+
Á

+ 1xn k - x–k2 coln1X - 1x– ¿2
œ

 1n - 12 colk1S2 = 1X - 1x– ¿2
œ colk1X - 1x– ¿2

1X - 1x– ¿2
œ.

colk1S2,

1n - 12 S
1p * p2

= 1X - 1x2œ
1p * n2

1X - 1xœ

1n * p2
2

n … p.p - 1n - 1,
X - 1x– ¿

ƒ S ƒ = 0…n … p,

ƒ S ƒ = 0

The linear combination of
the original data, using a,
is a constant.

The linear combination
of the mean corrected
data, using a, is zero.

a is a scaled
eigenvector of S 

with eigenvalue 0.

(3) a¿xj = c for all j (c = a¿x–) (2) a¿(xj - x–) = 0 for all j(1) Sa = 0 883
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Chapter 2 Sample Geometry and Random Sampling

Result 4.4. Let the vectors where is the jth row of the data
matrix X, be realizations of the independent random vectors Then

1. If the linear combination has positive variance for each constant vector 

then, provided that S has full rank with probability 1 and 

2. If, with probability 1, is a constant (for example, c) for all j, then 

Proof. (Part 2). If = ± with probability 1,

for all j, and the sample mean of this linear combination is 

± = ± = Then

indicating linear dependence; the conclusion follows from Result 2.2.
The proof of Part (1) is difficult and can be found in [2]. �

Generalized Variance Determined by 
and Its Geometrical Interpretation

The generalized sample variance is unduly affected by the variability of measure-
ments on a single variable. For example, suppose some is either large or quite
small. Then, geometrically, the corresponding deviation vector will
be very long or very short and will therefore clearly be an important factor in deter-
mining volume. Consequently, it is sometimes useful to scale all the deviation vec-
tors so that they have the same length.

Scaling the residual vectors is equivalent to replacing each original observation
by its standardized value The sample covariance matrix of the

standardized variables is then R, the sample correlation matrix of the original vari-
ables. (See Exercise 2.13.) We define

(2-19)

Since the resulting vectors

all have length the generalized sample variance of the standardized vari-
ables will be large when these vectors are nearly perpendicular and will be small

2n - 1,

71x1 k - x–k2>1sk k , 1x2 k - x–k2>1sk k , Á , 1xn k - x–k2>1sk k8 = 1yk - x–k 12œ>1sk k

a
Generalized sample variance
of the standardized variables

b = ƒ R ƒ

1xj k - x–k2>1sk k .xj k

di = 1yi - xqi 12
si i

ƒ R ƒ

 = C a¿  x1 - a¿  x–

o

a¿  xn - a¿  x–
S = C c - c

o

c - c

S = 0

 1X - 1x– ¿2a = a1 C x1 1 - x–1

o

xn 1 - x–1

S +
Á

+ ap C x1 p - x–p

o

xn p - x–p

S
a¿  x–.Á

+ ap x–pa1 x–1 + a2 x–2a2 xj 2 +
Á

+ ap xj p2>n

c = a
n

j = 1
 1a1 xj 1a¿  xj = c

Á
+ ap Xj p = ca1 Xj 1 + a2 Xj 2a¿  Xj

ƒ S ƒ = 0.a¿  Xj

ƒ S ƒ 7 0.p 6 n,

a Z 0,a¿  Xj

X1 , X2 , Á , Xn .
xœ

jx1 , x2 , Á , xn ,p * 1
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Generalized Variance

when two or more of these vectors are in almost the same direction. Employing the
argument leading to (2-7), we readily find that the cosine of the angle between

and is the sample correlation coefficient 
Therefore, we can make the statement that is large when all the are nearly
zero and it is small when one or more of the are nearly or 

In sum, we have the following result: Let

be the deviation vectors of the standardized variables. The ith deviation vectors lie
in the direction of but all have a squared length of The volume generated
in p-space by the deviation vectors can be related to the generalized sample vari-
ance. The same steps that lead to (7-15) produce

(2-20)

The volume generated by deviation vectors of the standardized variables is il-
lustrated in Figure 2.10 for the two sets of deviation vectors graphed in Figure 2.6.
A comparison of Figures 2.10 and 2.6 reveals that the influence of the vector
(large variability in ) on the squared volume is much greater than its influ-
ence on the squared volume ƒ R ƒ .

ƒ S ƒx2

d2

¢Generalized sample variance
of the standardized variables ≤ = ƒ R ƒ = 1n - 12-p1volume22

n - 1.di ,

1yi - x–i 121si i
= G

x1 i - x–i1si i

x2 i - x–i1si i

o

xn i - x–i1si i

W , i = 1, 2, Á , p

-1.+1ri k

ri kƒ R ƒ

ri k .1yk - x–k 12>1sk k1yi - x–i 12>1si i

ui k

d1

d2

d3

3

1

2

(a)

Figure 2.10 The volume generated by equal-length deviation vectors of
the standardized variables.

d2 d1d3

3

2

1

(b)

73



Chapter 2 Sample Geometry and Random Sampling

The quantities and are connected by the relationship

(2-21)

so

(2-22)

[The proof of (2-21) is left to the reader as Exercise 2.12.]
Interpreting (2-22) in terms of volumes, we see from (2-15) and (2-20) that the

squared volume is proportional to the squared volume 
The constant of proportionality is the product of the variances, which, in turn, is
proportional to the product of the squares of the lengths of the 
Equation (2-21) shows, algebraically, how a change in the measurement scale of 
for example, will alter the relationship between the generalized variances. Since 
is based on standardized measurements, it is unaffected by the change in scale.
However, the relative value of will be changed whenever the multiplicative
factor changes.

Example 2.11 (Illustrating the relation between and ) Let us illustrate the
relationship in (2-21) for the generalized variances and when 
Suppose

Then and Moreover,

Using Definition 3A.24, we obtain

It then follows that

�
14 = ƒ S ƒ = s1 1 s2 2 s3 3 ƒ R ƒ = 142 192 112 A 7

18 B = 14 1check2

 = A1 -
4
9 B - A12 B  A

1
2 -

1
3 B + A12 B  A

1
3 -

1
2 B =

7
18

 ƒ R ƒ = 1 `
1 2

3
2
3 1

` 1-122 +
1
2 `

1
2

2
3

1
2 1

` 1-123 +
1
2 `

1
2 1
1
2

2
3
` 1-124

 = 419 - 42 - 313 - 22 + 116 - 92 = 14

 ƒ S ƒ = 4 `
9 2
2 1

` 1-122 + 3 `
3 2
1 1

` 1-123 + 1 `
3 9
1 2

` 1-124

R = D1 1
2

1
2

1
2 1 2

3
1
2

2
3 1

T
s3 3 = 1.s1 1 = 4, s2 2 = 9,

S
13 * 32

= C4 3 1
3 9 2
1 2 1

S
p = 3.ƒ R ƒƒ S ƒ

ƒ R ƒƒ S ƒ

s1 1

ƒ S ƒ

ƒ R ƒ

X1 ,
di .1n - 12si i

1n - 12p 
ƒ R ƒ .1n - 12p 

ƒ S ƒ

1n - 12p ƒ S ƒ = 1n - 12p1s1 1 s2 2
Á sp p2 ƒ R ƒ

ƒ S ƒ = 1s1 1 s2 2
Á sp p2 ƒ R ƒ

ƒ R ƒƒ S ƒ
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Sample Mean, Covariance, and Correlation as Matrix Operations

Another Generalization of Variance

We conclude this discussion by mentioning another generalization of variance.
Specifically, we define the total sample variance as the sum of the diagonal elements
of the sample variance–covariance matrix S. Thus,

(2-23)

Example 2.12 (Calculating the total sample variance) Calculate the total sample
variance for the variance–covariance matrices S in Examples 2.7 and 2.9.

From Example 2.7.

and

From Example 2.9,

and

■

Geometrically, the total sample variance is the sum of the squared lengths of the
p deviation vectors = divided by The
total sample variance criterion pays no attention to the orientation (correlation
structure) of the residual vectors. For instance, it assigns the same values to both sets
of residual vectors (a) and (b) in Figure 2.6.

Sample Mean, Covariance, and Correlation 
as Matrix Operations

We have developed geometrical representations of the data matrix X and the de-
rived descriptive statistics and S. In addition, it is possible to link algebraically the
calculation of and S directly to X using matrix operations. The resulting expres-
sions, which depict the relation between S, and the full data set X concisely, are
easily programmed on electronic computers.

x–,
x–

x–

n - 1.1yp - x–p 

12,d1 = 1y1 - x–1 12, Á , dp

Total sample variance = s1 1 + s2 2 + s3 3 = 3 + 1 + 1 = 5

S = C 3 -  
3
2 0

-  
3
2 1 1

2

0 1
2 1

S
Total sample variance = s1 1 + s2 2 = 252.04 + 123.67 = 375.71

S = B 252.04 -68.43
-68.43 123.67

R

Total sample variance = s1 1 + s2 2 +
Á

+ sp p

2.5
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Chapter 2 Sample Geometry and Random Sampling

We have it that ± = Therefore,

or

(2-24)

That is, is calculated from the transposed data matrix by postmultiplying by the
vector 1 and then multiplying the result by the constant 1>n.

Next, we create an matrix of means by transposing both sides of (2-24)
and premultiplying by 1; that is,

(2-25)

Subtracting this result from X produces the matrix of deviations (residuals)

(2-26)

Now, the matrix representing sums of squares and cross products is just
the transpose of the matrix (2-26) times the matrix itself, or

 = aX -

1
n

 1 1¿  Xb
œ

 aX -

1
n

 1 1¿  Xb = X¿ aI -

1
n

 1 1¿ b  X

* Dx1 1 - x–1 x1 2 - x–2
Á x1 p - x–p

x2 1 - x–1 x2 2 - x–2
Á x2 p - x–p

o o ∞ o

xn 1 - x–1 xn 2 - x–2
Á xn p - x–p

T
1n - 12S = D x1 1 - x–1 x2 1 - x–1

Á xn 1 - x–1

x1 2 - x–2 x2 2 - x–2
Á xn 2 - x–2

o o ∞ o

x1 p - x–p x2 p - x–p
Á xn p - x–p

T
1n - 12S

X -

1
n

 1 1¿X = Dx1 1 - x–1 x1 2 - x–2
Á x1 p - x–p

x2 1 - x–1 x2 2 - x–2
Á x2 p - x–p

o o ∞ o

xn 1 - x–1 xn 2 - x–2
Á xn p - x–p

T
n * p

1  x– ¿ =

1
n

 1 1¿  X = Dx–1 x–2
Á x–p

x–1 x–2
Á x–p

o o ∞ o

x–1 x–2
Á x–p

T
n * p

x–

x– =

1
n

 X¿
 1

x– = G
 

 

 x–1

 

 

 x–2

o

 

 

 x–p

W = G
yœ

1 1
n

yœ

2 1
n

o

yœ

p 1

n

W =

1
n

 G
 

 

 x1 1 x1 2
Á x1 n

 

 

 x2 1 x2 2
Á x2 n

o o ∞ o

 

 

 xp 1 xp 2
Á xp n

W   G
 

 

 1

 

 

 1

o

 

 

 1

W
yœ

i  1>n.Á
+ xn i

# 12>nx–i = 1x1 i
# 1 + x2 i

# 1
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Sample Mean, Covariance, and Correlation as Matrix Operations

since

To summarize, the matrix expressions relating and S to the data set X are

(2-27)

The result for is similar, except that 1>n replaces as the first factor.
The relations in (2-27) show clearly how matrix operations on the data matrix

X lead to and S.
Once S is computed, it can be related to the sample correlation matrix R. The

resulting expression can also be “inverted” to relate R to S. We first define the 
sample standard deviation matrix and compute its inverse, = Let

(2-28)

Then

Since

and

we have

(2-29)R = D-1>2
   S D-1>2

C 1 r1 2
Á r1 p

o o ∞ o

r1 p r2 p
Á 1

SR = E s1 11s1 1 1s1 1

s1 21s1 1 1s2 2

Á

s1 p1s1 1 1spp

o o ∞ o

s1 p1s1 1 1sp p

s2 p1s2 2 1sp p

Á

sp p1sp p 1sp p

U =

S = C s1 1 s1 2
Á s1 p

o o ∞ o

s1 p s2 p
Á sp p

S

D-1/2
 

 

1p * p2
= G

11s11
0 Á 0

0
11s22

Á 0

o o ∞ o

0 0 Á
11spp

W

D1/2
 

 

1p * p2
= D1s1 1 0 Á 0

0 1s2 2
Á 0

o o ∞ o

0 0 Á 1sp p

T
D-1>2.1D1>22

-1D1>2
p * p

x–

1>1n - 12Sn

 S =

1
n - 1

 Xœ

 aI -

1
n

 11¿ b  X

 x– =

1
n

 X¿  1

x–

aI -

1
n

 11¿ b
œ

 aI -

1
n

 11¿ b = I -

1
n

 11¿ -

1
n

 11¿ +

1

n2 11¿  11¿ = I -

1
n

 11¿
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Chapter 2 Sample Geometry and Random Sampling

Postmultiplying and premultiplying both sides of (2-29) by and noting that
= = gives

(2-30)

That is, R can be obtained from the information in S, whereas S can be obtained from
and R. Equations (2-29) and (2-30) are sample analogs of (3-36) and (3-37).

Sample Values of Linear Combinations of Variables
We have introduced linear combinations of p variables in Section 3.6. In many multi-
variate procedures, we are led naturally to consider a linear combination of the form

whose observed value on the jth trial is

(2-31)

The n derived observations in (2-31) have

(2-32)

Since = = we have

or

(2-33)

Equations (2-32) and (2-33) are sample analogs of (3-43). They correspond to sub-
stituting the sample quantities and S for the “population” quantities and 
respectively, in (3-43).

Now consider a second linear combination

whose observed value on the jth trial is

(2-34)b¿  xj = b1 xj 1 + b2  xj 2 +
Á

+ bp  xj p ,  j = 1, 2, Á , n

b¿  X = b1 X1 + b2 X2 +
Á

+ bp Xp

�,Mx–

Sample variance of c¿  X = c¿  S c

= c¿  B 1x1 - x–2 1x1 - x–2œ + 1x2 - x–2 1x2 - x–2œ +
Á

+ 1xn - x–2 1xn - x–2œ

n - 1
R  c

=

c¿1x1 - x–2 1x1 - x–2œ  c + c¿1x2 - x–2 1x2 - x–2œ  c +
Á

+ c¿1xn - x–2 1xn - x–2œ  c

n - 1

Sample variance =

1c¿  x1 - c¿  x–22 + 1c¿  x2 - c¿  x–22 +
Á

+ 1c¿  xn - c¿  x–22

n - 1

c¿1xj - x–21xj - x–2œ  c,1c¿1xj - x–2221c¿  xj - c¿  x–22

 = c¿1x1 + x2 +
Á

+ xn2 
1
n

= c¿  x–

 Sample mean =

1c¿  x1 + c¿  x2 +
Á

+ c¿  xn2

n

c¿  xj = c1 xj 1 + c2 xj 2 +
Á

+ cp xj p , j = 1, 2, Á , n

c¿  X = c1 X1 + c2 X2 +
Á

+ cp Xp

D1>2

S = D1>2
   R D1>2

ID1>2
 D-1>2D-1>2

 D1>2
D1>2

2.6
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Sample Values of Linear Combinations of Variables

It follows from (2-32) and (2-33) that the sample mean and variance of these
derived observations are

Moreover, the sample covariance computed from pairs of observations on
and is

Sample covariance

or

(2-35)

In sum, we have the following result.

Result 2.5. The linear combinations

have sample means, variances, and covariances that are related to and S by

(2-36)

�

Example 2.13 (Means and covariances for linear combinations) We shall consider
two linear combinations and their derived values for the observations given
in Example 2.9 as

Consider the two linear combinations

b¿  X = 72 2 -18 CX1

X2

X3

S = 2X1 + 2X2 - X3

X = Cx1 1 x1 2 x1 3

x2 1 x2 2 x2 3

x3 1 x3 2 x3 3

S = C1 2 5
4 1 6
4 0 4

S
n = 3

 Sample covariance of b¿  X and c¿  X = b¿  S  c

 Sample variance of c¿  X = c¿  S  c

 Sample variance of b¿  X = b¿  S  b

 Sample mean of c¿  X = c¿  x–
 Sample mean of b¿  X = b¿  x–

x–

 c¿  X = c1 X1 + c2 X2 +
Á

+ cp Xp

 b¿  X = b1 X1 + b2 X2 +
Á

+ bp Xp

Sample covariance of b¿  X and c¿  X = b¿  S c

= b¿  B 1x1 - x–2 1x1 - x–2œ + 1x2 - x–2 1x2 - x–2œ +
Á

+ 1xn - x–2 1xn - x–2œ

n - 1
R  c

=

b¿1x1 - x–2 1x1 - x–2œ  c + b¿1x2 - x–2 1x2 - x–2œ  c +
Á

+ b¿1xn - x–2 1xn - x–2œ  c

n - 1

=

1b¿x1 - b¿  x–2 1c¿  x1 - c¿  x–2 + 1b¿  x2 - b¿  x–2 1c¿  x2 - c¿  x–2 +
Á

+ 1b¿xn - b¿  x–2 1c¿  xn - c¿  x–2

n - 1

c¿  Xb¿  X

Sample variance of b¿  X = b¿  S b

Sample mean of b¿  X = b¿  x–
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Chapter 2 Sample Geometry and Random Sampling

and

The means, variances, and covariance will first be evaluated directly and then be
evaluated by (2-36).

Observations on these linear combinations are obtained by replacing 
and with their observed values. For example, the observations on are

The sample mean and variance of these values are, respectively,

In a similar manner, the observations on are

and

Moreover, the sample covariance, computed from the pairs of observations
and is

Alternatively, we use the sample mean vector and sample covariance matrix S
derived from the original data matrix X to calculate the sample means, variances,
and covariances for the linear combinations. Thus, if only the descriptive statistics
are of interest, we do not even need to calculate the observations and 

From Example 2.9,

x– = C3
1
5
S and S = C 3 -  

3
2 0

-  
3
2 1 1

2

0 1
2 1

S
c¿  xj .b¿  xj

x–

=

11 - 32 114 - 172 + 14 - 32 121 - 172 + 14 - 32 116 - 172

3 - 1
=

9
2

Sample covariance

1b¿  x3 , c¿  x32,1b¿  x2 , c¿  x22,1b¿  x1 , c¿  x12,

 Sample variance =

114 - 1722 + 121 - 1722 + 116 - 1722

3 - 1
= 13

 Sample mean =

114 + 21 + 162

3
= 17

 c¿  x3 = 1142 - 1102 + 3142 = 16

 c¿  x2 = 1142 - 1112 + 3162 = 21

 c¿  x1 = 1x1 1 - 1x1 2 + 3x1 3 = 1112 - 1122 + 3152 = 14

c¿  Xn = 3

 Sample variance =

11 - 322 + 14 - 322 + 14 - 322

3 - 1
= 3

 Sample mean =

11 + 4 + 42

3
= 3

 b¿  x3 = 2x3 1 + 2x3 2 - x3 3 = 2142 + 2102 - 142 = 4

 b¿  x2 = 2x2 1 + 2x2 2 - x2 3 = 2142 + 2112 - 162 = 4

 b¿  x1 = 2x1 1 + 2x1 2 - x1 3 = 2112 + 2122 - 152 = 1

b¿  Xn = 3X3

X1 , X2 ,

c¿  X = 71 -1 38 CX1

X2

X3

S = X1 - X2 + 3X3
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Sample Values of Linear Combinations of Variables

Consequently, using (2-36), we find that the two sample means for the derived
observations are

Using (2-36), we also have

As indicated, these last results check with the corresponding sample quantities
computed directly from the observations on the linear combinations. ■

The sample mean and covariance relations in Result 2.5 pertain to any number
of linear combinations. Consider the q linear combinations

(2-37)ai 1 X1 + ai 2 X2 +
Á

+ ai p Xp , i = 1, 2, Á , q

 = 72 2 -18 C 9
2

-1
5
2

S =
9
2 1check2

 = 72 2 -18 C 3 -  
3
2 0

-  
3
2 1 1

2

0 1
2 1

S   C 1
-1

3
S

 Sample covariance of b¿  X and c¿  X = b¿  Sc

 = 71 -1 38 C 9
2

-1
5
2

S = 13 1check2

 = 71 -1 38 C 3 -  
3
2 0

-  
3
2 1 1

2

0 1
2 1

S   C 1
-1

3
S

 Sample variance of c¿  X = c¿  Sc

 = 72 2 -18 C 3
-  

3
2

0
S = 3 1check2

 = 72 2 -18 C 3 -  
3
2 0

-  
3
2 1 1

2

0 1
2 1

S   C 2
2

-1
S

 Sample variance of b¿  X = b¿  Sb

 Sample mean of c¿  X = c¿  x– = 71 -1 38 C3
1
5
S = 17 1check2

 Sample mean of b¿  X = b¿  x– = 72 2 -18 C3
1
5
S = 3 1check2
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Chapter 2 Sample Geometry and Random Sampling

These can be expressed in matrix notation as

(2-38)

Taking the ith row of to be and the kth row of to be we see that
Equations (2-36) imply that the ith row of AX has sample mean and the ith and
kth rows of AX have sample covariance Note that is the th ele-
ment of

Result 2.6. The q linear combinations AX in (2-38) have sample mean vector 
and sample covariance matrix �

Exercises

Given the data matrix

(a) Graph the scatter plot in dimensions. Locate the sample mean on your diagram.

(b) Sketch the -dimensional representation of the data, and plot the deviation
vectors and 

(c) Sketch the deviation vectors in (b) emanating from the origin. Calculate the lengths
of these vectors and the cosine of the angle between them. Relate these quantities to

and R.

Given the data matrix

(a) Graph the scatter plot in dimensions,and locate the sample mean on your diagram.

(b) Sketch the -space representation of the data, and plot the deviation vectors
and 

(c) Sketch the deviation vectors in (b) emanating from the origin. Calculate their lengths
and the cosine of the angle between them. Relate these quantities to and R.

Perform the decomposition of into and using the first column of the data
matrix in Example 2.9.

Use the six observations on the variable in units of millions, from Table 1.1.

(a) Find the projection on 

(b) Calculate the deviation vector Relate its length to the sample standard
deviation.

y1 - x–1 1.

1 ¿ = 71, 1, 1, 1, 1, 18.X1 ,

y1 - x–1 1x–1 1y1

Sn

y2 - x–2 1.y1 - x–1 1
n = 3

p = 2

X = C 3 4
6 - 2
3 1

S
Sn

y2 - x–2 1.y1 - x–1 1
n = 3

p = 2

X = C 9 1
5 3
1 2

S

ASA¿.
Axq

ASA¿.
1i, k2aœ

i  S akaœ

i  S ak .
aœ

i  xq
c¿,A, aœ

k ,b¿A, aœ

i ,

Da1 1 X1

a2 1 X1

o

aq 1 X1

+

+

 

+

a1 2 X2

a2 2 X2

o

aq 2 X2

+
Á

+

+
Á

+

o

+
Á

+

a1 p Xp

a2 p Xp

o

aq p Xp

T = Da1 1 a1 2
Á a1 p

a2 1 a2 2
Á a2 p

o o ∞ o

aq 1 aq 2
Á aq p

T   DX1

X2

o  
Xp

T = AX

2.1.

2.2.

2.3.

2.4.
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Exercises

(c) Graph (to scale) the triangle formed by and Identify the length of
each component in your graph.

(d) Repeat Parts a–c for the variable in Table 1.1.

(e) Graph (to scale) the two deviation vectors and Calculate the
value of the angle between them.

Calculate the generalized sample variance for (a) the data matrix in Exercise 2.1
and (b) the data matrix in Exercise 2.2.

Consider the data matrix

(a) Calculate the matrix of deviations (residuals), Is this matrix of full rank?
Explain.

(b) Determine S and calculate the generalized sample variance Interpret the latter
geometrically.

(c) Using the results in (b), calculate the total sample variance. [See (2-23).]

Sketch the solid ellipsoids [see (2-16)] for the three matrices

(Note that these matrices have the same generalized variance .)

Given

(a) Calculate the total sample variance for each S. Compare the results.

(b) Calculate the generalized sample variance for each S, and compare the results. Com-
ment on the discrepancies, if any, found between Parts a and b.

.9. The following data matrix contains data on test scores, with on first test,
on second test, and score on the two tests:

(a) Obtain the mean corrected data matrix, and verify that the columns are linearly de-
pendent. Specify an vector that establishes the linear dependence.

(b) Obtain the sample covariance matrix S, and verify that the generalized variance is
zero. Also, show that so a can be rescaled to be an eigenvector correspond-
ing to eigenvalue zero.

(c) Verify that the third column of the data matrix is the sum of the first two columns.
That is, show that there is linear dependence, with and a3 = - 1.a2 = 1,a1 = 1,

Sa = 0,

a ¿ = 7a1 , a2 , a38
X = E 12 17 29

18 20 38
14 16 30
20 18 38
16 19 35

U
x3 = totalx2 = score

x1 = score

S = C 1 0 0
0 1 0
0 0 1

S and S = C 1 -  
1
2 -  

1
2

-  
1
2 1 -  

1
2

-  
1
2 -  

1
2 1

S
ƒ S ƒ

S = B5 4
4 5

R  , S = B 5 - 4
- 4 5

R  , S = B3 0
0 3

R1x - x–2œ

 S-11x - x–2 … 1

ƒ S ƒ .

X - 1x– ¿.

X = C - 1 3 - 2
2 4 2
5 2 3

S
X

Xƒ S ƒ

y2 - x–2 1.y1 - x–1 1
X2

y1 - x–1 1.y1 , x–1 1,

2.5.

2.6.

2.7.

2.8.

2
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Chapter 2 Sample Geometry and Random Sampling

When the generalized variance is zero, it is the columns of the mean corrected data
matrix that are linearly dependent, not necessarily those of the data
matrix itself. Given the data

(a) Obtain the mean corrected data matrix, and verify that the columns are linearly
dependent. Specify an vector that establishes the dependence.

(b) Obtain the sample covariance matrix S, and verify that the generalized variance is
zero.

(c) Show that the columns of the data matrix are linearly independent in this case.

Use the sample covariance obtained in Example 2.7 to verify (2-29) and (2-30), which
state that and 

Show that 

Hint: From Equation (2-30), Taking determinants gives =

(See Result 3A.11.) Now examine 

Given a data matrix and the resulting sample correlation matrix R,
consider the standardized observations 

Show that these standardized quantities have sample covariance
matrix R.

Consider the data matrix in Exercise 2.1. We have observations on vari-
ables and Form the linear combinations

(a) Evaluate the sample means, variances, and covariance of and from first
principles. That is, calculate the observed values of and and then use the
sample mean, variance, and covariance formulas.

(b) Calculate the sample means, variances, and covariance of and using (2-36).
Compare the results in (a) and (b).

Repeat Exercise 2.14 using the data matrix

X = C 1 4 3
6 2 6
8 3 3

S
c¿  Xb ¿  X

c ¿  X,b ¿  X
c ¿  Xb ¿  X

 b ¿  X = 72 38 BX1

X2
R = 2X1 + 3X2

 c ¿  X = 7- 1 28 BX1

X2
R = - X1 + 2X2

X2 .X1

p = 2n = 3X

j = 1, 2, Á , n.
k = 1, 2, Á , p,1xj k - x–k2>1sk k ,

X
ƒ D1>2

ƒ .ƒ D1>2
ƒ
 
ƒ R ƒ  ƒ D1>2

ƒ .
ƒ S ƒS = D1>2

 RD1>2.

ƒ S ƒ = 1s1 1 s2 2
Á sp p2 ƒ R ƒ .

D1>2
 R  D1>2

= S.R = D-1>2
 S  D-1>2

a ¿ = 7a1 , a2 , a38

E 3 1 0
6 4 6
4 2 2
7 0 3
5 3 4

U
X c = X - 1xq ¿

2.10.

2.11.

2.12.

2.13.

2.14.

2.15.

84



Exercises

and the linear combinations

and

Let V be a vector random variable with mean vector and covariance matrix
= Show that = ±

Show that, if and are independent, then each component of X is 

independent of each component of Z.

Hint:

by independence. Let and tend to infinity, to obtain

for all So and are independent. Repeat for other pairs.

Energy consumption in 2001, by state, from the major sources

is recorded in quadrillions (1015) of BTUs (Source: Statistical Abstract of the United
States 2006).

The resulting mean and covariance matrix are

(a) Using the summary statistics, determine the sample mean and variance of a state’s
total energy consumption for these major sources.

(b) Determine the sample mean and variance of the excess of petroleum consumption
over natural gas consumption. Also find the sample covariance of this variable with
the total variable in part a.

Using the summary statistics for the first three variables in Exercise 2.18, verify the
relation

ƒ S ƒ = (s11 s22 s33) ƒ R ƒ

x– = D0.766
0.508
0.438
0.161

T S = D0.856 0.635 0.173 0.096
0.635 0.568 0.128 0.067
0.173 0.127 0.171 0.039
0.096 0.067 0.039 0.043

T

x4 = nuclear electric powerx3 = hydroelectric power

x2 = natural gasx1 = petroleum

Z1X1x1 , z1 .

P7X1 … x1 and Z1 … z18 = P7X1 … x18 # P7Z1 … z18z2 , Á , zqx2 , Á , xp

= P7X1 … x1 , X2 … x2 , Á , Xp … xp8 # P7Z1 … z1 , Á , Zq … zq8P7X1 … x1 , X2 … x2 , Á , Xp … xp and Z1 … z1 , Á , Zq … zq8
Z
1q * 12

X
1p * 12

MV  M œ

V .�VE1VV ¿2�v .E1V - MV21V - MV2 ¿
E1V2 = Mv

c ¿  X = 71 2 - 38 CX1

X2

X3

S
b ¿  X = 71 1 18 CX1

X2

X3

S

2.16.

2.17.

2.18.

2.19.
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Chapter 2 Sample Geometry and Random Sampling

In northern climates, roads must be cleared of snow quickly following a storm. One
measure of storm severity is x1 � its duration in hours, while the effectiveness of snow
removal can be quantified by x2 � the number of hours crews, men, and machine, spend
to clear snow. Here are the results for 25 incidents in Wisconsin.

Table 2.2 Snow Data

x1 x2 x1 x2 x1 x2

12.5 13.7 9.0 24.4 3.5 26.1
14.5 16.5 6.5 18.2 8.0 14.5
8.0 17.4 10.5 22.0 17.5 42.3
9.0 11.0 10.0 32.5 10.5 17.5

19.5 23.6 4.5 18.7 12.0 21.8
8.0 13.2 7.0 15.8 6.0 10.4
9.0 32.1 8.5 15.6 13.0 25.6
7.0 12.3 6.5 12.0
7.0 11.8 8.0 12.8

(a) Find the sample mean and variance of the difference x2 � x1 by first obtaining the
summary statistics.

(b) Obtain the mean and variance by first obtaining the individual values xj2 � xj1,
for j � 1, 2, . . ., 25 and then calculating the mean and variance. Compare these values
with those obtained in part a.
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MATRIX ALGEBRA
AND RANDOM VECTORS

Introduction
We saw in Chapter 1 that multivariate data can be conveniently displayed as an
array of numbers. In general, a rectangular array of numbers with, for instance, n
rows and p columns is called a matrix of dimension The study of multivariate
methods is greatly facilitated by the use of matrix algebra.

The matrix algebra results presented in this chapter will enable us to concisely
state statistical models. Moreover, the formal relations expressed in matrix terms
are easily programmed on computers to allow the routine calculation of important
statistical quantities.

We begin by introducing some very basic concepts that are essential to both our
geometrical interpretations and algebraic explanations of subsequent statistical
techniques. If you have not been previously exposed to the rudiments of matrix al-
gebra, you may prefer to follow the brief refresher in the next section by the more
detailed review provided in Supplement 3A.

Some Basics of Matrix and Vector Algebra

Vectors

An array x of n real numbers is called a vector, and it is written as

where the prime denotes the operation of transposing a column to a row.

x = Dx1

x2

o

xn

T or x¿ = 7x1 , x2 , Á , xn8
x1 , x2 , Á , xn

n * p.

C h a p t e r

3
3.1

3.2
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Chapter 3 Matrix Algebra and Random Vectors

A vector x can be represented geometrically as a directed line in n dimensions
with component along the first axis, along the second axis, p , and along the
nth axis. This is illustrated in Figure 3.1 for 

A vector can be expanded or contracted by multiplying it by a constant c. In
particular, we define the vector c x as

That is, cx is the vector obtained by multiplying each element of x by c. [See 
Figure 3.2(a).]

c  x = Dcx1

cx2

o

cxn

T
n = 3.

xnx2x1

2

1
x1

x

2x1

2x2
2x

x2

1
2 x�

2

1x1

x

y

x1 � y1y1

y2

x2

x2 � y2

x � y

(a) (b)

Figure 3.2 Scalar multiplication and vector addition.

x3

2

0 3

1

x2

x1 Figure 3.1 The vector x ¿ = 71, 3, 28.
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Some Basics of Matrix and Vector Algebra

Two vectors may be added. Addition of x and y is defined as

so that is the vector with ith element 
The sum of two vectors emanating from the origin is the diagonal of the paral-

lelogram formed with the two original vectors as adjacent sides. This geometrical
interpretation is illustrated in Figure 3.2(b).

A vector has both direction and length. In dimensions, we consider the
vector

The length of x, written is defined to be

Geometrically, the length of a vector in two dimensions can be viewed as the
hypotenuse of a right triangle. This is demonstrated schematically in Figure 3.3.

The length of a vector with n components, is defined by

(3-1)

Multiplication of a vector x by a scalar c changes the length. From Equation (3-1),

Multiplication by c does not change the direction of the vector x if 
However, a negative value of c creates a vector with a direction opposite that of x.
From

(3-2)

it is clear that x is expanded if and contracted if [Recall 
Figure 3.2(a).] Choosing we obtain the unit vector which has length 1
and lies in the direction of x.

Lx
-1

 x,c = Lx
-1 ,

0 6 ƒ c ƒ 6 1.ƒ c ƒ 7 1

Lcx = ƒ c ƒ  Lx

c 7 0.

 = ƒ c ƒ2x1
2

+ x2
2

+
Á

+ xn
2

= ƒ c ƒ  Lx

 Lcx = 2c2
 x1

2
+ c2

 x2
2

+
Á

+ c2
 xn

2

Lx = 2x1
2

+ x2
2

+
Á

+ xn
2

x¿ = 7x1 , x2 , Á , xn8,
Lx = 2x1

2
+ x2

2

Lx ,

x = Bx1

x2
R

n = 2

xi + yi .x + y

x + y = Dx1

x2

o

xn

T + Dy1

y2

o

yn

T = D x1 + y1

x2 + y2

o

xn + yn

T

2

1

x

x2

x1 x1

Lx � x �

x2

1 2
1 x2

2

Figure 3.3
Length of x = 2x1

2
+ x2

2.
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Chapter 3 Matrix Algebra and Random Vectors

A second geometrical concept is angle. Consider two vectors in a plane and the
angle between them, as in Figure 3.4. From the figure, can be represented as 
the difference between the angles and formed by the two vectors and the first
coordinate axis. Since, by definition,

and

the angle between the two vectors and is specified by

(3-3)

We find it convenient to introduce the inner product of two vectors. For 
dimensions, the inner product of x and y is

With this definition and Equation (3-3),

Since and only if x and y are
perpendicular when 

For an arbitrary number of dimensions n, we define the inner product of x
and y as

(3-4)

The inner product is denoted by either or y¿  x.x¿  y

x¿  y = x1 y1 + x2 y2 +
Á

+ xn yn

x¿  y = 0.
x¿  y = 0,cos 1u2 = 0cos 190°2 = cos 1270°2 = 0

Lx = 2x¿  x  cos 1u2 =

x¿  y
Lx Ly

=

x¿  y2x¿  x 2y¿  y

x¿y = x1 y1 + x2 y2

n = 2

cos 1u2 = cos 1u2 - u12 = ¢ y1

Ly
≤   ¢ x1

Lx
≤ + ¢ y2

Ly
≤   ¢ x2

Lx
≤ =

x1 y1 + x2 y2

Lx Ly

y¿ = 7y1 , y28x¿ = 7x1 , x28u

cos 1u2 = cos 1u2 - u12 = cos 1u22 cos 1u12 + sin 1u22 sin 1u12

 sin 1u12 =

x2

Lx
   sin 1u22 =

y2

Ly

 cos 1u12 =

x1

Lx
   cos 1u22 =

y1

Ly

u2u1

uu

2

cos (  ) �

1

y2

x2

y1

y

2θ 1θ
θ

θ

x

x1

x1y1  � x2y2

LxLy

Figure 3.4 The angle between
and y ¿ = 7y1 , y28.x ¿ = 7x1 , x28 u
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Some Basics of Matrix and Vector Algebra

Using the inner product, we have the natural extension of length and angle to
vectors of n components:

(3-5)

(3-6)

Since, again, only if we say that x and y are perpendicular
when 

Example 3.1 (Calculating lengths of vectors and the angle between them) Given the
vectors and find 3x and Next, determine 
the length of x, the length of y, and the angle between x and y. Also, check that
the length of 3x is three times the length of x.

First,

Next, = = = 6, and =

= Therefore,

and

so Finally,

showing �

A pair of vectors x and y of the same dimension is said to be linearly dependent
if there exist constants and both not zero, such that

A set of vectors is said to be linearly dependent if there exist constants
not all zero, such that

(3-7)

Linear dependence implies that at least one vector in the set can be written as a
linear combination of the other vectors. Vectors of the same dimension that are not
linearly dependent are said to be linearly independent.

c1  x1 + c2  x2 +
Á

+ ck xk = 0

c1 , c2 , Á , ck ,
x1 , x2 , Á , xk

c1 x + c2 y = 0

c2 ,c1

L3x = 3Lx .

L3x = 232
+ 92

+ 62
= 1126 and 3Lx = 3114 = 1126

u = 96.3°.

cos 1u2 =

x¿  y
Lx Ly

=

-1
3.742 * 2.449

= - .109

Lx = 2x¿  x = 114 = 3.742  Ly = 2y¿  y = 16 = 2.449

-1.11-22 + 3112 + 21-12
x¿y1-222 + 12

+ 1-122y¿  y12
+ 32

+ 22
= 14,x¿  x

 x + y = C1
3
2
S + C -2

1
-1
S = C1 - 2

3 + 1
2 - 1

S = C -1
4
1
S

 3x = 3 C1
3
2
S = C3

9
6
S

x + y.y¿ = 7-2, 1, -18,x¿ = 71, 3, 28
x¿  y = 0.

x¿  y = 0,cos 1u2 = 0

 cos 1u2 =

x¿  y
Lx Ly

=

x¿  y2x¿  x 2y¿  y

 Lx = length of x = 2x¿  x

91



Chapter 3 Matrix Algebra and Random Vectors

Example 3.2 (Identifying linearly independent vectors) Consider the set of vectors

Setting

implies that

with the unique solution = As we cannot find three constants 
and not all zero, such that ± the vectors and are
linearly independent. �

The projection (or shadow) of a vector x on a vector y is

(3-8)

where the vector has unit length. The length of the projection is

(3-9)

where is the angle between x and y. (See Figure 3.5.)u

Length of projection =

ƒ  x¿  y ƒ

Ly
= Lx 

`  
x¿  y

Lx Ly
 ` = Lx 

 ƒ cos 1u2 ƒ

Ly
-1

 y

Projection of x on y =

1x¿  y2

y¿  y
 y =

1x¿  y2

Ly
 

1
Ly

 y

x3x1 , x2 ,c3 x3 = 0,c1 x1 + c2 x2c3 ,
c1 , c2 ,c3 = 0.c1 = c2

 c1 - c2 + c3 = 0

 2c1 - 2c3 = 0

 c1 + c2 + c3 = 0

c1 x1 + c2 x2 + c3 x3 = 0

x1 = C1
2
1
S x2 = C 1

0
-1
S x3 = C 1

-2
1
S

x

y

y

θ

x' y
y' y

Lx cos (  )θ Figure 3.5 The projection of x on y.

Matrices

A matrix is any rectangular array of real numbers.We denote an arbitrary array of n
rows and p columns by

A
1n * p2

= Da1 1 a1 2
Á a1 p

a2 1 a2 2
Á a2 p

o o ∞ o

an 1 an 2
Á an p

T
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Some Basics of Matrix and Vector Algebra

Many of the vector concepts just introduced have direct generalizations to matrices.
The transpose operation of a matrix changes the columns into rows, so that

the first column of A becomes the first row of the second column becomes the
second row, and so forth.

Example 3.3 (The transpose of a matrix) If

then

�

A matrix may also be multiplied by a constant c. The product cA is the matrix
that results from multiplying each element of A by c. Thus

Two matrices A and B of the same dimensions can be added. The sum has
entry 

Example 3.4 (The sum of two matrices and multiplication of a matrix by a constant)
If

then

�

It is also possible to define the multiplication of two matrices if the dimensions
of the matrices conform in the following manner: When A is and B is

so that the number of elements in a row of A is the same as the number of
elements in a column of B, we can form the matrix product AB. An element of the
new matrix AB is formed by taking the inner product of each row of A with each
column of B.

1k * p2,
1n * k2

 A
12 * 32

+ B
12 * 32

= B0 + 1 3 - 2 1 - 3
1 + 2 -1 + 5 1 + 1

R = B1 1 -2
3 4 2

R
 4A
12 * 32

= B0 12 4
4 -4 4

R and

A
12 * 32

= B0 3 1
1 -1 1

R and B
12 * 32

= B1 -2 -3
2 5 1

R
ai j + bi j .1i, j2th

A + B

cA
1n * p2

= Dca1 1 ca1 2
Á ca1 p

ca2 1 ca2 2
Á ca2 p

o o ∞ o

can 1 can 2
Á can p

T

 Aœ

 

 

13 * 22
= C 3 1

-1 5
2 4

S
 A
12 * 32

= B3 -1 2
1 5 4

R
A¿,

A¿
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Chapter 3 Matrix Algebra and Random Vectors

The matrix product AB is

the matrix whose entry in the ith row 
and jth column is the inner product of the ith row 
of A and the jth column of B

or

(3-10)

When we have four products to add for each entry in the matrix AB. Thus,

Example 3.5 (Matrix multiplication) If

then

and

�

 = B6 -2 4
2 -6 -2

R
12 * 32

 = B2132 + 0112 21-12 + 0152 2122 + 0142
1132 - 1112 11-12 - 1152 1122 - 1142

R
 C
12 * 22

A
12 * 32

= B2 0
1 -1

R   B3 -1 2
1 5 4

R
 = B 5

69
R

12 * 12

 A
12 * 32

B
13 * 12

= B3 -1 2
1 5 4

R   C -2
7
9
S = B31-22 + 1-12 172

11-22 + 5172
+ 2192
+ 4192

R
A = B3 -1 2

1 5 4
R , B = C -2

7
9
S , and C = B2 0

1 -1
R

 = Row i C  

Á Aai 1 b1 j + ai 2 b2 j

 

o                
+ ai 3 b3 j + ai 4 b4 j B Á

o                
S

Column
j

 A
1n * 42

B
14 * p2

= E a1 1 a1 2 a1 3 a1 4

o o o o

ai 1 ai 2 ai 3 ai 4

o o o o

an 1 an 2 an 3 an 4

U   Db1 1
Á b1 j

Á b1 p

b2 1
Á b2 j

Á b2 p

b3 1
Á b3 j

Á b3 p

b4 1
Á b4 j

Á b4 p

T
k = 4,

1i, j2 entry of AB = ai 1 b1 j + ai 2 b2 j +
Á

+ ai k bk j = a
k

/ = 1
 ai /  b/ j

1n * p2A
1n * k2

B
1k * p2

=
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Some Basics of Matrix and Vector Algebra

When a matrix B consists of a single column, it is customary to use the lower-
case b vector notation.

Example 3.6 (Some typical products and their dimensions) Let

Then and are typical products.

The product A b is a vector with dimension equal to the number of rows of A.

The product is a vector or a single number, here 

The product is a matrix whose row dimension equals the dimension of b and
whose column dimension equals that of c. This product is unlike which is a
single number.

The product is a vector or a single number, here 26. �

Square matrices will be of special importance in our development of statistical
methods. A square matrix is said to be symmetric if or for all i
and j.

ai j = aj iA = A¿

1 * 1d¿  A b

d¿  A b = 72 98 B1 -2 3
2 4 -1

R   C 7
-3

6
S = 7268

b¿  c,
b c¿

b c¿ = C 7
-3

6
S  75 8 -48 = C 35 56 -28

-15 -24 12
30 48 -24

S
-13.1 * 1b¿  c

b¿  c = 77 -3 68 C 5
8

-4
S = 7-138

A b = B1 -2 3
2 4 -1

R   C 7
-3

6
S = B 31

-4
R

d¿  A bA b, bc¿, b¿  c,

A = B1 -2 3
2 4 -1

R b = C 7
-3

6
S c = C 5

8
-4
S d = B2

9
R
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Chapter 3 Matrix Algebra and Random Vectors

Example .7 (A symmetric matrix) The matrix

is symmetric; the matrix

is not symmetric. �

When two square matrices A and B are of the same dimension, both products
AB and BA are defined, although they need not be equal. (See Supplement 3A.) 
If we let I denote the square matrix with ones on the diagonal and zeros elsewhere,
it follows from the definition of matrix multiplication that the entry of 
AI is ± ± so

Similarly, so

(3-11)

The matrix I acts like 1 in ordinary multiplication so it is
called the identity matrix.

The fundamental scalar relation about the existence of an inverse number 
such that if has the following matrix algebra extension: If
there exists a matrix B such that

then B is called the inverse of A and is denoted by 
The technical condition that an inverse exists is that the k columns 

of A are linearly independent. That is, the existence of is equivalent to

(3-12)

(See Result 3A.9 in Supplement 3A.)

Example 3.8 (The existence of a matrix inverse) For

you may verify that

 = B1 0
0 1

R
 B - .2 .4

.8 - .6
R   B3 2

4 1
R = B1- .223

1.823
+ 1.424
+ 1- .624

 
1- .222
1.822

+ 1.421
+ 1- .621

R
A = B3 2

4 1
R

c1 a1 + c2 a2 +
Á

+ ck ak = 0 only if c1 =
Á

= ck = 0

A-1
a1 , a2 , Á , ak

A-1.

B
1k * k2

A
1k * k2

= A
1k * k2

B
1k * k2

= I
1k * k2

a Z 0a-1
 a = aa-1

= 1
a-1

11 # a = a # 1 = a2,

I
1k * k2

A
1k * k2

= A
1k * k2

I
1k * k2

= A
1k * k2

 for any A
1k * k2

IA = A,AI = A.
Á

+ ai k * 0 = ai j ,ai j * 1 + ai, j + 1 * 0ai 1 * 0 +
Á

+ ai, j - 1 * 0
1i, j2th

B3 6
4 -2

R
B3 5

5 -2
R3
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Some Basics of Matrix and Vector Algebra

so

is We note that

implies that so the columns of A are linearly independent. This
confirms the condition stated in (3-12). �

A method for computing an inverse, when one exists, is given in Supplement 3A.
The routine, but lengthy, calculations are usually relegated to a computer, especially
when the dimension is greater than three. Even so, you must be forewarned that if
the column sum in (3-12) is nearly 0 for some constants then the computer
may produce incorrect inverses due to extreme errors in rounding. It is always good
to check the products and for equality with I when is produced by a
computer package. (See Exercise 3.10.)

Diagonal matrices have inverses that are easy to compute. For example,

if all the 
Another special class of square matrices with which we shall become familiar

are the orthogonal matrices, characterized by

(3-13)

The name derives from the property that if Q has ith row then implies
that and for so the rows have unit length and are mutually
perpendicular (orthogonal).According to the condition the columns have
the same property.

We conclude our brief introduction to the elements of matrix algebra by intro-
ducing a concept fundamental to multivariate statistical analysis. A square matrix A
is said to have an eigenvalue with corresponding eigenvector if

(3-14)A x = lx

x Z 0,l,

Q¿  Q = I,
i Z j,qœ

i  qj = 0qœ

i  qi = 1
QQ¿ = Iqœ

i ,

QQ¿ = Q¿  Q = I or Q¿ = Q-1

ai i Z 0.

Ea1 1 0 0 0 0
0 a2 2 0 0 0
0 0 a3 3 0 0
0 0 0 a4 4 0
0 0 0 0 a5 5

U has inverse 

1
a1 1

0 0 0 0

0
1

a2 2
0 0 0

0 0
1

a3 3
0 0

0 0 0
1

a4 4
0

0 0 0 0
1

a5 5

A-1A-1
 AAA-1

c1 , Á , ck ,

c1 = c2 = 0,

c1 B3
4
R + c2 B2

1
R = B0

0
RA-1.

B - .2 .4
.8 - .6

R

I Y

97



Chapter 3 Matrix Algebra and Random Vectors

Ordinarily, we normalize x so that it has length unity; that is, It is
convenient to denote normalized eigenvectors by e, and we do so in what follows.
Sparing you the details of the derivation (see [1]), we state the following basic result:

Let A be a square symmetric matrix. Then A has k pairs of eigenvalues
and eigenvectors namely,

(3-15)

The eigenvectors can be chosen to satisfy and be mutually
perpendicular. The eigenvectors are unique unless two or more eigenvalues 
are equal.

Example 3.9 (Verifying eigenvalues and eigenvectors) Let

Then, since

is an eigenvalue, and

is its corresponding normalized eigenvector. You may wish to show that a second
eigenvalue–eigenvector pair is �

A method for calculating the ’s and e’s is described in Supplement 3A. It is in-
structive to do a few sample calculations to understand the technique.We usually rely
on a computer when the dimension of the square matrix is greater than two or three.

Positive Definite Matrices
The study of the variation and interrelationships in multivariate data is often based
upon distances and the assumption that the data are multivariate normally distributed.
Squared distances (see Chapter 1) and the multivariate normal density can be
expressed in terms of matrix products called quadratic forms (see Chapter 4).
Consequently, it should not be surprising that quadratic forms play a central role in

l

eœ

2 = 71>12, 1>128.l2 = -4,

e1 = D 112

-  
112

T
l1 = 6

B 1 -5
-5 1

R   D 112

-  
112

T = 6 D 112

-  
112

T
A = B 1 -5

-5 1
R

1 = eœ

1 e1 =
Á

= eœ

k ek

l1 , e1  l2 , e2 Á  lk , ek

k * k

1 = x¿  x.

3.3
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Positive Definite Matrices

multivariate analysis. In this section, we consider quadratic forms that are always
nonnegative and the associated positive definite matrices.

Results involving quadratic forms and symmetric matrices are, in many cases,
a direct consequence of an expansion for symmetric matrices known as the
spectral decomposition. The spectral decomposition of a symmetric matrix
A is given by1

(3-16)

where are the eigenvalues of A and are the associated
normalized eigenvectors. (See also Result 3A.14 in Supplement 3A). Thus,
for and for 

Example 3.10 (The spectral decomposition of a matrix) Consider the symmetric matrix

The eigenvalues obtained from the characteristic equation are
and (Definition 3A.30). The corresponding eigenvectors

and are the (normalized) solutions of the equations for
Thus, gives

or

Moving the terms on the right of the equals sign to the left yields three homogeneous
equations in three unknowns, but two of the equations are redundant. Selecting one of
the equations and arbitrarily setting and we find that Con-

sequently, the normalized eigenvector is

= since the sum of the squares of its elements
is unity.You may verify that = is also an eigenvector
for and is the normalized eigenvector corresponding
to the eigenvalue Moreover, for i Z j.eœ

i  ej = 0l3 = 18.
eœ

3 = 72>3, -2>3, 1>389 = l2 ,
71>118, -1>118, -4>1188eœ

2

71>12, 1>12, 08,0>212
+ 12

+ 028 1>212
+ 12

+ 02,eœ

1 = 71>212
+ 12

+ 02,

e3 1 = 0.e2 1 = 1,e1 1 = 1

 2e1 1 - 2e2 1 + 10e3 1 = 9e3 1

 -4e1 1 + 13e2 1 - 2e3 1 = 9e2 1

 13e1 1 - 4e2 1 + 2e3 1 = 9e1 1

C 13 -4 2
-4 13 -2

2 -2 10
S   C e1 1

e2 1

e3 1

S = 9 C e1 1

e2 1

e3 1

S
Ae1 = le1i = 1, 2, 3.

Aei = li eie3e1 , e2 ,
l3 = 18l2 = 9,l1 = 9,

ƒ  A - lI ƒ = 0

A = C 13 -4 2
-4 13 -2

2 -2 10
S

i Z j.eœ

i  ej = 0i = 1, 2, Á , k,
eœ

i  ei = 1
e1 , e2 , Á , ekl1 , l2 , Á , lk

A
1k * k2

= l1 e  

 1
1k * 12

 eœ

 1
11 * k2

+ l2 e  

 2
1k * 12

 eœ

 2
11 * k2

+
Á

+ lk e  

 k
1k * 12

 e œ

 k
11 * k2

k * k

1A proof of Equation (3-16) is beyond the scope of this book.The interested reader will find a proof
in [6], Chapter 8.
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The spectral decomposition of A is then

or

as you may readily verify. �

The spectral decomposition is an important analytical tool. With it, we are very
easily able to demonstrate certain statistical results. The first of these is a matrix
explanation of distance, which we now develop.

Because has only squared terms and product terms it is called a
quadratic form. When a symmetric matrix A is such that

(3-17)

for all both the matrix A and the quadratic form are said to be
nonnegative definite. If equality holds in (3-17) only for the vector 
then A or the quadratic form is said to be positive definite. In other words, A is
positive definite if

(3-18)

for all vectors x Z 0.

0 6 x¿  A x

x¿ = 70, 0, Á , 08,x¿ = 7x1 , x2 , Á , xk8, 0 … x¿  A x

k * k
xi xk ,xi

2x¿  A x

+ 18 F
4
9

-  
4
9

2
9

-  
4
9

4
9

-  
2
9

2
9

-  
2
9

1
9

V

 = 9 E 1
2

1
2

0

1
2

1
2

0

0 0 0

U + 9 F
1

18
-  

1
18

-  
4
18

-  
1
18

1
18

4
18

-  
4
18

4
18

16
18

V

 + 9 F
1118

-1118
-4118

V   B 1118
 

-1118
 

-4118
R + 18 F

2
3

-  
2
3
1
3

V   B2
3
 -  

2
3
 

1
3
R

 C 13 -4 2
-4 13 -2

2 -2 10
S = 9 E 112

112
0

U   B 112
 

112
 0R

A = l1 e1 eœ

1 + l2 e2 eœ

2 + l3 e3 eœ

3
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Example 3.11 (A positive definite matrix and quadratic form) Show that the matrix
for the following quadratic form is positive definite:

To illustrate the general approach, we first write the quadratic form in matrix
notation as

By Definition 3A.30, the eigenvalues of A are the solutions of the equation
or The solutions are and 

Using the spectral decomposition in (3-16), we can write

where and are the normalized and orthogonal eigenvectors associated with the
eigenvalues and respectively. Because 4 and 1 are scalars, premulti-
plication and postmultiplication of A by and x, respectively, where is
any nonzero vector, give

with

We now show that and are not both zero and, consequently, that
or A is positive definite.

From the definitions of and we have

or

Now E is an orthogonal matrix and hence has inverse Thus, But x is a
nonzero vector, and implies that �

Using the spectral decomposition, we can easily show that a symmetric
matrix A is a positive definite matrix if and only if every eigenvalue of A is positive.
(See Exercise 3.17.) A is a nonnegative definite matrix if and only if all of its eigen-
values are greater than or equal to zero.

Assume for the moment that the p elements of a vector x are
realizations of p random variables As we pointed out in Chapter 1,X1 , X2 , Á , Xp .

x1 , x2 , Á , xp

k * k

y Z 0.0 Z x = E¿  y
x = E¿  y.E¿.

y
12 * 12

= E
12 * 22

x
12 * 12

By1

y2
R = Beœ

1

eœ

2
R   Bx1

x2
Ry2 ,y1

x¿  A x = 4y1
2

+ y2
2

7 0,
y2y1

y1 = x¿  e1 = eœ

1 x and y2 = x¿  e2 = eœ

2 x

 = 4y1
2

+ y2
2

Ú 0

 xœ

 

 

11 * 22
 A
12 * 22

 x
12 * 12

= 4xœ

 

 

11 * 22
 e  

 1
12 * 12

 eœ

 1
11 * 22

x
12 * 12

+ xœ

 

 

11 * 22
 e  

 2
12 * 12

 eœ

 2
11 * 22

 x
12 * 12

x¿ = 7x1 , x28x¿

l2 = 1,l1 = 4
e2e1

 = 4e  

 1
12 * 12

 eœ

 1
11 * 22

+ e  

 2
12 * 12

 eœ

 2
11 * 22

 A
12 * 22

= l  

 1e  

 1
12 * 12

 eœ

 1
11 * 22

+ l  

 2e  

 2
12 * 12

 eœ

 2
11 * 22

l2 = 1.l1 = 413 - l2 12 - l2 - 2 = 0.ƒ  A - lI ƒ = 0,

7x1 x28 B 3 -12
-12 2

R   Bx1

x2
R = x¿  A x

3x1
2

+ 2x2
2

- 212 x1 x2
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we can regard these elements as the coordinates of a point in p-dimensional space,
and the “distance” of the point to the origin can, and in this case
should, be interpreted in terms of standard deviation units. In this way, we can
account for the inherent uncertainty (variability) in the observations. Points with the
same associated “uncertainty” are regarded as being at the same distance from 
the origin.

If we use the distance formula introduced in Chapter 1 [see Equation (1-22)],
the distance from the origin satisfies the general formula

provided that for all Setting 
we have

or

(3-19)

From (3-19), we see that the symmetric matrix A is positive definite. In
sum, distance is determined from a positive definite quadratic form Con-
versely, a positive definite quadratic form can be interpreted as a squared distance.

Comment. Let the square of the distance from the point =

to the origin be given by where A is a symmetric positive definite
matrix. Then the square of the distance from x to an arbitrary fixed point 

= is given by the general expression 

Expressing distance as the square root of a positive definite quadratic form al-
lows us to give a geometrical interpretation based on the eigenvalues and eigenvec-
tors of the matrix A. For example, suppose Then the points = of
constant distance c from the origin satisfy

By the spectral decomposition, as in Example .11,

Now, is an ellipse in and because 
when A is positive definite. (See Exercise 3.17.) We easily verify that 
satisfies = = Similarly, gives the appropriate
distance in the direction.Thus, the points at distance c lie on an ellipse whose axes
are given by the eigenvectors of A with lengths proportional to the reciprocals of
the square roots of the eigenvalues. The constant of proportionality is c. The situa-
tion is illustrated in Figure 3.6.

e2

x = cl2
-1>2

 e2c2 .l11cl1
-1>2

 eœ

1 e12
2x¿  A x

x = cl1
-1>2

 e1

l1 , l2 7 0y2 = x¿  e2y1 = x¿  e1c2
= l1 y1

2
+ l2 y2

2

A = l1 e1 eœ

1 + l2 e2 eœ

2 so x¿  A x = l11x¿  e12
2

+ l21x¿  e22
2

x¿  A x = a1 1 x1
2

+ a2 2 x2
2

+ 2a1 2 x1 x2 = c2

7x1 , x28x¿p = 2.

1x - M2¿  A1x - M2.7m1 , m2 , Á , mp8M œ

p * px¿  A x,
7x1 , x2 , Á , xp8x¿

x¿  A x.
p * p

0 6 1distance22 = x¿  A x  for x Z 0

0 6 1distance22 = 7x1 , x2 , Á , xp8  D a1 1 a1 2
Á a1 p

a2 1 a2 2
Á a2 p

o o ∞ o

ap 1 ap 2
Á ap p

T   D x1

x2

o

xp

T
j = 1, 2, Á , p,i = 1, 2, Á , p,i Z j,

ai j = aj i ,7x1 , x2 , Á , xp8 Z 70, 0, Á , 08.1distance22 7 0

+ 21a1 2 x1 x2 + a1 3 x1 x3 +
Á

+ ap - 1, p xp - 1 xp2

1distance22 = a1 1 x1
2

+ a2 2 x2
2

+
Á

+ ap p xp
2

7x1 , x2 , Á , xp8¿

3
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A Square-Root Matrix

If the points a constant distance from
the origin lie on hyperellipsoids ± whose axes are
given by the eigenvectors of A. The half-length in the direction is equal to 

where are the eigenvalues of A.

A Square-Root Matrix
The spectral decomposition allows us to express the inverse of a square matrix in
terms of its eigenvalues and eigenvectors, and this leads to a useful square-root
matrix.

Let A be a positive definite matrix with the spectral decomposition

= Let the normalized eigenvectors be the columns of another matrix

= Then

(3-20)

where and is the diagonal matrix

∂

1k * k2
= Dl1 0 Á 0

0 l2
Á 0

o o ∞ o

0 0 Á lk

T  with li 7 0

∂PP¿ = P¿  P = I

A
1k * k2

= a
k

i = 1
 li e  

 i
1k * 12

 eœ

 i
11 * k2

= P
1k * k2

 ∂

1k * k2
 Pœ

 

 

1k * k2

7e1 , e2 , Á , ek8.P

a
k

i = 1
 li ei eœ

i .A

k * k

l1 , l2 , Á , lpi = 1, 2, Á , p,
c>2li ,ei

Á
+ lp1x¿  ep2

2,c2
= l11x¿  e12

2
c = 2x¿  A xx¿ = 7x1 , x2 , Á , xp8p 7 2,

e2

0

x2

e1

x1

c
λ2�

c
λ1�

Figure 3.6 Points a
constant distance c
from the origin
1p = 2, 1 … l1 6 l22 .

3.4

103



Thus,

(3-21)

since 

Next, let denote the diagonal matrix with as the ith diagonal element.

The matrix is called the square root of A and is denoted by

The square-root matrix, of a positive definite matrix A,

(3-22)

has the following properties:

1. (that is, is symmetric).

2.

3. where is a diagonal matrix with 

as the ith diagonal element.

4. , and where 

Random Vectors and Matrices
A random vector is a vector whose elements are random variables. Similarly, a
random matrix is a matrix whose elements are random variables. The expected value
of a random matrix (or vector) is the matrix (vector) consisting of the expected
values of each of its elements. Specifically, let be an random
matrix. Then the expected value of , denoted by is the matrix of
numbers (if they exist)

(3-23)E1X2 = DE1X1 12 E1X1 22 Á E1X1 p2

E1X2 12 E1X2 22 Á E1X2 p2

o o ∞ o

E1Xn 12 E1Xn 22 Á E1Xn p2

T
n * pE1X2,X

n * pX = 5Xi j6

A-1>2
= 1A1>22

-1.A-1>2
 A-1>2

= A-1,A1>2
 A-1>2

= A-1>2
 A1>2

= I

1>1li

∂
-1>21A1>22

-1
= a

k

i = 1
 

11li
  ei ei

œ

= P∂
-1>2

 P¿,

A1>2
 A1>2

= A.

A1>21A1>22
œ

= A1>2

A1>2
= a

k

i = 1
 1li   ei ei

œ

= P∂
1>2

 P¿

A1>2.

a
k

i =1
 1li   ei  eœ

i = P∂
1>2

 P¿

1li∂
1>2

1P∂
-1

 P¿2 P∂P¿ = P∂P¿1P∂
-1

 P¿2 = PP¿ = I.

A-1
= P∂

-1
 P¿ = a

k

i =1
 
1
li

  ei 

 

ei
œ
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where, for each element of the matrix,2

Example 3.12 (Computing expected values for discrete random variables) Suppose
and and consider the random vector Let the discrete

random variable have the following probability function:X1

X¿ = 7X1 , X28.n = 1,p = 2

E1Xi j2 = e L
q

- q

 xi j  fi j1xi j2 dxi j

 

a
 

all xi j

 xi j pi j1xi j2

 

if Xi j is a continuous random variable with
probability density function fi j1xi j2
 

if Xi j is a discrete random variable with
probability function pi j1xi j2

Random Vectors and Matrices

2If you are unfamiliar with calculus, you should concentrate on the interpretation of the expected
value and, eventually, variance. Our development is based primarily on the properties of expectation
rather than its particular evaluation for continuous or discrete random variables.

0 1

.3 .3 .4p11x12

-1x1

Then 

Similarly, let the discrete random variable have the probability functionX2

E1X12 = a
 

all x1

 x1 p11x12 = 1-12 1.32 + 102 1.32 + 112 1.42 = .1.

0 1

.8 .2p21x22

x2

Then 

Thus,

�

Two results involving the expectation of sums and products of matrices follow
directly from the definition of the expected value of a random matrix and the univariate
properties of expectation, = and 
Let X and Y be random matrices of the same dimension, and let A and B be
conformable matrices of constants.Then (see Exercise 3.40)

(3-24)

E1AXB2 = AE1X2B

E1X + Y2 = E1X2 + E1Y2

E1cX12 = cE1X12.E1X12 + E1Y12E1X1 + Y12

E1X2 = BE1X12

E1X22
R = B .1

.2
R

E1X22 = a
 

all x2

 x2 p21x22 = 102 1.82 + 112 1.22 = .2.
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Mean Vectors and Covariance Matrices
Suppose is a random vector.Then each element of X is a
random variable with its own marginal probability distribution. (See Example 3.12.) The
marginal means and variances are defined as and 

respectively. Specifically,

(3-25)

It will be convenient in later sections to denote the marginal variances by rather
than the more traditional and consequently, we shall adopt this notation.

The behavior of any pair of random variables, such as and is described by
their joint probability function, and a measure of the linear association between
them is provided by the covariance

if Xi , Xk are continuous
random variables with
the joint density
function fi k1xi , xk2 = h

L

q

- q

 

L

q

- q

 

1xi - mi2 1xk - mk2fi k1xi , xk2dxi dxk

si k = E1Xi - mi2 1Xk - mk2

Xk ,Xi

si
2 ,

si i

 si
2

= e L
q

- q

 1xi - mi2
2

 fi1xi2 dxi

 

a
 

all xi

1xi - mi2
2

 pi1xi2

 

if Xi is a continuous random variable
with probability density function fi1xi2
 

if Xi is a discrete random variable
with probability function pi1xi2

 mi = e L
q

- q

 xi  fi1xi2 dxi

 

a
 

all xi

 xi pi1xi2

 

if Xi is a continuous random variable with probability
density function fi1xi2
 

if Xi is a discrete random variable with probability
function pi1xi2

i = 1, 2, Á , p,
si

2
= E1Xi - mi2

2 ,mi = E1Xi2si
2mi

p * 1Xœ

= 7X1 , X2 , Á , Xp8

if Xi , Xk are discrete
random variables with
joint probability
function pi k1xi , xk2

a
 

all xi

 a
 

all xk

 1xi - mi2 1xk - mk2pi k1xi , xk2

(3-26)

and and are the marginal means. When the covari-
ance becomes the marginal variance.

More generally, the collective behavior of the p random variables 
or, equivalently, the random vector is described by a joint
probability density function As we have already noted in
this book, will often be the multivariate normal density function. (See Chapter 4.)

If the joint probability and can be written as the product of
the corresponding marginal probabilities, so that

(3-27)P7Xi … xi and Xk … xk8 = P7Xi … xi8P7Xk … xk8
Xk … xk8P7Xi … xi

f1x2
f1x1 , x2 , Á , xp2 = f1x2.

X¿ = 7X1 , X2 , Á , Xp8, X1 , X2 , Á , Xp

i = k,i, k = 1, 2, Á , p,mk ,mi

3.6
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Mean Vectors and Covariance Matrices

for all pairs of values then and are said to be statistically independent.
When and are continuous random variables with joint density and
marginal densities and the independence condition becomes

for all pairs 
The p continuous random variables are mutually statistically

independent if their joint density can be factored as

(3-28)

for all p-tuples 
Statistical independence has an important implication for covariance. The

factorization in (3-28) implies that Thus,

(3-29)

The converse of (3-29) is not true in general; there are situations where
but and are not independent. (See [5].)

The means and covariances of the random vector X can be set out as
matrices. The expected value of each element is contained in the vector of means

and the p variances and the distinct covariances
are contained in the symmetric variance-covariance matrix 

= Specifically,

(3-30)

and

E1X2 = DE1X12

E1X22

o

E1Xp2

T = Dm1

m2

o

mp

T = M

E1X - M21X - M2¿.�
si k1i 6 k2

p1p - 12>2si iM = E1X2,

p * 1
XkXiCov 1Xi , Xk2 = 0,

Cov 1Xi , Xk2 = 0  if Xi and Xk are independent

Cov 1Xi , Xk2 = 0.

1x1 , x2 , Á , xp2.

f12Áp1x1 , x2 , Á , xp2 = f11x12f21x22Á fp1xp2

X1 , X2 , Á , Xp

1xi , xk2.

fi k1xi , xk2 = fi1xi2fk1xk2

fk1xk2,fi1xi2
fi k1xi , xk2XkXi

XkXixi , xk ,

 = D E1X1 - m12
2 E1X1 - m12 1X2 - m22 Á E1X1 - m12 1Xp - mp2

E1X2 - m22 1X1 - m12 E1X2 - m22
2 Á E1X2 - m22 1Xp - mp2

o o ∞ o

E1Xp - mp2 1X1 - m12 E1Xp - mp2 1X2 - m22 Á E1Xp - mp2
2

T
 = E D 1X1 - m12

2 1X1 - m12 1X2 - m22 Á 1X1 - m12 1Xp - mp2

1X2 - m22 1X1 - m12 1X2 - m22
2 Á 1X2 - m22 1Xp - mp2

o o ∞ o

1Xp - mp2 1X1 - m12 1Xp - mp2 1X2 - m22 Á 1Xp - mp2
2

T
 = E § DX1 - m1

X2 - m2

o

Xp - mp

T  7X1 - m1 , X2 - m2 , Á , Xp - mp8¥
 � = E1X - M2 1X - M2¿

107



Chapter 3 Matrix Algebra and Random Vectors

or

(3-31)

Example 3.13 (Computing the covariance matrix) Find the covariance matrix for
the two random variables and introduced in Example 3.12 when their joint
probability function is represented by the entries in the body of the
following table:

We have already shown that and (See Exam-
ple 3.12.) In addition,

 s2 1 = E1X2 - m22 1X1 - m12 = E1X1 - m12 1X2 - m22 = s1 2 = - .08

 +  Á + 11 - .12 11 - .22 1.002 = - .08

 = 1-1 - .12 10 - .22 1.242 + 1-1 - .12 11 - .22 1.062

 s1 2 = E1X1 - m12 1X2 - m22 = a
 

all pairs 1x1, x22

 1x1 - .12 1x2 - .22p1 21x1 , x22

 = .16

 = 10 - .2221.82 + 11 - .2221.22

 s2 2 = E1X2 - m22
2

= a
 

all x2

 1x2 - .222 p21x22

 = 1-1 - .1221.32 + 10 - .1221.32 + 11 - .1221.42 = .69

 s1 1 = E1X1 - m12
2

= a
 

all x1

 1x1 - .122 p11x12

m2 = E1X22 = .2.m1 = E1X12 = .1

0 1

.24 .06 .3
0 .16 .14 .3
1 .40 .00 .4

.8 .2 1p21x22

-1

p11x12x1

x2

p1 21x1 , x22
X2X1

� = Cov 1X2 = Ds1 1 s1 2
Á s1 p

s2 1 s2 2
Á s2 p

o o ∞ o

sp 1 sp 2
Á sp p

T
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Consequently, with 

and

�

We note that the computation of means, variances, and covariances for discrete
random variables involves summation (as in Examples 3.12 and 3.13), while analo-
gous computations for continuous random variables involve integration.

Because it is convenient to write the
matrix appearing in (3-31) as

(3-32)

We shall refer to and as the population mean (vector) and population
variance–covariance (matrix), respectively.

The multivariate normal distribution is completely specified once the mean
vector and variance–covariance matrix are given (see Chapter 4), so it is not
surprising that these quantities play an important role in many multivariate
procedures.

It is frequently informative to separate the information contained in vari-
ances from that contained in measures of association and, in particular, the
measure of association known as the population correlation coefficient The
correlation coefficient is defined in terms of the covariance and variances

and as

(3-33)

The correlation coefficient measures the amount of linear association between the
random variables and (See, for example, [5].)Xk .Xi

ri k =

si k1si i 1sk k

sk ksi i

si kri k

ri k .
si i

�M

�M

� = E1X - M21X - M2¿ = Ds1 1 s1 2
Á s1 p

s1 2 s2 2
Á s2 p

o o ∞ o

s1 p s2 p
Á sp p

T
si k = E1Xi - mi2 1Xk - mk2 = sk i ,

 = Bs1 1 s1 2

s2 1 s2 2
R = B .69 - .08

- .08 .16
R

 = BE1X1 - m12
2 E1X1 - m12 1X2 - m22

E1X2 - m22 1X1 - m12 E1X2 - m22
2 R

 = E B1X1 - m12
2 1X1 - m12 1X2 - m22

1X2 - m22 1X1 - m12 1X2 - m22
2 R � = E1X - M2 1X - M2¿

M = E1X2 = BE1X12

E1X22
R = Bm1

m2
R = B .1

.2
RX¿ = 7X1 , X28,

109



Chapter 3 Matrix Algebra and Random Vectors

Let the population correlation matrix be the symmetric matrix

(3-34)

and let the standard deviation matrix be

(3-35)

Then it is easily verified (see Exercise 3.23) that

(3-36)

and

(3-37)

That is, can be obtained from and whereas can be obtained from 
Moreover, the expression of these relationships in terms of matrix operations allows
the calculations to be conveniently implemented on a computer.

Example 3.14 (Computing the correlation matrix from the covariance matrix)
Suppose

Obtain and R.V1>2

� = C4 1 2
1 9 -3
2 -3 25

S = Cs1 1 s1 2 s1 3

s1 2 s2 2 s2 3

s1 3 s2 3 s3 3

S

�.RR,V1>2�

R = 1V1>22
-1

 �1V1>22
-1

V1>2
 R V1>2

= �

V1>2
= D1s1 1 0 Á 0

0 1s2 2
Á 0

o o ∞ o

0 0 Á 1sp p

T
p * p

 = D 1 r1 2
Á r1 p

r1 2 1 Á r2 p

o o ∞ o

r1 p r2 p
Á 1

T

s1 21s1 1 1s2 2

s2 21s2 2 1s2 2

o

s2 p1s2 2 1sp p

 

Á

Á

∞

Á

 

s1 p1s1 1 1sp p
s2 p1s2 2 1sp p

o

sp p1sp p 1sp p

W R = G
s1 11s1 1 1s1 1

s1 21s1 1 1s2 2

o

s1 p1s1 1 1sp p

 

p * p
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Here

and

Consequently, from (3-37), the correlation matrix is given by

�

Partitioning the Covariance Matrix

Often, the characteristics measured on individual trials will fall naturally into two
or more groups. As examples, consider measurements of variables representing
consumption and income or variables representing personality traits and physical
characteristics. One approach to handling these situations is to let the character-
istics defining the distinct groups be subsets of the total collection of characteris-
tics. If the total collection is represented by a -dimensional random
vector X, the subsets can be regarded as components of X and can be sorted by
partitioning X.

In general, we can partition the p characteristics contained in the random
vector X into, for instance, two groups of size q and respectively. For exam-
ple, we can write

(3-38)

X = G
X1

o

Xq

 

Xq + 1

o

Xp

W ss
 

q

 

 

 

p - q

 

= BX112
 

X122
R and M = E1X2 = G

m1

o

mq

 

mq + 1

o

mp

W = BM112 

M122
R

p - q,
p * 1

1p * 12

 = D1 1
6

1
5

1
6 1 -  

1
5

1
5 -  

1
5 1

T
 1V1>22

-1
 �1V1>22

-1
= C 1

2 0 0
0 1

3 0
0 0 1

5

S   C4 1 2
1 9 -3
2 -3 25

S   C 1
2 0 0
0 1

3 0
0 0 1

5

S
R

1V1>22
-1

= C 1
2 0 0
0 1

3 0
0 0 1

5

S
V1>2

= C1s1 1 0 0
0 1s2 2 0
0 0 1s3 3

S = C2 0 0
0 3 0
0 0 5

S
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From the definitions of the transpose and matrix multiplication,

= D1X1 - m12 1Xq + 1 - mq + 12 1X1 - m12 1Xq + 2 - mq + 22 Á 1X1 - m12 1Xp - mp2

1X2 - m22 1Xq + 1 - mq + 12 1X2 - m22 1Xq + 2 - mq + 22 Á 1X2 - m22 1Xp - mp2

o o ∞ o

1Xq - mq2 1Xq + 1 - mq + 12 1Xq - mq2 1Xq + 2 - mq + 22 Á 1Xq - mq2 1Xp - mp2

T
= DX1 - m1

X2 - m2

o

Xq - mq

T   7Xq + 1 - mq + 1 , Xq + 2 - mq + 2 , Á , Xp - mp8
1X112 - M1122 

 1X122 - M1222
œ

Upon taking the expectation of the matrix we get

(3-39)

which gives all the covariances, between
a component of and a component of Note that the matrix is not
necessarily symmetric or even square.

Making use of the partitioning in Equation (3–38), we can easily demonstrate that

and consequently,

(3-40) = G
s1 1

Á s1 q s1, q + 1
Á s1 p

o ∞ o o ∞ o

sq 1
Á sq q sq, q + 1

Á sq p 

     

sq + 1, 1
Á sq + 1, q sq + 1, q + 1

Á sq + 1, p

o ∞ o o ∞ o

sp 1
Á sp q sp, q + 1

Á sp p

W

�  

 1 2

�  

 2 2

p - q R 

 

 

 

 

1p * p2

 �
1p *p2

= E1X - M21X - M2¿ =

q       

p -q 
B�  

 1 1

�  

 2 1

q

1X112 

 

- M112 

 

2
1q * 12

  1X122 

 

- M122 

 

2œ  

 

11 *1p - q22
 

1X122 

 

- M122 

 

2
11p - q2* 12

  1X122 

 

- M122 

 

2œ  

 

11 *1p - q22

T= D1X112 

 

- M112 

 

2
1q * 12 

  1X112 

 

- M112 

 

2œ  

 

11 * q2  
 

1X122 

 

- M122 

 

2
11p - q2* 12

  1X112 

 

- M112 

 

2œ  

 

11 * q2  

 

1X - M21X - M2¿

�1 2X122.X112
q + 2, Á , p,j = q + 1,i = 1, 2, Á , q,sij,

E1X112 - M1122 1X122 - M1222
œ

= Ds1, q + 1 s1, q + 2
Á s1 p

s2, q + 1 s2, q + 2
Á s2 p

o o ∞ o

sq, q + 1 sq, q + 2
Á sq p

T = �1 2

1X112 - M1122 1X122 - M1222
œ,
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Mean Vectors and Covariance Matrices

Note that The covariance matrix of is that of is and
that of elements from and is (or ).

It is sometimes convenient to use the Cov ( , ) notation where

Cov ( , )

is a matrix containing all of the covariances  between a component of and a
component of .

The Mean Vector and Covariance Matrix 
for Linear Combinations of Random Variables

Recall that if a single random variable, such as is multiplied by a constant c, then

and

If is a second random variable and a and b are constants, then, using additional
properties of expectation, we get

Finally, for the linear combination we have

(3-41)

With can be written as

Similarly, = can be expressed as

If we let

� = Bs1 1 s1 2

s1 2 s2 2
R

7a b8  Bm1

m2
R = c¿  M

am1 + bm2E1aX1 + bX22

7a b8  BX1

X2
R = c¿  X

aX1 + bX2c¿ = 7a, b8,  = a2
 s1 1 + b2

 s2 2 + 2ab s1 2

 = a2
 Var 1X12 + b2

 Var 1X22 + 2ab Cov 1X1 , X22

 = E7a21X1 - m12
2

+ b21X2 - m22
2

+ 2ab1X1 - m12 1X2 - m228 = E7a1X1 - m12 + b1X2 - m2282 Var 1aX1 + bX22 = E71aX1 + bX22 - 1am1 + bm2282 E1aX1 + bX22 = aE1X12 + bE1X22 = am1 + bm2

aX1 + bX2 ,

 = ab Cov 1X1 , X22 = ab s1 2

 = abE1X1 - m12 1X2 - m22

 Cov 1aX1 , bX22 = E1aX1 - am12 1bX2 - bm22

X2

Var 1cX12 = E1cX1 - cm12
2

= c2
 Var 1X12 = c2

 s1 1

E1cX12 = cE1X12 = cm1

X1 ,

X122
X112

= �1 2X122X112
X122X112

�2 1�1 2X122X112
�2 2 ,X122�1 1 ,X112�1 2 = �œ

2 1 .
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Chapter 3 Matrix Algebra and Random Vectors

be the variance–covariance matrix of X, Equation (3–41) becomes

(3-42)

since

The preceding results can be extended to a linear combination of p random variables:

The linear combination has

(3-43)

where and 

In general, consider the q linear combinations of the p random variables

or

(3-44)

The linear combinations have

(3-45)

where and are the mean vector and variance-covariance matrix of X, respec-
tively. (See Exercise 3.28 for the computation of the off-diagonal terms in )

We shall rely heavily on the result in (3-45) in our discussions of principal com-
ponents and factor analysis in Chapters 8 and 9.

Example 3.15 (Means and covariances of linear combinations) Let 
be a random vector with mean vector and variance–covariance matrix

�X = Bs1 1 s1 2

s1 2 s2 2
RMœ

X = 7m1 , m28 X¿ = 7X1 , X28
C�X C¿.

�XMX

 �Z = Cov 1Z2 = Cov 1CX2 = C�X C¿

 MZ = E1Z2 = E1CX2 = CMX

Z = CX

D X  

 1

X  

 2

o

X  

 p
1p * 12

T = CXZ = D Z  

 1

Z  

 2

o

Z  

 q
1q * 12

T = Dc  

 1 1 c  

 1 2
Á c  

 1 p

c  

 2 1 c  

 2 2
Á c  

 2 p

o o ∞ o

c  

 q 1 c  

 q 2
Á c  

 q p
1q * p2

T   

Z1

Z2

o

Zq

=

=

 

=

c1 1 X1 + c1 2 X2

c2 1 X1 + c2 2 X2

 

cq 1 X1 + cq 2 X2

+
Á

+

+
Á

+

o

+
Á

+

c1 p Xp

c2 p Xp

 

cq p Xp

X1 , Á , Xp :

� = Cov 1X2.M = E1X2

 variance = Var 1cœ
 X2 = cœ

 �c

 mean = E1cœ
 X2 = cœ

 M

cœ
 X = c1 X1 +

Á
+ cp Xp

c¿  �c = 7a b8 Bs1 1 s1 2

s1 2 s2 2
R   Ba

b
R = a2

 s1 1 + 2ab s1 2 + b2
 s2 2

Var 1aX1 + bX22 = Var 1c¿  X2 = c¿  �c
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Mean Vectors and Covariance Matrices

Find the mean vector and covariance matrix for the linear combinations

or

in terms of and 
Here

and

Note that if —that is, if and have equal variances—the off-diagonal
terms in vanish. This demonstrates the well-known result that the sum and differ-
ence of two random variables with identical variances are uncorrelated. �

Partitioning the Sample Mean Vector 
and Covariance Matrix

Many of the matrix results in this section have been expressed in terms of population
means and variances (covariances). The results in (3-36), (3-37), (3-38), and (3-40)
also hold if the population quantities are replaced by their appropriately defined
sample counterparts.

Let be the vector of sample averages constructed from
n observations on p variables and let

be the corresponding sample variance–covariance matrix.

 = E 1
n

 a
n

j = 1
 1xj 1 - x–12

2
Á

1
n
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j = 1
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o ∞ o

1
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1
n

 a
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j = 1
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2

U
 Sn = C s1 1

Á s1 p

o ∞ o

s1 p
Á sp p

S
X1 , X2 , Á , Xp ,

x– ¿ = 7x–1 , x–2 , Á , x–p8

�Z

X2X1s1 1 = s2 2

 = Bs1 1 - 2s1 2 + s2 2 s1 1 - s2 2

s1 1 - s2 2 s1 1 + 2s1 2 + s2 2
R

 �Z = Cov 1Z2 = C�X C¿ = B1 -1
1 1

R   Bs1 1 s1 2

s1 2 s2 2
R   B 1 1

-1 1
R

MZ = E1Z2 = CMX = B1 -1
1 1

R   Bm1

m2
R = Bm1 - m2

m1 + m2
R

�X .MX

Z = BZ1

Z2
R = B1 -1

1 1
R   BX1

X2
R = CX

 Z2 = X1 + X2

 Z1 = X1 - X2
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The sample mean vector and the covariance matrix can be partitioned in order
to distinguish quantities corresponding to groups of variables. Thus,

(3-46)

and

(3-47)

where and are the sample mean vectors constructed from observations
and respectively; is the sample covari-

ance matrix computed from observations is the sample covariance 
matrix computed from observations and is the sample covariance
matrix for elements of and elements of 

Matrix Inequalities and Maximization
Maximization principles play an important role in several multivariate techniques.
Linear discriminant analysis, for example, is concerned with allocating observations
to predetermined groups. The allocation rule is often a linear function of measure-
ments that maximizes the separation between groups relative to their within-group
variability. As another example, principal components are linear combinations of
measurements with maximum variability.

The matrix inequalities presented in this section will easily allow us to derive
certain maximization results, which will be referenced in later chapters.

Cauchy–Schwarz Inequality. Let b and d be any two vectors. Then

(3-48)

with equality if and only if (or ) for some constant c.d = c bb = c d

1b¿  d22 … 1b¿  b2 1d¿  d2

p * 1

x122.x112
S1 2 = Sœ

2 1x122;
S2 2x112;

S1 1x122 = 7xq + 1 , Á , xp8¿,x112 = 7x1 , Á , xq8¿xq122xq112

 =

q      

p -q 
BS  

 1 1

S  

 2 1

q

 
S  

 1 2

S  

 2 2

p -qR
 S  

 n
1p *p2

= F
s1 1

Á s1 q s1, q +1
Á s1 p

o ∞ o o ∞ o

sq 1
Á sq q sq, q +1

Á sq p

sq +1, 1
Á sq +1, q sq +1, q +1

Á sq +1, p

o ∞ o o ∞ o

sp 1
Á sp q sp, q +1

Á sp p

V

xq
1p * 12

= F
xq1

o

xqq

xqq + 1

o

xqp

V = Bxq112

xq122
R

3.7
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Matrix Inequalities and Maximization

Proof. The inequality is obvious if either or Excluding this possibility,
consider the vector where x is an arbitrary scalar. Since the length of

is positive for in this case

The last expression is quadratic in x. If we complete the square by adding and
subtracting the scalar we get

The term in brackets is zero if we choose so we conclude that

or if for some x.
Note that if and the same argument produces

= �

A simple, but important, extension of the Cauchy–Schwarz inequality follows
directly.

Extended Cauchy–Schwarz Inequality. Let and be any two vectors, and
let be a positive definite matrix.Then

(3-49)

with equality if and only if (or ) for some constant c.

Proof. The inequality is obvious when or For cases other than these,
consider the square-root matrix defined in terms of its eigenvalues and 

the normalized eigenvectors as If we set [see also (3-22)]

it follows that

and the proof is completed by applying the Cauchy–Schwarz inequality to the
vectors and �

The extended Cauchy–Schwarz inequality gives rise to the following maximiza-
tion result.

1B-1>2
 d2.1B1>2
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 B-1>2

 d = 1B1>2
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b Z x d1b¿  d22 6 1b¿  b21d¿  d2
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+ 1d¿  d2 ¢x -
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d¿  d
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d¿  d
- 2x1b¿  d2 + x21d¿  d2

1b¿  d22>d¿  d,

 = b¿  b - 2x1b¿  d2 + x21d¿  d2

 0 6 1b - x d2¿1b - x d2 = b¿  b - x d¿  b - b¿1x d2 + x2
 d¿  d
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Chapter 3 Matrix Algebra and Random Vectors

Maximization Lemma. Let be positive definite and be a given vector.

Then, for an arbitrary nonzero vector

(3-50)

with the maximum attained when for any constant 

Proof. By the extended Cauchy–Schwarz inequality,
Because and B is positive definite, Dividing both sides of the
inequality by the positive scalar yields the upper bound

Taking the maximum over x gives Equation (3-50) because the bound is attained for
�

A final maximization result will provide us with an interpretation of eigenvalues.

Maximization of Quadratic Forms for Points on the Unit Sphere. Let be a

positive definite matrix with eigenvalues and associated

normalized eigenvectors Then

(3-51)

Moreover,

(3-52)

where the symbol is read “is perpendicular to.”

Proof. Let be the orthogonal matrix whose columns are the eigenvectors 

and be the diagonal matrix with eigenvalues along the
main diagonal. Let [see (3-22)] and 

Consequently, implies Thus,
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Matrix Inequalities and Maximization

Setting gives

since

For this choice of = = or

(3-54)

A similar argument produces the second part of (2-51).
Now, = ± so implies

Therefore, for x perpendicular to the first k eigenvectors the left-hand side of the
inequality in (3-53) becomes

Taking gives the asserted maximum. �

For a fixed has the same value as where
is of unit length. Consequently, Equation (3-51) says that the

largest eigenvalue, is the maximum value of the quadratic form for all
points x whose distance from the origin is unity. Similarly, is the smallest value of
the quadratic form for all points x one unit from the origin. The largest and smallest
eigenvalues thus represent extreme values of for points on the unit sphere.
The “intermediate” eigenvalues of the positive definite matrix B also have an
interpretation as extreme values when x is further restricted to be perpendicular to
the earlier choices.
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VECTORS AND MATRICES:
BASIC CONCEPTS

Vectors
Many concepts, such as a person’s health, intellectual abilities, or personality, cannot
be adequately quantified as a single number. Rather, several different measure-
ments are required.

Definition 3A.1. An m-tuple of real numbers arranged in a
column is called a vector and is denoted by a boldfaced, lowercase letter.

Examples of vectors are

Vectors are said to be equal if their corresponding entries are the same.

Definition 3A.2 (Scalar multiplication). Let c be an arbitrary scalar. Then the
product cx is a vector with ith entry 

To illustrate scalar multiplication, take and Then

c1 y = 5 C 1
2

-2
S = C 5

10
-10
S and c2 y = 1-1.22 C 1

2
-2
S = C -1.2

-2.4
2.4
S

c2 = -1.2.c1 = 5
cxi .

x = D x1

x2

o

xm

T  , a = C1
0
0
S  , b = D 1

-1
1

-1

T  , y = C 1
2

-2
S

1x1 , x2 , Á , xi , Á , xm2

x1 , x2 , Á , xm

S u p p l e m e n t  

A3
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Vectors and Matrices: Basic Concepts

Definition 3A.3 (Vector addition). The sum of two vectors x and y, each having the
same number of entries, is that vector

Thus,

± =

x ± y = z

Taking the zero vector, 0, to be the m-tuple and the vector to be the
m-tuple the two operations of scalar multiplication and
vector addition can be combined in a useful manner.

Definition 3A.4. The space of all real m-tuples, with scalar multiplication and
vector addition as just defined, is called a vector space.

Definition 3A.5. The vector ± is a linear combination of
the vectors The set of all linear combinations of is called
their linear span.

Definition 3A.6. A set of vectors is said to be linearly dependent if
there exist k numbers not all zero, such that

Otherwise the set of vectors is said to be linearly independent.

If one of the vectors, for example, is 0, the set is linearly dependent. (Let be
the only nonzero coefficient in Definition 3A.6.)

The familiar vectors with a one as an entry and zeros elsewhere are linearly
independent. For 

so

implies that a1 = a2 = a3 = a4 = 0.

0 = a1 x1 + a2 x2 + a3 x3 + a4 x4 = Da1
# 1 + a2

# 0 + a3
# 0 + a4

# 0
a1

# 0 + a2
# 1 + a3

# 0 + a4
# 0

a1
# 0 + a2

# 0 + a3
# 1 + a4

# 0
a1

# 0 + a2
# 0 + a3

# 0 + a4
# 1

T = Da1

a2

a3

a4

T

x1 = D1
0
0
0

T  , x2 = D0
1
0
0

T  , x3 = D0
0
1
0

T  , x4 = D0
0
0
1

T
m = 4,

aixi ,

a1 x1 + a2 x2 +
Á

+ ak xk = 0

1a1 , a2 , Á , ak2,
x1 , x2 , Á , xk

x1 , x2 , Á , xk ,x1 , x2 , Á , xk .
Á

+ ak xky = a1 x1 + a2 x2

1-x1 , -x2 , Á , -xm2,
-x10, 0, Á , 02

C4
1
2
SC 1

2
-2
SC 3

-1
4
S

z = x + y with ith entry zi = xi + yi
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As another example, let and and let

Then

Thus, are a linearly dependent set of vectors, since any one can be written
as a linear combination of the others (for example, ).

Definition 3A.7. Any set of m linearly independent vectors is called a basis for the
vector space of all m-tuples of real numbers.

Result 3A.1. Every vector can be expressed as a unique linear combination of a
fixed basis. �

With the usual choice of a basis is

These four vectors were shown to be linearly independent. Any vector x can be
uniquely expressed as

A vector consisting of m elements may be regarded geometrically as a point in
m-dimensional space. For example, with the vector x may be regarded as
representing the point in the plane with coordinates and 

Vectors have the geometrical properties of length and direction.

Definition 3A.8. The length of a vector of m elements emanating from the origin is
given by the Pythagorean formula:

length of x = Lx = 2x1
2

+ x2
2

+
Á

+ xm
2

2

1

x �x2

x1

x1
x2

x2 .x1

m = 2,

x1 D1
0
0
0

T + x2 D0
1
0
0

T + x3 D0
0
1
0

T + x4 D0
0
0
1

T = Dx1
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x3

x4

T = x

D1
0
0
0

T  , D0
1
0
0

T  , D0
0
1
0

T  , D0
0
0
1

T
m = 4,

x2 = 2x1 + 3x3

x1 , x2 , x3

2x1 - x2 + 3x3 = 0

x1 = C1
1
1
S  , x2 = C 2

5
-1
S  , x3 = C 0

1
-1
S

m = 3,k = 3
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Definition 3A.9. The angle between two vectors x and y, both having m entries, is
defined from

where of x and of y, are the elements of x,
and are the elements of y.

Let

Then the length of x, the length of y, and the cosine of the angle between the two
vectors are

and

Consequently,

Definition 3A.10. The inner (or dot) product of two vectors x and y with the same
number of entries is defined as the sum of component products:

We use the notation or to denote this inner product.

With the notation, we may express the length of a vector and the cosine of
the angle between two vectors as

 cos 1u2 =

x¿  y2x¿  x 2y¿  y

 Lx = length of x = 2x1
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Lx Ly
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Chapter 3 Matrix Algebra and Random Vectors

Definition 3A.11. When the angle between two vectors x, y is or we
say that x and y are perpendicular. Since only if or the
condition becomes

We write 

The basis vectors

are mutually perpendicular. Also, each has length unity. The same construction
holds for any number of entries m.

Result 3A.2.
(a) z is perpendicular to every vector if and only if 
(b) If z is perpendicular to each vector then z is perpendicular to

their linear span.
(c) Mutually perpendicular vectors are linearly independent. �

Definition 3A.12. The projection (or shadow) of a vector x on a vector y is

If y has unit length so that 

If are mutually perpendicular, the projection (or shadow) of a vector x
on the linear span of is

Result 3A.3 (Gram–Schmidt Process). Given linearly independent vectors 
there exist mutually perpendicular vectors with the same

linear span. These may be constructed sequentially by setting
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2 y2
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r yr
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Ly
2  y
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D1
0
0
0

T  , D0
1
0
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T  , D0
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1
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T  , D0
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1

T
x � y.

x and y are perpendicular if x¿  y = 0

270°,u = 90°cos 1u2 = 0
270°,u = 90°

124



Vectors and Matrices: Basic Concepts

We can also convert the u’s to unit length by setting In this 

construction, is the projection of on and is the projection 

of on the linear span of �

For example, to construct perpendicular vectors from

we take

so

and

Thus,

Matrices
Definition 3A.13. An matrix, generally denoted by a boldface uppercase
letter such as and so forth, is a rectangular array of elements having m rows
and k columns.

Examples of matrices are

 � = C 1 .7 - .3
.7 2 1

- .3 1 8
S  , E = 7e18

 A = C -7 2
0 1
3 4

S  , B = Bx 3 0
4 -2 1>x

R  , I = C1 0 0
0 1 0
0 0 1

S
A, R, �,

m * k
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1
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-1

T -

10
20

 D4
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0
2

T = D 1
1
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-2

T and z1 =

1120
 D4

0
0
2

T  , z2 =

116
 D 1

1
0

-2

T
xœ

2 u1 = 3142 + 1102 + 0102 - 1122 = 10

uœ

1 u1 = 42
+ 02

+ 02
+ 22

= 20

u1 = x1 = D4
0
0
2

T
x1 = D4

0
0
2

T and x2 = D 3
1
0

-1

T
x1 , x2 , Á , xk - 1 .xk
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j = 1
 1xœ

k zj2zjzjxk1xœ

k zj2 zj
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In our work, the matrix elements will be real numbers or functions taking on values
in the real numbers.

Definition 3A.14. The dimension (abbreviated dim) of an matrix is the ordered
pair m is the row dimension and k is the column dimension.The dimension of a
matrix is frequently indicated in parentheses below the letter representing the matrix.
Thus, the matrix A is denoted by 

In the preceding examples, the dimension of the matrix is and this
information can be conveyed by writing 

An matrix, say, A, of arbitrary constants can be written

or more compactly as where the index i refers to the row and the

index j refers to the column.
An matrix is referred to as a column vector. A matrix is referred

to as a row vector. Since matrices can be considered as vectors side by side, it is nat-
ural to define multiplication by a scalar and the addition of two matrices with the
same dimensions.

Definition 3A.15. Two matrices and are said to be equal,

written if That is, two matrices are
equal if
(a) Their dimensionality is the same.
(b) Every corresponding element is the same.

Definition 3A.16 (Matrix addition). Let the matrices A and B both be of dimension
with arbitrary elements and respec-

tively. The sum of the matrices A and B is an matrix C, written 
such that the arbitrary element of C is given by

Note that the addition of matrices is defined only for matrices of the same
dimension.

For example,

± =

A ± B = C

B6 8 10
6 0 1

RB3 6 7
2 -1 0

RB3 2 3
4 1 1

R

ci j = ai j + bi j  i = 1, 2, Á , m, j = 1, 2, Á , k

C = A + B,m * k
j = 1, 2, Á , k,i = 1, 2, Á , m,bi j ,ai jm * k

j = 1, 2, Á , k.i = 1, 2, Á , m,ai j = bi j ,A = B,

B
1m * k2

= 5bi j6A
1m * k2

= 5ai j6

1 * km * 1

A
1m * k2

= 5ai j6,

A
1m * k2

= D a1 1 a1 2
Á a1 k

a2 1 a2 2
Á a2 k

o o ∞ o

am 1 am 2
Á am k

T
m * k

�
13 * 32

.
3 * 3,�

A
1m * k2

.m * k

1m, k2;
m * k
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Definition 3A.17 (Scalar multiplication). Let c be an arbitrary scalar and

Then = where = =

Multiplication of a matrix by a scalar produces a new matrix whose elements are
the elements of the original matrix, each multiplied by the scalar.

For example, if 

= =

cA = Ac = B

Definition 3A.18 (Matrix subtraction). Let and be two 

matrices of equal dimension. Then the difference between A and B, written 
is an matrix given by

That is, =

Definition 3A.19. Consider the matrix A with arbitrary elements 
The transpose of the matrix A, denoted by is 

the matrix with elements That is, the
transpose of the matrix A is obtained from A by interchanging the rows and
columns.

As an example, if

Result 3A.4. For all matrices A, B, and C (of equal dimension) and scalars c and d,
the following hold:

(a)

(b)

(c)

(d)

(e) (That is, the transpose of the sum is equal to the
sum of the transposes.)

(f)

(g) �1c A2¿ = c A¿

1cd2A = c1d A2

1A + B2¿ = A¿ + B¿

1c + d2A = c A + d A

c1A + B2 = c A + c B

A + B = B + A

1A + B2 + C = A + 1B + C2

A
12 * 32

= B2 1 3
7 -4 6

R  , then Aœ

 

 

13 * 22
= C2 7

1 -4
3 6

S

j = 1, 2, Á , k, i = 1, 2, Á , m.aj i ,k * m
A¿,j = 1, 2, Á , k.2, Á , m,
i = 1,ai j ,m * k

j = 1, 2, Á , k.i = 1, 2, Á , m,ai j - bi j ,ci j = ai j + 1-12bi j

C = A - B = A + 1-12B

C = 5ci j6m * k
A - B,

B
1m * k2

= 5bi j6A
1m * k2

= 5ai j6

C6 -8
4 12
0 10

SC3 -4
2 6
0 5

S  22 C3 -4
2 6
0 5

S
c = 2,

j = 1, 2, Á , k.

i = 1, 2, Á , m,ai j c,cai jbi jB
1m * k2

= 5bi j6,cA
1m * k2

= Ac
1m * k2

A
1m * k2

= 5ai j6.
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Definition 3A.20. If an arbitrary matrix A has the same number of rows and columns,
then A is called a square matrix.The matrices and E given after Definition 3A.13
are square matrices.

Definition 3A.21. Let A be a (square) matrix.Then A is said to be symmetric
if That is, A is symmetric if 

Examples of symmetric matrices are

Definition 3A.22. The identity matrix, denoted by is the square matrix

with ones on the main (NW–SE) diagonal and zeros elsewhere. The identity
matrix is shown before this definition.

Definition 3A.23 (Matrix multiplication). The product AB of an matrix
and an matrix is the matrix C whose elements

are

Note that for the product AB to be defined, the column dimension of A must
equal the row dimension of B. If that is so, then the row dimension of AB equals
the row dimension of A, and the column dimension of AB equals the column
dimension of B.

For example, let

Then

B3 -1 2
4 0 5

12 * 32

R
  

C3 4
6 -2
4 3
13 * 22

S = B11 20
32 31

12 * 22

R = Bc1 1 c1 2

c2 1 c2 2
R

A
12 * 32

= B3 -1 2
4 0 5

R and B
13 * 22

= C3 4
6 -2
4 3

S

ci j = a
n

/ = 1
 ai/  b/j  i = 1, 2, Á , m j = 1, 2, Á , k

m * kB = 5bi j6n * kA = 5ai j6
m * n

3 * 3

I
1k * k2

,k * k

I
13 * 32

= C1 0 0
0 1 0
0 0 1

S  , A
12 * 22

= B2 4
4 1

R  , B
14 * 42

= Da c e f

c b g d

e g c a

f d a d

T

j = 1, 2, Á , k.i = 1, 2, Á , k,ai j = aj i ,A = A¿.
k * k

�, I,
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where

As an additional example, consider the product of two vectors. Let

Then and

Note that the product xy is undefined, since x is a matrix and y is a ma-
trix, so the column dim of x, 1, is unequal to the row dim of y, 4. If x and y are vectors
of the same dimension, such as both of the products and are defined.
In particular, = = ± and is an matrix
with i, jth element 

Result 3A.5. For all matrices A, B, and C (of dimensions such that the indicated
products are defined) and a scalar c,

(a)

(b)

(c)

(d)

(e)

More generally, for any such that is defined,

(f)

(g)
�

a
n

j =1
 1A xj21A xj2¿ = A aa

n

j =1
 xj x

œ

jb
 
A¿

a
n

j =1
 A xj = A a

n

j =1
 xj

A xjxj

1AB2¿ = B¿  A¿

1B + C2A = BA + CA

A1B + C2 = AB + AC

A1BC2 = 1AB2C

c1AB2 = 1c A2B

xi yj .
n * nxy¿

Á
+ xn yn ,x1 y1 + x2 y2x¿  yy¿  x

xy¿x¿  yn * 1,

4 * 14 * 1

x¿  y = 71 0 -2 38  D 2
-3
-1
-8

T = 7-208 = 72 -3 -1 -88  D 1
0

-2
3

T = y¿  x

x¿ = 71 0 -2 38
x = D 1

0
-2

3

T and y = D 2
-3
-1
-8

T
 c2 2 = 142142 + 1021-22 + 152132 = 31

 c2 1 = 142132 + 102162 + 152142 = 32

 c1 2 = 132142 + 1-121-22 + 122132 = 20

 c1 1 = 132132 + 1-12162 + 122142 = 11
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There are several important differences between the algebra of matrices and
the algebra of real numbers. Two of these differences are as follows:

1. Matrix multiplication is, in general, not commutative. That is, in general,
Several examples will illustrate the failure of the commutative law

(for matrices).

but

is not defined.

but

Also,

but

2. Let 0 denote the zero matrix, that is, the matrix with zero for every element. In
the algebra of real numbers, if the product of two numbers, ab, is zero, then

or In matrix algebra, however, the product of two nonzero matri-
ces may be the zero matrix. Hence,

does not imply that or For example,

It is true, however, that if either or then
A
1m * n2

B
1n * k2

= 0
1m * k2

.
B
1n * k2

= 0
1n * k2

,A
1m * n2

= 0
1m * n2

B3 1 3
1 2 2

R   C 4
3

-5
S = B0

0
R

B = 0.A = 0

AB
1m * n21n * k2

= 0
1m * k2

b = 0.a = 0

B 2 1
-3 4

R   B4 -1
0 1

R = B 8 -1
-12 7

R
B4 -1

0 1
R   B 2 1

-3 4
R = B 11 0

-3 4
R

C 7 6
-3 1

2 4
S   B1 0 1

2 -3 6
R = C 19 -18 43

-1 -3 3
10 -12 26

S
B1 0 1

2 -3 6
R   C 7 6

-3 1
2 4

S = B 9 10
35 33

R
B0

2
R   B3 -1

4 7
R

B3 -1
4 7

R   B0
2
R = B -2

14
R

AB Z BA.
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Definition 3A.24. The determinant of the square matrix denoted
by is the scalar

where is the matrix obtained by deleting the first row and

jth column of A.Also, with the ith row in place of the first

row.

Examples of determinants (evaluated using Definition 3A.24) are

In general,

If I is the identity matrix,

The determinant of any matrix can be computed by summing the products
of elements along the solid lines and subtracting the products along the dashed

3 * 3

= a1 1 a2 2 a3 3 + a1 2 a2 3 a3 1 + a2 1 a3 2 a1 3 - a3 1 a2 2 a1 3 - a2 1 a1 2 a3 3 - a3 2 a2 3 a1 1

= a1 1 `
a2 2 a2 3

a3 2 a3 3
` 1-122 + a1 2 `

a2 1 a2 3

a3 1 a3 3
` 1-123 + a1 3 `

a2 1 a2 2

a3 1 a3 2
` 1-124

3 a1 1 a1 2 a1 3

a2 1 a2 2 a2 3

a3 1 a3 2 a3 3

3
ƒ I ƒ = 1.k * k

 3 1 0 0
0 1 0
0 0 1

3 = 1 `
1 0
0 1

` 1-122 + 0 `
0 0
0 1

` 1-123 + 0 `
0 1
0 0

` 1-124 = 1112 = 1

 = 31392 - 11-32 + 61-572 = -222

 3 3 1 6
7 4 5
2 -7 1

 3 = 3 `
4 5

-7 1
` 1-122 + 1 `

7 5
2 1

` 1-123 + 6 `
7 4
2 -7

` 1-124

 ̀
a1 1 a1 2

a2 1 a2 2
` = a1 1 a2 21-122 + a1 2 a2 11-123 = a1 1 a2 2 - a1 2 a2 1

`
1 3
6 4

` = 1 ƒ 4 ƒ1-122 + 3 ƒ 6 ƒ1-123 = 1142 + 31621-12 = -14

ƒ A ƒ = a
k

j = 1
 ai j ƒ Ai j ƒ1-12i + j,

1k - 12 * 1k - 12A1 j

ƒ  A ƒ = a1 1 if k = 1

ƒ  A ƒ = a
k

j = 1
 a1 j ƒ A1 j ƒ1-121 + j if k 7 1

ƒ A ƒ ,
A = 5ai j6,k * k
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lines in the following diagram. This procedure is not valid for matrices of higher
dimension, but in general, Definition 3A.24 can be employed to evaluate these
determinants.

We next want to state a result that describes some properties of the determinant.
However, we must first introduce some notions related to matrix inverses.

Definition 3A.25. The row rank of a matrix is the maximum number of linearly inde-
pendent rows, considered as vectors (that is, row vectors).The column rank of a matrix
is the rank of its set of columns, considered as vectors.

For example, let the matrix

The rows of A, written as vectors, were shown to be linearly dependent after
Definition 3A.6. Note that the column rank of A is also 2, since

but columns 1 and 2 are linearly independent. This is no coincidence, as the
following result indicates.

Result 3A.6. The row rank and the column rank of a matrix are equal. �

Thus, the rank of a matrix is either the row rank or the column rank.

-2 C1
2
0
S + C1

5
1
S + C 1

-1
-1
S = C0

0
0
S

A = C1 1 1
2 5 -1
0 1 -1

S

a12

a22

a32

a11

a21

a31

a13

a23

a33
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Definition 3A.26. A square matrix is nonsingular if implies 

that If a matrix fails to be nonsingular, it is called singular. Equivalently,

a square matrix is nonsingular if its rank is equal to the number of rows (or columns)
it has.

Note that where is the ith column of A, so
that the condition of nonsingularity is just the statement that the columns of A are
linearly independent.

Result 3A.7. Let A be a nonsingular square matrix of dimension Then there
is a unique matrix B such that

where I is the identity matrix. �

Definition 3A.27. The B such that is called the inverse of A and is
denoted by In fact, if or then and both products
must equal I.

For example,

since

Result 3A.8.

(a) The inverse of any matrix

is given by

(b) The inverse of any matrix

A = Ca1 1 a1 2 a1 3

a2 1 a2 2 a2 3

a3 1 a3 2 a3 3

S
3 * 3

A-1
=

1

ƒ A ƒ

  B a2 2 -a1 2

-a2 1 a1 1
R

A = Ba1 1 a1 2

a2 1 a2 2
R2 * 2

B2 3
1 5

R   B 5
7 -  

3
7

-  
1
7

2
7

R = B 5
7 -  

3
7

-  
1
7

2
7

R   B2 3
1 5

R = B1 0
0 1

R
A = B2 3

1 5
R has A-1

= B 5
7 -  

3
7

-  
1
7

2
7

R
B = A-1,AB = I,BA = IA-1.

AB = BA = I

k * k

AB = BA = I

k * k
k * k.

aiA x = x1a1 + x2a2 +
Á

+ xkak,

x
1k * 12

= 0
1k * 12

.

A
1k * k2

x
1k * 12

= 0
1k * 12

A
1k * k2
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is given by

In both (a) and (b), it is clear that if the inverse is to exist.

(c) In general, has j, ith entry where is the matrix
obtained from A by deleting the ith row and jth column. �

Result 3A.9. For a square matrix A of dimension the following are equivalent:

(a) implies (A is nonsingular).

(b)

(c) There exists a matrix such that �

Result 3A.10. Let A and B be square matrices of the same dimension, and let the
indicated inverses exist. Then the following hold:

(a)

(b) �

The determinant has the following properties.

Result 3A.11. Let A and B be square matrices.

(a)

(b) If each element of a row (column) of A is zero, then 

(c) If any two rows (columns) of A are identical, then 

(d) If A is nonsingular, then that is,

(e)

(f) where c is a scalar.

You are referred to [6] for proofs of parts of Results 3A.9 and 3A.11. Some of
these proofs are rather complex and beyond the scope of this book. �

Definition 3A.28. Let be a square matrix.The trace of the matrix A,

written is the sum of the diagonal elements; that is, tr 1A2 = a
k

i = 1
 ai i .tr 1A2,

k * kA = 5ai j6

ƒ cA ƒ = ck
 ƒ A ƒ ,

ƒ AB ƒ = ƒ A ƒ ƒ B ƒ

ƒ A ƒ ƒ A-1
ƒ = 1.ƒ A ƒ = 1> ƒ A-1

ƒ ;

ƒ A ƒ = 0

ƒ A ƒ = 0
ƒ A ƒ = ƒ A¿ ƒ

k * k

1AB2-1
= B-1

 A-1

1A-12
œ

= 1A¿2
-1

AA-1
= A-1

 A = I
1k * k2

.A-1
ƒ A ƒ Z 0.

x
1k * 12

= 0
1k * 12

A
1k * k2

x
1k * 12

= 0
1k * 12

k * k,

Ai j7 ƒ Ai j ƒ  >  ƒ A ƒ81-12i + j,A-1

ƒ A ƒ Z 0

`
a2 1 a2 2

a3 1 a3 2
`  - `

a1 1 a1 2

a3 1 a3 2
`  `

a1 1 a1 2

a2 1 a2 2
`

A-1
=

1

ƒ A ƒ

 - `
a2 1 a2 3

a3 1 a3 3
`  `

a1 1 a1 3

a3 1 a3 3
`   - `

a1 1 a1 3

a2 1 a2 3
`

`
a2 2 a2 3

a3 2 a3 3
`  - `

a1 2 a1 3

a3 2 a3 3
`  `

a1 2 a1 3

a2 2 a2 3
`

G W
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Result 3A.12. Let A and B be matrices and c be a scalar.

(a)

(b)

(c)

(d)

(e) �

Definition 3A.29. A square matrix A is said to be orthogonal if its rows, considered
as vectors, are mutually perpendicular and have unit lengths; that is,

Result 3A.13. A matrix A is orthogonal if and only if For an orthogonal
matrix, so the columns are also mutually perpendicular and have
unit lengths. �

An example of an orthogonal matrix is

Clearly, so We verify that or

=

A A = I

so and A must be an orthogonal matrix.
Square matrices are best understood in terms of quantities called eigenvalues

and eigenvectors.

Definition 3A.30. Let A be a square matrix and I be the identity ma-
trix.Then the scalars satisfying the polynomial equation 
are called the eigenvalues (or characteristic roots) of a matrix A. The equation

(as a function of ) is called the characteristic equation.

For example, let

A = B1 0
1 3

R
lƒ A - lI ƒ = 0

ƒ A - lI ƒ = 0l1 , l2 , Á , lk

k * kk * k

A¿ = A-1,

D1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

TE -
 

1
2

1
2

1
2

1
2

1
2 -  

1
2

1
2

1
2

1
2

1
2 -  

1
2

1
2

1
2

1
2

1
2 -  1

2

UE -
 

1
2

1
2

1
2

1
2

1
2 -  

1
2

1
2

1
2

1
2

1
2 -  

1
2

1
2

1
2

1
2

1
2 -  1

2

U
AA = I = AA¿ = A¿  A,AA¿ = A¿  A = AA.A = A¿,

A = E -
 

1
2

1
2

1
2

1
2

1
2 -  

1
2

1
2

1
2

1
2

1
2 -  

1
2

1
2

1
2

1
2

1
2 -  1

2

U

AA¿ = A¿  A = I,
A-1

= A¿.

AA¿ = I.

tr 1AA¿2 = a
k

i = 1
 a

k

j = 1
 ai j

2

tr 1B-1
 AB2 = tr 1A2

tr 1AB2 = tr 1BA2

tr 1A ; B2 = tr 1A2 ; tr 1B2

tr 1cA2 = c tr 1A2

k * k
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Then

implies that there are two roots, and The eigenvalues of A are 3
and 1. Let

Then the equation

has three roots: and that is, 9, 9, and 18 are the eigenvalues
of A.

Definition A.31. Let A be a square matrix of dimension and let be an eigen-
value of A. If is a nonzero vector such that

then x is said to be an eigenvector (characteristic vector) of the matrix A associated with
the eigenvalue

An equivalent condition for to be a solution of the eigenvalue–eigenvector
equation is This follows because the statement that for
some and implies that

That is, the columns of are linearly dependent so, by Result 3A.9(b),
as asserted. Following Definition 3A.30, we have shown that the

eigenvalues of

are and The eigenvectors associated with these eigenvalues can be
determined by solving the following equations:

A x = l1 x

B1 0
1 3

R   Bx1

x2
R = 1Bx1

x2
R

l2 = 3.l1 = 1

A = B1 0
1 3

Rƒ A - lI ƒ = 0,
A - lI

0 = 1A - lI2x = x1 col11A - lI2 +
Á

+ xk colk1A - lI2

x Z 0l

A x = lxƒ A - lI ƒ = 0.
l

l.

A x = lx

1 x
1k * 12

Z 0
1k * 12
2x

1k * 12

lk * k

l3 = 18;l2 = 9,l1 = 9,

ƒ A - lI ƒ = 3 13 - l -4 2
-4 13 - l -2

2 -2 10 - l

3 = -l3
+ 36l2

- 405l + 1458 = 0

A = C 13 -4 2
-4 13 -2

2 -2 10
S

l2 = 3.l1 = 1

 = `
1 - l 0

1 3 - l
` = 11 - l2 13 - l2 = 0

 ƒ A - lI ƒ = ` B1 0
1 3

R - lB1 0
0 1

R `

3
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From the first expression,

or

There are many solutions for and 
Setting (arbitrarily) gives and hence,

is an eigenvector corresponding to the eigenvalue 1. From the second expression,

implies that and (arbitrarily), and hence,

is an eigenvector corresponding to the eigenvalue 3. It is usual practice to determine
an eigenvector so that it has length unity. That is, if we take
as the eigenvector corresponding to For example, the eigenvector for is

Definition 3A.32. A quadratic form in the k variables is 
where and A is a symmetric matrix.

Note that a quadratic form can be written as For example,

Any symmetric square matrix can be reconstructured from its eigenvalues 
and eigenvectors. The particular expression reveals the relative importance of
each pair according to the relative size of the eigenvalue and the direction of the
eigenvector.

 Q1x2 = 7x1 x2 x38  C1 3 0
3 -1 -2
0 -2 2

S   Cx1

x2

x3

S = x1
2

+ 6x1 x2 - x2
2

- 4x2 x3 + 2x3
2

 Q1x2 = 7x1 x28  B1 1
1 1

R   Bx1

x2
R = x1

2
+ 2x1 x2 + x2

2

Q1x2 = a
k

i = 1
 a

k

j = 1
 ai j xi xj .

k * kx¿ = [x1 , x2 , Á , xk]
Q1x2 = x¿  A x,x1 , x2 , Á , xkQ1x2

e¿1 = [-2>15, 1>15].
l1 = 1l.

e = x>1x¿  xA x = lx,

x = B0
1
Rx2 = 1x1 = 0

 x1 + 3x2 = 3x2

 x1 = 3x1

x = B -2
1
Rx1 = -2,x2 = 1

x2 .x1

x1 = -2x2

 x1 + 3x2 = x2

 x1 = x1

A x = l2 x

B1 0
1 3

R   Bx1

x2
R = 3Bx1

x2
R
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Result 3A.14. The Spectral Decomposition. Let A be a symmetric matrix.
Then A can be expressed in terms of its k eigenvalue–eigenvector pairs as

�

For example, let

Then

so A has eigenvalues and The corresponding eigenvectors are
and respectively. Consequently,

The ideas that lead to the spectral decomposition can be extended to provide a
decomposition for a rectangular, rather than a square, matrix. If A is a rectangular
matrix, then the vectors in the expansion of A are the eigenvectors of the square
matrices and 

Result 3A.15. Singular-Value Decomposition. Let A be an matrix of real
numbers. Then there exist an orthogonal matrix U and a orthogonal
matrix V such that

where the matrix has entry for and the 
other entries are zero.The positive constants are called the singular values of A. �

The singular-value decomposition can also be expressed as a matrix expansion
that depends on the rank r of A. Specifically, there exist r positive constants

orthogonal unit vectors and r orthogonal
unit vectors such that

where and is an diagonal matrix
with diagonal entries li .

r * r∂rVr = 7v1 , v2 , Á , vr8,Ur = 7u1 , u2 , Á , ur8,
A = a

r

i = 1
 li  ui  vi

œ

= Ur ∂r Vr
œ

v1 , v2 , Á , vr ,k * 1
u1 , u2 , Á , ur ,m * 1l1 , l2 , Á , lr , r

li

i = 1, 2, Á , min1m, k2li Ú 01i, i2∂m * k

A = U∂V¿

k * km * m
m * k

A¿  A.AA¿

 = B .6 1.2
1.2 2.4

R + B 1.6 - .8
- .8 .4

R
 A = B2.2 .4

.4 2.8
R = 3 D 115

215

T   B 115
 

215
R + 2 D 215

-115

T   B 215
 

-115
R

e2
œ

= C2>15, -1>15 D ,e1
œ

= C1>15, 2>15 D
l2 = 2.l1 = 3

ƒ A - lI ƒ = l2
- 5l + 6.16 - .16 = 1l - 32 1l - 22

A = B2.2 .4
.4 2.8

R
A = a

k

i = 1
 li  ei  ei

œ

1li , ei2
k * k
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Here has eigenvalue–eigenvector pairs so

with = (for ). Then Alter-
natively, the are the eigenvectors of with the same nonzero eigenvalues 

The matrix expansion for the singular-value decomposition written in terms of
the full dimensional matrices is

where U has m orthogonal eigenvectors of as its columns, V has k orthogonal
eigenvectors of as its columns, and is specified in Result 3A.15.

For example, let

Then

You may verify that the eigenvalues of satisfy the equation
= and consequently, the eigenvalues are

and The corresponding eigenvectors are 

and respectively.

Also,

so = = and the eigenvalues
are and The nonzero eigenvalues are the
same as those of A computer calculation gives the eigenvectors

and

Eigenvectors and can be verified by checking:

 A¿  Av2 = C10 0 2
0 10 4
2 4 2

S   
115

  C 2
-1

0
S = 10  

115
  C 2

-1
0
S = l2

2
  v2

 A¿  Av1 = C10 0 2
0 10 4
2 4 2

S   
116

  C1
2
1
S = 12  

116
  C1

2
1
S = l1

2
  v1

v2v1

v3
œ

= B 1130
 

2130
 

-5130
R .v2

œ

= B 215
 

-115
 0R ,v1

œ

= B 116
 

216
 

116
R ,

AA¿.
g3 = l3

2
= 0.g2 = l2

2
= 10,g1 = l1

2
= 12,

-g1g - 122 1g - 102,-g3
- 22g2

- 120gƒ A¿  A - gI ƒ

A¿  A = C3 -1
1 3
1 1

S   B 3 1 1
-1 3 1

R = C10 0 2
0 10 4
2 4 2

S
u2

œ

= B 112
 

-112
R ,u1

œ

= B 112
 

112
R g2 = l2

2
= 10.g1 = l1

2
= 12

1g - 122 1g - 102,g2
- 22g + 120

AA¿g = l2

AA¿ = B 3 1 1
-1 3 1

R   C3 -1
1 3
1 1

S = B11 1
1 11

R
A = B 3 1 1

-1 3 1
R

∂A¿  A
AA¿

A
1m * k2

= U
1m * m2

∂

1m * k2
Vœ

 

 

1k * k2

U, V, ∂

li
2 .A¿  Avi

vi = li
-1

 A¿  ui .m 7 klr + 1
2 , lr + 2

2
 , Á , lm

2l1
2 , l2

2
 , Á , lr

2
7 0

AA¿  ui = li
2

  ui

1li
2 , ui2,AA¿

139



Chapter 3 Matrix Algebra and Random Vectors

Taking and we find that the singular-value decomposition of
A is

The equality may be checked by carrying out the operations on the right-hand side.
The singular-value decomposition is closely connected to a result concerning

the approximation of a rectangular matrix by a lower-dimensional matrix, due to
Eckart and Young ([2]). If a matrix A is approximated by B, having the same
dimension but lower rank, the sum of squared differences

Result 3A.16. Let A be an matrix of real numbers with and singular
value decomposition Let Then

is the rank-s least squares approximation to A. It minimizes

over all matrices B having rank no greater than s. The minimum value, or 

error of approximation, is �

To establish this result, we use and to write the sum of
squares as

where Clearly, the minimum occurs when for and for

the s largest singular values. The other That is, or B = a
s

i =1
 li  ui  vi

œ.UBV¿ = ∂sci i = 0.

ci i = lii Z jci j = 0C = U¿  BV.

 = tr 71∂ - C21∂ - C2¿8 = a
m

i = 1
 a

k

j = 1
 1li j - ci j2

2
= a

m

i = 1
 1li - ci i2

2
+ b

 

i Z j
 ci j

2

 = tr 7U¿1A - B2 VV¿1A - B2¿U8 tr 71A - B2 1A - B2¿8 = tr 7UU¿1A - B2 VV¿1A - B2¿8
VV¿ = IkUU¿ = Im

a
k

i = s + 1
 li

2 .

m * k

tr 71A - B21A - B2¿8
B = a

s

i =1
 li  ui  vi

œ

s 6 k = rank 1A2.U∂V¿.
m Ú km * k

a
m

i = 1
 a

k

j = 1
 1ai j - bi j2

2
= tr 71A - B21A - B2¿8

m * k

 = 112 D 112
112

T   B 116
 

216
 

116
R + 110 D 112

-112

T   B 215
 

-115
 0R

 A = B 3 1 1
-1 3 1

R
l2 = 110,l1 = 112
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Exercises

Exercises

Let and 

(a) Graph the two vectors.

(b) Find (i) the length of x, (ii) the angle between x and y, and (iii) the projection of y on x.

(c) Since and graph and

Given the matrices

perform the indicated multiplications.

(a) 5A
(b) BA
(c)

(d)

(e) Is AB defined?

Verify the following properties of the transpose when

(a)

(b)

(c)

(d) For general and 

When and exist, prove each of the following.

(a)

(b)
Hint: Part a can be proved by noting that and =

Part b follows from = =

Check that

is an orthogonal matrix.

Let

(a) Is A symmetric?

(b) Show that A is positive definite.

A = B 9 - 2
- 2 6

R
Q = B 5

13
12
13

-  
12
13

5
13

R
B-1

 B = I.B-11A-1
 A2B1B-1

 A-12AB
1A-12

œ

 A ¿.1AA-12
œI = I¿,AA-1

= I,
1AB2-1

= B-1
 A-1

1A ¿2
-1

= 1A-12
œ

B-1A-1

1AB2 ¿ = B ¿  A ¿.B
1k * /2

,A
1m * k2

1AB2 ¿ = B ¿  A ¿

1C ¿2
-1

= 1C -12
œ

1A ¿2
œ

= A

A = B2 1
1 3

R  , B = B1 4 2
5 0 3

R  , and C = B1 4
3 2

R
C ¿  B
A ¿  B ¿

A = B - 1 3
4 2

R  , B = C 4 - 3
1 - 2

- 2 0
S  , and C = C 5

- 4
2
S

7- 1 - 1, 3 - 1, 1 - 18 = 7- 2, 2, 08. 75 - 3, 1 - 3, 3 - 38 = 72, - 2, 08y– = 1,x– = 3

y ¿ = 7- 1, 3, 18.x ¿ = 75, 1, 383.1.

3.2.

3.3.

3.4.

3.5.

3.6.
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Chapter Matrix Algebra and Random Vectors

Let A be as given in Exercise 3.6.

(a) Determine the eigenvalues and eigenvectors of A.

(b) Write the spectral decomposition of A.

(c) Find 

(d) Find the eigenvalues and eigenvectors of 

Given the matrix

find the eigenvalues and and the associated normalized eigenvectors and 
Determine the spectral decomposition (3-16) of A.

Let A be as in Exercise 3.8.

(a) Find 

(b) Compute the eigenvalues and eigenvectors of 

(c) Write the spectral decomposition of and compare it with that of A from
Exercise 3.8.

Consider the matrices

These matrices are identical except for a small difference in the position.
Moreover, the columns of A (and B) are nearly linearly dependent. Show that

Consequently, small changes—perhaps caused by rounding—can give
substantially different inverses.

Show that the determinant of the diagonal matrix with 
is given by the product of the diagonal elements; thus,
Hint: By Definition 3A.24, ± Repeat for the submatrix

obtained by deleting the first row and first column of A.

Show that the determinant of a square symmetric matrix A can be expressed as
the product of its eigenvalues that is,
Hint: From (3-16) and (3-20), with From Result 3A.11(e),

= = = = since = = Apply
Exercise 3.11.

Show that or if Q is a orthogonal matrix.
Hint: Also, from Result 3A.11, = Thus, Now
use Exercise 3.11.

Show that and have the same eigenvalues if Q is orthogonal.

Hint: Let be an eigenvalue of A. Then By Exercise 3.13 and Result
= since 

A quadratic form is said to be positive definite if the matrix A is positive definite.
Is the quadratic form positive definite?

Consider an arbitrary matrix A. Then is a symmetric matrix. Show
that is necessarily nonnegative definite.
Hint: Set so that y ¿  y = x ¿  A ¿  A  x.y = A  x

A ¿  A
p * pA ¿  An * p

3x1
2

+ 3x2
2

- 2x1 x2

x ¿  A  x

Q ¿  Q = I.ƒ Q ¿  AQ - lI ƒ ,0 = ƒ Q ¿ ƒ  ƒ A - lI ƒ  ƒ Q ƒ

0 = ƒ  A - lI ƒ .l

A
1p * p2

Qœ

 

 

1p * p2
 A
1p * p2

Q
1p * p2

ƒ Q ƒ
2

= ƒ I ƒ .ƒ Q ƒ
2.ƒ Q ƒ  ƒ Q ¿ ƒƒ QQ ¿ ƒ = ƒ I ƒ .

p * p- 1ƒ Q ƒ = +1

ƒ P ¿ ƒ  ƒ P ƒ .ƒ P ¿  P ƒƒ I ƒƒ ∂ ƒ  ƒ I ƒ ,ƒ P ƒ  ƒ ∂ ƒ  ƒ P ¿ ƒƒ P ƒ  ƒ ∂P ¿ ƒƒ P∂P ¿ ƒƒ A ƒ

P ¿  P = I.A = P∂P ¿

ƒ A ƒ = wp
i = 1 li .l1 , l2 , Á , lp ;

p * p

A1 1

0 +
Á

+ 0.ƒ A ƒ = a1 1 A1 1

ƒ  A  ƒ = a1 1 a2 2
Á ap p  

.
i Z j,ai j = 0,A = 5ai j6p * p

A-1 � 1- 32B-1.

1 2

A = B4 4.001
4.001 4.002

R and B = B4 4.001
4.001 4.002001

R
A-1,

A-1.

A-1.

e2 .e1l2l1

A = B1 2
2 - 2

R
A-1.

A-1.

3.7.

3.8.

3.9.

3.10.

3.11.

3.12.

3.13.

3.14.

3.15.

3.16.

3, 2

3

3A.11(e), we can write 
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Exercises

Prove that every eigenvalue of a positive definite matrix A is positive.
Hint: Consider the definition of an eigenvalue, where Multiply on the left by

so that 

Consider the sets of points whose “distances” from the origin are given by

for and for Determine the major and minor axes of the ellipses of con-
stant distances and their associated lengths. Sketch the ellipses of constant distances and
comment on their positions. What will happen as increases?

Let where (The ’s and the ’s are 

the eigenvalues and associated normalized eigenvectors of the matrix A.) Show Properties
(1)–(4) of the square-root matrix in (3-22).

Determine the square-root matrix using the matrix A in Exercise 3.3. Also, deter-
mine and show that = =

(See Result 3A.15) Using the matrix

(a) Calculate and obtain its eigenvalues and eigenvectors.

(b) Calculate and obtain its eigenvalues and eigenvectors. Check that the nonzero
eigenvalues are the same as those in part a.

(c) Obtain the singular-value decomposition of A.

(See Result 3A.15) Using the matrix

(a) Calculate and obtain its eigenvalues and eigenvectors.

(b) Calculate and obtain its eigenvalues and eigenvectors. Check that the nonzero
eigenvalues are the same as those in part a.

(c) Obtain the singular-value decomposition of A.

Verify the relationships and where is the
population covariance matrix [Equation (3-32)], is the population cor-

relation matrix [Equation (3-34)], and is the population standard deviation matrix
[Equation (3-35)].

Let X have covariance matrix

Find

(a)

(b) The eigenvalues and eigenvectors of 

(c) The eigenvalues and eigenvectors of �-1.

�.

�-1

� = C 4 0 0
0 9 0
0 0 1

S
V1>2

p * pRp * p
�R = 1V1>22

-1
 �1V1>22

-1,V1>2
 RV1>2

= �

A ¿  A
AA ¿

A = B4 8 8
3 6 - 9

R
AA ¿

A ¿  A

A = C 1 1
2 - 2
2 2

S
I.A-1>2

 A1>2A1>2
 A-1>2A-1>2,

A1>2,

eiliPP ¿ = P ¿  P = I.A1>2
 

 

1m * m2
= a

m

i = 1
 1li   ei  ei

œ

= P∂
1>2

 P ¿,

c2

c2
= 4.c2

= 1

c2
= 4x1

2
+ 3x2

2
- 212x1 x2

1x1 , x22

e ¿  Ae = le ¿  e.e ¿

Ae = le.
k * k3.17.

3.18.

3.19.

3.20.

3.21.

3.22.

3.23.

3.24.
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Chapter 3 Matrix Algebra and Random Vectors

Let X have covariance matrix

(a) Determine and 

(b) Multiply your matrices to check the relation 

Use as given in Exercise 3.25.

(a) Find 

(b) Find the correlation between and 

Derive expressions for the mean and variances of the following linear combinations in
terms of the means and covariances of the random variables and 

(a)

(b)

(c)

(e)

(f) if and are independent random variables.

Show that

where and This verifies the off-diagonal
elements in (3–45) or diagonal elements if 
Hint: By (3–43), = ± and 

= ± So =

= ±
± ±

The product

has expected value

Verify the last step by the definition of matrix multiplication. The same steps hold for all
elements.

a
p

/ = 1
 a

p

m = 1
 c1/

  c2 m   s
/m = 7c1 1 , Á , c1 p8 �  7c2 1 , Á , c2 p8¿.

= a
p

/ = 1
 a

p

m = 1
 c1/

 c2 m1X/
- m

/
2 1Xm - mm2

= aa
p

/ = 1
 c1/
1X

/
- m

/
2b   a a

p

m = 1
 c2 m1Xm - mm2b

+ c1 p1Xp - mp22 1c2 11X1 - m12 + c2 21X2 - m22 +
Á

+ c2 p1Xp - mp22

1c1 11X1 - m12 + c1 21X2 - m22 +
Á

Á
+ c2 p1Xp - mp228.c2 21X2 - m22Á

+ c1 p1Xp - mp22 1c2 11X1 - m12

E71c1 11X1 - m121Z2 - E1Z2228E71Z1 - E1Z122

Cov 1Z1 , Z22Á
+ c2 p1Xp - mp2.c2 11X1 - m12Z2 - E1Z22

Á
+ c1 p1Xp - mp2c1 11X1 - m12Z1 - E1Z12

c1 = c2 .C�X  C ¿

cœ

2 = 7c2 1 , c2 2 , Á , c2 p8.cœ

1 = 7c1 1 , c1 2 , Á , c1 p8Cov 1c1 1 X1 + c1 2 X2 +
Á

+ c1 p  Xp , c2 1 X1 + c2 2 X2 +
Á

+ c2 p  Xp2 = cœ

1 �X  c2

X2X13X1 - 4X2

X1 + 2X2 - X3

X1 + X2 + X3

- X1 + 3X2

X1 - 2X2

X3 .X2 ,X1 ,

1
2 X2 +

1
2 X3 .X1

r1 3 .
�

V1>2
 RV1>2

= �.

V1>2.R

� = C 25 - 2 4
- 2 4 1

4 1 9
S

3.26.

3.27.

3.28.

3.25.
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Exercises

Consider the arbitrary random vector with mean vector
Partition X into

where

Let be the covariance matrix of X with general element Partition into the
covariance matrices of and and the covariance matrix of an element of 
and an element of 

You are given the random vector with mean vector
and variance–covariance matrix

Partition X as

Let

and consider the linear combinations and Find

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Repeat Exercise 3.30, but with A and B replaced by

A = 71 - 18 and B = B2 - 1
0 1

R
Cov 1AX112, BX1222
Cov 1X112, X1222
Cov 1BX1222
Cov 1X1222
E1BX1222
E1X1222
Cov 1AX1122
Cov 1X1122
E1AX1122
E1X1122

BX122.AX112

A = 71 28 and B = B1 - 2
2 - 1

R
X = DX1

X2

X3

X4

T = BX112

X122
R

�X = D3 0 2 2
0 1 1 0
2 1 9 - 2
2 0 - 2 4

T
M œ

X = 74, 3, 2, 18 X ¿ = 7X1 , X2 , X3 , X48X122.
X112X122X112

�si k .�

X112 = BX1

X2
R and X122 = CX3

X4

X5

S
X = BX112

X122
RM œ

= 7m1 , m2 , m3 , m4 , m58. X ¿ = 7X1 , X2 , X3 , X4 , X583.29.

3.30.

3.31.
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Chapter 3 Matrix Algebra and Random Vectors

You are given the random vector with mean vector
and variance–covariance matrix

Partition X as

Let

and consider the linear combinations and Find

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Repeat Exercise 3.32, but with X partitioned as

and with A and B replaced by

Consider the vectors and Verify the Cauchy–Schwarz
inequality 1b ¿  d22 … 1b ¿  b21d ¿  d2.

d ¿ = 7- 1, 3, - 2, 18.b ¿ = 72, - 1, 4, 08
A = B2 - 1 0

1 1 3
R and B = B1 2

1 - 1
R

X = EX1

X2
X3

X4
X5

U = BX112

X122
R

Cov 1AX112, BX1222
Cov 1X112, X1222
Cov 1BX1222
Cov 1X1222
E1BX1222
E1X1222
Cov 1AX1122
Cov 1X1122
E1AX1122
E1X1122

BX122.AX112

A = B1 - 1
1 1

R and B = B1 1 1
1 1 - 2

R
X = EX1

X2

X3
X4
X5

U = BX112

X122
R

�X = F
4 - 1 1

2 -  
1
2 0

- 1 3 1 - 1 0
1
2 1 6 1 - 1

-  
1
2 - 1 1 4 0

0 0 - 1 0 2

V
M œ

X = 72, 4, - 1, 3, 08 X ¿ = 7X1 , X2 , Á , X583.32.

3.33.

3.34.

146
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Using the vectors and verify the extended Cauchy–Schwarz
inequality if

Find the maximum and minimum values of the quadratic form for
all points such that 

With A as given in Exercise 3.6, find the maximum value of for 

Find the maximum and minimum values of the ratio for any nonzero vectors
if

Show that

Hint: BC has th entry = So has th element

Verify ( -24): = and =

Hint: has as its th element. Now, =

by a univariate property of expectation, and this last quantity is the th element of 

Next (see Exercise 3.39), AXB has th entry and 
by the additive property of expectation,

which is the th element of 

You are given the random vector with mean vector
and variance–covariance matrix

Let

(a) Find E (AX), the mean of AX.

(b) Find Cov (AX), the variances and covariances of AX.

(c) Which pairs of linear combinations have zero covariances?

A = C 1 - 1 0 0
1 1 - 2 0
1 1 1 - 3

S
�X = D3 0 0 0

0 3 0 0
0 0 3 0
0 0 0 3

T
M œ

X = 73, 2, - 2, 08 X ¿ = 7X1 , X2 , X3 , X48AE1X2B.1i, j2

E  aa
 

/

 a
 

k
 ai/  X

/k  bk jb = a
 

/

 a
 

k
 ai/  E1X

/k2  bk j

a
 

/

 a
 

k
 ai/  X

/k  bk j ,1i, j2E1X2 + E1Y2.

1i, j2
E1Xi j2 + E1Yi j2E1Xi j + Yi j21i, j2Xi j + Yi jX + Y

AE1X2B.E1AXB2E1X2 + E1Y2E1X + Y2

ai 1 d1 j + ai 2 d2 j +
Á

+ ai s ds j = a
s

/ = 1
 ai/ aa

t

k = 1
 b

/k  ck jb = a
s

/ = 1
 a

t

k = 1
 ai/  b

/k  ck j

1i, j2A1BC2d
/j .a

t

k = 1
 b

/k  ck j1/, j2

A
1r * s2

B
1s * t2

C
1t * v2

 has 1i, j2th entry a
s

/ = 1
 a

t

k = 1
 ai/  b

/k  ck j

A = C 13 - 4 2
- 4 13 - 2

2 - 2 10
S

x ¿ = 7x1 , x2 , x38 x ¿  A  x>x ¿  x

x ¿  x = 1.x ¿  A  x

x ¿  x = 1.x ¿ = 7x1 , x28 4x1
2

+ 4x2
2

+ 6x1 x2

B = B 2 - 2
- 2 5

R1b ¿  d22 … 1b ¿  Bb21d ¿  B-1
 d2

d ¿ = 71, 18,b ¿ = 7- 4, 383.35.

3.36.

3.37.

3.38.

3.39.

3.40.

3.41.

3
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Chapter 3 Matrix Algebra and Random Vectors

Repeat Exercise 3.41, but with
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THE MULTIVARIATE NORMAL
DISTRIBUTION

4.1 Introduction
A generalization of the familiar bell-shaped normal density to several dimensions plays
a fundamental role in multivariate analysis. In fact, most of the techniques encountered
in this book are based on the assumption that the data were generated from a multi-
variate normal distribution. While real data are never exactly multivariate normal, the
normal density is often a useful approximation to the “true” population distribution.

One advantage of the multivariate normal distribution stems from the fact that
it is mathematically tractable and “nice” results can be obtained. This is frequently
not the case for other data-generating distributions. Of course, mathematical attrac-
tiveness per se is of little use to the practitioner. It turns out, however, that normal
distributions are useful in practice for two reasons: First, the normal distribution
serves as a bona fide population model in some instances; second, the sampling
distributions of many multivariate statistics are approximately normal, regardless of
the form of the parent population, because of a central limit effect.

To summarize, many real-world problems fall naturally within the framework of
normal theory. The importance of the normal distribution rests on its dual role as
both population model for certain natural phenomena and approximate sampling
distribution for many statistics.

4.2 The Multivariate Normal Density and Its Properties
The multivariate normal density is a generalization of the univariate normal density
to dimensions. Recall that the univariate normal distribution, with mean 
and variance has the probability density function

(4-1)f1x2 =

122ps2
 e-71x-m2>s82>2  - q 6 x 6 q

s2,
mp Ú 2

C h a p t e r

4
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Chapter 4 The Multivariate Normal Distribution

A plot of this function yields the familiar bell-shaped curve shown in Figure 4.1.
Also shown in the figure are approximate areas under the curve within standard
deviations and standard deviations of the mean. These areas represent probabil-
ities, and thus, for the normal random variable X,

It is convenient to denote the normal density function with mean and vari-
ance by Therefore, refers to the function in (4-1) with 
and This notation will be extended to the multivariate case later.

The term

(4-2)

in the exponent of the univariate normal density function measures the square of
the distance from x to in standard deviation units. This can be generalized for a

vector x of observations on several variables as

(4-3)

The vector represents the expected value of the random vector X, and the
matrix is the variance–covariance matrix of X. [See (2–30) and (2–31).] We

shall assume that the symmetric matrix is positive definite, so the expression in
(4-3) is the square of the generalized distance from x to 

The multivariate normal density is obtained by replacing the univariate distance
in (4-2) by the multivariate generalized distance of (4-3) in the density function of
(4-1). When this replacement is made, the univariate normalizing constant

must be changed to a more general constant that makes the volume
under the surface of the multivariate density function unity for any p. This is neces-
sary because, in the multivariate case, probabilities are represented by volumes
under the surface over regions defined by intervals of the values. It can be shown
(see [1]) that this constant is and consequently, a p-dimensional
normal density for the random vector has the form

(4-4)

where We shall denote this p-dimensional normal
density by which is analogous to the normal density in the univariate
case.
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Figure 4.1 A normal density
with mean and variance 
and selected areas under the
curve.
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The Multivariate Normal Density and Its Properties

Example 4.1 (Bivariate normal density) Let us evaluate the -variate normal
density in terms of the individual parameters 

and =

Using Result 2A.8, we find that the inverse of the covariance matrix

is

Introducing the correlation coefficient by writing = we
obtain = and the squared distance becomes

(4-5)

The last expression is written in terms of the standardized values and

Next, since = = we can substitute for 

and in (4-4) to get the expression for the bivariate normal density
involving the individual parameters and 

(4-6)

The expression in (4-6) is somewhat unwieldy, and the compact general form in
(4-4) is more informative in many ways. On the other hand, the expression in (4-6) is
useful for discussing certain properties of the normal distribution. For example, if the
random variables and are uncorrelated, so that the joint density can
be written as the product of two univariate normal densities each of the form of (4-1).
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Chapter 4 The Multivariate Normal Distribution

That is, = and and are independent. [See (2-28).] This
result is true in general. (See Result 4.5.)

Two bivariate distributions with are shown in Figure 4.2. In Figure
4.2(a), and are independent In Figure 4.2(b), Notice how
the presence of correlation causes the probability to concentrate along a line. ■

r1 2 = .75.1r1 2 = 02.X2X1

s1 1 = s2 2

X2X1f1x12f1x22f1x1 , x22

f (x1, x2)

x2

x1

f (x1, x2)

x2

x1

(b)

(a)

0

0

Figure 4.2 Two bivariate normal distributions. (a) and 
(b) and r1 2 = .75.s1 1 = s2 2

r1 2 = 0.s1 1 = s2 2
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The Multivariate Normal Density and Its Properties

From the expression in (4-4) for the density of a p-dimensional normal variable, it
should be clear that the paths of x values yielding a constant height for the density are
ellipsoids. That is, the multivariate normal density is constant on surfaces where the
square of the distance is constant.These paths are called contours:

The axes of each ellipsoid of constant density are in the direction of the eigen-
vectors of and their lengths are proportional to the reciprocals of the square
roots of the eigenvalues of Fortunately, we can avoid the calculation of when
determining the axes, since these ellipsoids are also determined by the eigenvalues
and eigenvectors of We state the correspondence formally for later reference.

Result 4.1. If is positive definite, so that exists, then

so is an eigenvalue–eigenvector pair for corresponding to the pair 
for Also, is positive definite.

Proof. For positive definite and an eigenvector, we have =

= = Moreover, = or and divi-
sion by gives Thus, is an eigenvalue–eigenvector pair
for Also, for any by (2-21)

since each term is nonnegative. In addition, for all i only if

So implies that and it follows that is 

positive definite. �

The following summarizes these concepts:

Contours of constant density for the p-dimensional normal distribution are
ellipsoids defined by x such the that

(4-7)

These ellipsoids are centered at and have axes where 
for 

A contour of constant density for a bivariate normal distribution with
is obtained in the following example.s1 1 = s2 2
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Chapter 4 The Multivariate Normal Distribution

Example 4.2 (Contours of the bivariate normal density) We shall obtain the axes of
constant probability density contours for a bivariate normal distribution when

From (4-7), these axes are given by the eigenvalues and eigenvectors of
Here becomes

Consequently, the eigenvalues are and The eigen-
vector is determined from

or

These equations imply that and after normalization, the first eigenvalue–
eigenvector pair is

Similarly, yields the eigenvector 
When the covariance (or correlation ) is positive, is the

largest eigenvalue, and its associated eigenvector lies along
the line through the point This is true for any positive value of 
the covariance (correlation). Since the axes of the constant-density ellipses are
given by and [see (4–7)], and the eigenvectors each have
length unity, the major axis will be associated with the largest eigenvalue. For
positively correlated normal random variables, then, the major axis of the
constant-density ellipses will be along the line through (See Figure 4.3.)M.45°

;c1l2  e2;c1l1  e1

M ¿ = 7m1 , m28.45°
eœ
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e2
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Figure 4.3 A constant-density
contour for a bivariate normal
distribution with and

(or ).r1 2 7 0s1 2 7 0
s1 1 = s2 2
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The Multivariate Normal Density and Its Properties

When the covariance (correlation) is negative, will be the largest
eigenvalue, and the major axes of the constant-density ellipses will lie along a line
at right angles to the line through (These results are true only for

)
To summarize, the axes of the ellipses of constant density for a bivariate normal

distribution with are determined by

■

We show in Result 4.7 that the choice where is the upper
th percentile of a chi-square distribution with p degrees of freedom, leads to

contours that contain of the probability. Specifically, the following
is true for a p-dimensional normal distribution:

The solid ellipsoid of x values satisfying

(4-8)

has probability 

The constant-density contours containing 50% and 90% of the probability under
the bivariate normal surfaces in Figure 4.2 are pictured in Figure 4.4.

1 - a.

1x - M2¿  �-11x - M2 … xp
21a2

11 - a2 * 100%
1100a2
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21a2c2

= xp
21a2,
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T and ;c1s1 1 - s1 2 D 112
-112

T
s1 1 = s2 2

s1 1 = s2 2 .
M.45°

l2 = s1 1 - s1 2

The p-variate normal density in (4-4) has a maximum value when the squared
distance in (4-3) is zero—that is, when Thus, is the point of maximum
density, or mode, as well as the expected value of X, or mean. The fact that is 
the mean of the multivariate normal distribution follows from the symmetry
exhibited by the constant-density contours:These contours are centered, or balanced,
at M.

M

Mx = M.

x1

x2

µ   2

µ1

Figure 4.4 The 50% and 90% contours for the bivariate normal
distributions in Figure 4.2.

x1

x2

µ2

µ1
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Chapter 4 The Multivariate Normal Distribution

Additional Properties of the Multivariate 
Normal Distribution

Certain properties of the normal distribution will be needed repeatedly in our
explanations of statistical models and methods. These properties make it possible
to manipulate normal distributions easily and, as we suggested in Section 4.1, are
partly responsible for the popularity of the normal distribution. The key proper-
ties, which we shall soon discuss in some mathematical detail, can be stated rather
simply.

The following are true for a random vector X having a multivariate normal
distribution:

1. Linear combinations of the components of X are normally distributed.

2. All subsets of the components of X have a (multivariate) normal distribution.

3. Zero covariance implies that the corresponding components are independently
distributed.

4. The conditional distributions of the components are (multivariate) normal.

These statements are reproduced mathematically in the results that follow. Many
of these results are illustrated with examples. The proofs that are included should
help improve your understanding of matrix manipulations and also lead you 
to an appreciation for the manner in which the results successively build on
themselves.

Result 4.2 can be taken as a working definition of the normal distribution. With
this in hand, the subsequent properties are almost immediate. Our partial proof of
Result 4.2 indicates how the linear combination definition of a normal density
relates to the multivariate density in (4-4).

Result 4.2. If X is distributed as then any linear combination of vari-
ables = ± is distributed as Also, if 
is distributed as for every a, then X must be 

Proof. The expected value and variance of follow from (2-43). Proving that
is normally distributed if X is multivariate normal is more difficult.You can find

a proof in [1]. The second part of result 4.2 is also demonstrated in [1]. �

Example 4.3 (The distribution of a linear combination of the components of a normal
random vector) Consider the linear combination of a multivariate normal ran-
dom vector determined by the choice Since

a¿  X = 71, 0, Á , 08 DX1

X2

o

Xp

T = X1

a¿ = 71, 0, Á , 08.a¿  X

a¿  X
a¿  X

Np1M, �2.N1a¿M, a¿  �a2
a¿  XN1a¿  M, a¿  �a2.Á

+ ap Xpa1 X1 + a2 X2a¿  X
Np1M, �2,
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The Multivariate Normal Density and Its Properties

and

we have

and it follows from Result 4.2 that is distributed as More generally,
the marginal distribution of any component of X is ■

The next result considers several linear combinations of a multivariate normal
vector X.

Result 4.3. If X is distributed as the q linear combinations

are distributed as Also, where d is a vector of

constants, is distributed as 

Proof. The expected value and the covariance matrix of AX follow from
(2–45). Any linear combination is a linear combination of X, of the 
form with Thus, the conclusion concerning AX follows directly from
Result 4.2.

The second part of the result can be obtained by considering =

where is distributed as It is known from the
univariate case that adding a constant to the random variable leaves the
variance unchanged and translates the mean to = Since a
was arbitrary, is distributed as �

Example 4.4 (The distribution of two linear combinations of the components of a
normal random vector) For X distributed as find the distribution of
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Chapter 4 The Multivariate Normal Distribution

By Result 4.3, the distribution of AX is multivariate normal with mean

and covariance matrix

Alternatively, the mean vector and covariance matrix may be veri-
fied by direct calculation of the means and covariances of the two random variables

and ■

We have mentioned that all subsets of a multivariate normal random vector X
are themselves normally distributed. We state this property formally as Result 4.4.

Result 4.4. All subsets of X are normally distributed. If we respectively partition
X, its mean vector and its covariance matrix as

and

then is distributed as 

Proof. Set in Result 4.3, and the conclusion follows.

To apply Result 4.4 to an arbitrary subset of the components of X, we simply relabel
the subset of interest as and select the corresponding component means and
covariances as and respectively. ��1 1 ,M1

X1

A
1q * p2

= S I
1q * q2

 0
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Example 4.5 (The distribution of a subset of a normal random vector)

If X is distributed as find the distribution of We set

and note that with this assignment, and can respectively be rearranged and
partitioned as

or

Thus, from Result 4.4, for

we have the distribution

It is clear from this example that the normal distribution for any subset can be
expressed by simply selecting the appropriate means and covariances from the origi-
nal and The formal process of relabeling and partitioning is unnecessary. ■

We are now in a position to state that zero correlation between normal random
variables or sets of normal random variables is equivalent to statistical independence.

Result 4.5.

(a) If and are independent, then a matrix of 

zeros.

(b) If is then and are independent if 

and only if �1 2 = 0.
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Chapter 4 The Multivariate Normal Distribution

(c) If and are independent and are distributed as and

respectively, then has the multivariate normal distribution

Proof. (See Exercise 4.14 for partial proofs based upon factoring the density
function when ) �

Example 4.6 (The equivalence of zero covariance and independence for normal
variables) Let be with

Are and independent? What about and 
Since and have covariance they are not independent. However,

partitioning X and as

=

we see that and have covariance matrix Therefore,

and are independent by Result 4.5. This implies is independent of
and also of ■

We pointed out in our discussion of the bivariate normal distribution that
(zero correlation) implied independence because the joint density function

[see (4-6)] could then be written as the product of the marginal (normal) densities of
and This fact, which we encouraged you to verify directly, is simply a special

case of Result 4.5 with 

Result 4.6. Let be distributed as with 

and Then the conditional distribution of given 

that is normal and has
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and

Note that the covariance does not depend on the value of the conditioning
variable.

Proof. We shall give an indirect proof. (See Exercise 4.13, which uses the densities
directly.) Take

so

is jointly normal with covariance matrix given by

Since and have zero covariance, they are
independent. Moreover, the quantity – has distribution

Given that is a constant.
Because – and are independent, the condi-
tional distribution of – is the same as the unconditional
distribution of – Since – 
is so is the random vector –
when has the particular value Equivalently, given that is distrib-
uted as �

Example 4.7 (The conditional density of a bivariate normal distribution) The
conditional density of given that for any bivariate distribution, is
defined by

where is the marginal distribution of If is the bivariate normal
density, show that is
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Chapter 4 The Multivariate Normal Distribution

Here = The two terms involving in the expo-
nent of the bivariate normal density [see Equation (4-6)] become, apart from the
multiplicative constant 

Because or = the complete expo-
nent is

The constant term also factors as

Dividing the joint density of and by the marginal density

and canceling terms yields the conditional density

Thus, with our customary notation, the conditional distribution of given that
is Now, =

= and = agreeing with Result 4.6,
which we obtained by an indirect method. ■
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The Multivariate Normal Density and Its Properties

For the multivariate normal situation, it is worth emphasizing the following:

1. All conditional distributions are (multivariate) normal.

2. The conditional mean is of the form

(4-9)

where the ’s are defined by

3. The conditional covariance, does not depend upon the value(s)
of the conditioning variable(s).

We conclude this section by presenting two final properties of multivariate
normal random vectors. One has to do with the probability content of the ellipsoids
of constant density. The other discusses the distribution of another form of linear
combinations.

The chi-square distribution determines the variability of the sample variance
for samples from a univariate normal population. It also plays a basic role

in the multivariate case.

Result 4.7. Let X be distributed as with Then

(a) is distributed as where denotes the chi-square
distribution with p degrees of freedom.

(b) The distribution assigns probability to the solid ellipsoid 

where denotes the upper th 

percentile of the distribution.

Proof. We know that is defined as the distribution of the sum 
where are independent random variables. Next, by the
spectral decomposition [see Equations (2-16) and (2-21) with and see 

Result 4.1], where so = Consequently,
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Chapter 4 The Multivariate Normal Distribution

where

and is distributed as Therefore, by Result 4.3, is
distributed as where

By Result 4.5, are independent standard normal variables, and we 

conclude that has a -distribution.

For Part b, we note that is the probability as-
signed to the ellipsoid by the density But 
from Part a, = and Part b holds. �

Remark: (Interpretation of statistical distance) Result 4.7 provides an interpreta-
tion of a squared statistical distance. When X is distributed as 

is the squared statistical distance from X to the population mean vector If one
component has a much larger variance than another, it will contribute less to the
squared distance. Moreover, two highly correlated random variables will contribute
less than two variables that are nearly uncorrelated. Essentially, the use of the in-
verse of the covariance matrix, (1) standardizes all of the variables and (2) elimi-
nates the effects of correlation. From the proof of Result 4.7,
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The Multivariate Normal Density and Its Properties

In terms of (see (2-22)), has a distribution, and

The squared statistical distance is calculated as if, first, the random vector X were
transformed to p independent standard normal random variables and then the
usual squared distance, the sum of the squares of the variables, were applied.

Next, consider the linear combination of vector random variables

(4-10)

This linear combination differs from the linear combinations considered earlier in
that it defines a vector random variable that is a linear combination of vec-
tors. Previously, we discussed a single random variable that could be written as a lin-
ear combination of other univariate random variables.

Result 4.8. Let be mutually independent with distributed as
(Note that each has the same covariance matrix ) Then

is distributed as Moreover, and =

± are jointly multivariate normal with covariance matrix

Consequently, and are independent if =

Proof. By Result 4.5(c), the np component vector

is multivariate normal. In particular, is distributed as where
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Chapter 4 The Multivariate Normal Distribution

The choice

where I is the identity matrix, gives

and AX is normal by Result 4.3. Straightforward block multipli-
cation shows that has the first block diagonal term

The off-diagonal term is

This term is the covariance matrix for Consequently, when =

so that = and are independent by Result 4.5(b). �

For sums of the type in (4-10), the property of zero correlation is equivalent to
requiring the coefficient vectors b and c to be perpendicular.

Example 4.8 (Linear combinations of random vectors) Let and be
independent and identically distributed random vectors with

We first consider a linear combination of the three components of This is a
random variable with mean

and variance

That is, a linear combination of the components of a random vector is a single
random variable consisting of a sum of terms that are each a constant times a variable.
This is very different from a linear combination of random vectors, say,
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The Multivariate Normal Density and Its Properties

which is itself a random vector. Here each term in the sum is a constant times a
random vector.

Now consider two linear combinations of random vectors

and

Find the mean vector and covariance matrix for each linear combination of vectors
and also the covariance between them.

By Result 4.8 with = the first linear combination has
mean vector

and covariance matrix

For the second linear combination of random vectors, we apply Result 4.8 with
= and to get mean vector

and covariance matrix

Finally, the covariance matrix for the two linear combinations of random vectors is

Every component of the first linear combination of random vectors has zero
covariance with every component of the second linear combination of random vectors.

If, in addition, each X has a trivariate normal distribution, then the two linear
combinations have a joint six-variate normal distribution, and the two linear combi-
nations of vectors are independent. ■
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Chapter 4 The Multivariate Normal Distribution

4.3 Sampling from a Multivariate Normal Distribution 
and Maximum Likelihood Estimation

We discussed sampling and selecting random samples briefly in Chapter 2. In this
section, we shall be concerned with samples from a multivariate normal popula-
tion—in particular, with the sampling distribution of and S.

The Multivariate Normal Likelihood

Let us assume that the vectors represent a random sample
from a multivariate normal population with mean vector and covariance matrix

Since are mutually independent and each has distribution
the joint density function of all the observations is the product of the

marginal normal densities:

(4-11)

When the numerical values of the observations become available, they may be sub-
stituted for the in Equation (4-11).The resulting expression, now considered as a func-
tion of and for the fixed set of observations is called the likelihood.

Many good statistical procedures employ values for the population parameters
that “best” explain the observed data. One meaning of best is to select the parame-
ter values that maximize the joint density evaluated at the observations. This tech-
nique is called maximum likelihood estimation, and the maximizing parameter
values are called maximum likelihood estimates.

At this point, we shall consider maximum likelihood estimation of the parame-
ters and for a multivariate normal population. To do so, we take the observa-
tions as fixed and consider the joint density of Equation (4-11)
evaluated at these values. The result is the likelihood function. In order to simplify
matters, we rewrite the likelihood function in another form. We shall need some ad-
ditional properties for the trace of a square matrix. (The trace of a matrix is the sum
of its diagonal elements, and the properties of the trace are discussed in Definition
2A.28 and Result 2A.12.)

Result 4.9. Let A be a symmetric matrix and x be a vector. Then

(a)

(b) where the are the eigenvalues of A.

Proof. For Part a, we note that is a scalar, so = We pointed
out in Result 2A.12 that for any two matrices B and C of 

dimensions and respectively. This follows because BC has as a
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its ith diagonal element, so = Similarly, the jth diagonal 

element of CB is so = = =

Let be the matrix B with and let play the role of the matrix C. Then
= and the result follows.

Part b is proved by using the spectral decomposition of (2-20) to write
where and is a diagonal matrix with entries 

Therefore, = = �

Now the exponent in the joint density in (4–11) can be simplified. By Result 4.9(a),

(4-12)

Next,

(4-13)

since the trace of a sum of matrices is equal to the sum of the traces of the matrices,

according to Result 2A.12(b). We can add and subtract in each 

term in to give

(4-14)

because the cross-product terms, and 

are both matrices of zeros. (See Exercise 4.15.) Consequently, using Equations (4-13)
and (4-14), we can write the joint density of a random sample from a multivariate
normal population as
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Chapter 4 The Multivariate Normal Distribution

Substituting the observed values into the joint density yields the likeli-
hood function.We shall denote this function by to stress the fact that it is a
function of the (unknown) population parameters and Thus, when the vectors

contain the specific numbers actually observed, we have

(4-16)

It will be convenient in later sections of this book to express the exponent in the like-
lihood function (4-16) in different ways. In particular, we shall make use of the identity

(4-17)

Maximum Likelihood Estimation of and 

The next result will eventually allow us to obtain the maximum likelihood estima-
tors of and 

Result 4.10. Given a symmetric positive definite matrix B and a scalar
it follows that

for all positive definite with equality holding only for 

Proof. Let be the symmetric square root of B [see Equation (2-22)],
so and Then =

= Let be an eigenvalue of This 

matrix is positive definite because = if 

or, equivalently, Thus, the eigenvalues of are positive 
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or

Combining the results for the trace and the determinant yields

But the function has a maximum, with respect to of occurring at
The choice for each i, therefore gives

The upper bound is uniquely attained when since, for this choice,

and

Moreover,

Straightforward substitution for and yields the bound asserted. �

The maximum likelihood estimates of and are those values—denoted by 
and —that maximize the function in (4–16). The estimates and will
depend on the observed values through the summary statistics and S.

Result 4.11. Let be a random sample from a normal population
with mean and covariance Then

are the maximum likelihood estimators of and respectively. Their observed 

values, and are called the maximum likelihood esti-

mates of and 

Proof. The exponent in the likelihood function [see Equation (4-16)], apart from
the multiplicative factor is [see (4-17)]
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By Result 4.1, is positive definite, so the distance un-
less Thus, the likelihood is maximized with respect to at It remains
to maximize

over By Result 4.10 with and the maximum 

occurs at as stated.

The maximum likelihood estimators are random quantities.They are obtained by
replacing the observations in the expressions for and with the
corresponding random vectors, �

We note that the maximum likelihood estimator is a random vector and the
maximum likelihood estimator is a random matrix. The maximum likelihood
estimates are their particular values for the given data set. In addition, the maximum
of the likelihood is

(4-18)

or, since 

(4-19)

The generalized variance determines the “peakedness” of the likelihood function
and, consequently, is a natural measure of variability when the parent population is
multivariate normal.

Maximum likelihood estimators possess an invariance property. Let be the
maximum likelihood estimator of and consider estimating the parameter 
which is a function of Then the maximum likelihood estimate of

(4-20)

(See [1] and [15].) For example,

1. The maximum likelihood estimator of is where and

= are the maximum likelihood estimators of and 
respectively.

2. The maximum likelihood estimator of is where

is the maximum likelihood estimator of si i = Var 1Xi2.
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Sufficient Statistics

From expression (4-15), the joint density depends on the whole set of observations
only through the sample mean and the sum-of-squares-and-cross-

products matrix = We express this fact by saying 

that and (or S) are sufficient statistics:

Let be a random sample from a multivariate normal population
with mean and covariance Then

(4-21)

The importance of sufficient statistics for normal populations is that all of the
information about and in the data matrix X is contained in and S, regardless
of the sample size n. This generally is not true for nonnormal populations. Since
many multivariate techniques begin with sample means and covariances, it is pru-
dent to check on the adequacy of the multivariate normal assumption. (See Section
4.6.) If the data cannot be regarded as multivariate normal, techniques that depend
solely on and S may be ignoring other useful sample information.

4.4 The Sampling Distribution of and S
The tentative assumption that constitute a random sample from a
normal population with mean and covariance completely determines the
sampling distributions of and S. Here we present the results on the sampling
distributions of and S by drawing a parallel with the familiar univariate
conclusions.

In the univariate case we know that is normal with mean =

(population mean) and variance

The result for the multivariate case is analogous in that has a normal
distribution with mean and covariance matrix 

For the sample variance, recall that = is distributed as 

times a chi-square variable having degrees of freedom (d.f.). In turn, this
chi-square is the distribution of a sum of squares of independent standard normal
random variables. That is, is distributed as =

± The individual terms are independently distributed as
It is this latter form that is suitably generalized to the basic sampling

distribution for the sample covariance matrix.
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Chapter 4 The Multivariate Normal Distribution

The sampling distribution of the sample covariance matrix is called the Wishart
distribution, after its discoverer; it is defined as the sum of independent products of
multivariate normal random vectors. Specifically,

(4-22)

where the are each independently distributed as 
We summarize the sampling distribution results as follows:

Let be a random sample of size n from a p-variate normal
distribution with mean and covariance matrix Then

1. is distributed as 

2. is distributed as a Wishart random matrix with d.f. (4-23)

3. and S are independent.

Because is unknown, the distribution of cannot be used directly to make
inferences about However, S provides independent information about and the
distribution of S does not depend on This allows us to construct a statistic for
making inferences about as we shall see in Chapter 5.

For the present, we record some further results from multivariable distribution
theory. The following properties of the Wishart distribution are derived directly
from its definition as a sum of the independent products, Proofs can be found
in [1].

Properties of the Wishart Distribution

1. If is distributed as independently of which is distributed as 
then is distributed as That is, the

degrees of freedom add. (4-24)

2. If A is distributed as then is distributed as 

Although we do not have any particular need for the probability density
function of the Wishart distribution, it may be of some interest to see its rather
complicated form. The density does not exist unless the sample size n is greater
than the number of variables p. When it does exist, its value at the positive definite
matrix A is

(4-25)

where is the gamma function. (See [1] and [11].)≠ �
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4.5 Large-Sample Behavior of and S
Suppose the quantity X is determined by a large number of independent causes

where the random variables representing the causes have approxi-
mately the same variability. If X is the sum

then the central limit theorem applies, and we conclude that X has a distribution
that is nearly normal.This is true for virtually any parent distribution of the ’s, pro-
vided that n is large enough.

The univariate central limit theorem also tells us that the sampling distribution
of the sample mean, for a large sample size is nearly normal, whatever the
form of the underlying population distribution. A similar result holds for many
other important univariate statistics.

It turns out that certain multivariate statistics, like and S, have large-sample
properties analogous to their univariate counterparts. As the sample size is in-
creased without bound, certain regularities govern the sampling variation in and
S, irrespective of the form of the parent population. Therefore, the conclusions pre-
sented in this section do not require multivariate normal populations. The only
requirements are that the parent population, whatever its form, have a mean and
a finite covariance 

Result 4.12 (Law of large numbers). Let be independent observa-
tions from a population with mean Then

converges in probability to as n increases without bound. That is, for any
prescribed accuracy approaches unity as 

Proof. See [9]. �

As a direct consequence of the law of large numbers, which says that each 
converges in probability to 

(4-26)

Also, each sample covariance converges in probability to and

(4-27)
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Chapter 4 The Multivariate Normal Distribution

Letting with we see that the first term in
converges to and the second term converges to zero, by applying the law of

large numbers.
The practical interpretation of statements (4-26) and (4-27) is that, with high

probability, will be close to and S will be close to whenever the sample size is
large. The statement concerning is made even more precise by a multivariate
version of the central limit theorem.

Result 4.13 (The central limit theorem). Let be independent
observations from any population with mean and finite covariance Then

for large sample sizes. Here n should also be large relative to p.

Proof. See [1]. �

The approximation provided by the central limit theorem applies to dis-
crete, as well as continuous, multivariate populations. Mathematically, the limit
is exact, and the approach to normality is often fairly rapid. Moreover, from the
results in Section 4.4, we know that is exactly normally distributed when the
underlying population is normal. Thus, we would expect the central limit theo-
rem approximation to be quite good for moderate n when the parent population
is nearly normal.

As we have seen, when n is large, S is close to with high probability. Conse-
quently, replacing by S in the approximating normal distribution for will have a
negligible effect on subsequent probability calculations.

Result 4.7 can be used to show that has a distribution

when is distributed as or, equivalently, when has an 

distribution. The distribution is approximately the sampling distribution
of when is approximately normally distributed. Replac-
ing by does not seriously affect this approximation for n large and much
greater than p.

We summarize the major conclusions of this section as follows:

Let be independent observations from a population with mean
and finite (nonsingular) covariance Then

and (4-28)

for large.

In the next three sections, we consider ways of verifying the assumption of nor-
mality and methods for transforming nonnormal observations into observations
that are approximately normal.
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Assessing the Assumption of Normality

4.6 Assessing the Assumption of Normality
As we have pointed out, most of the statistical techniques discussed in subsequent
chapters assume that each vector observation comes from a multivariate normal
distribution. On the other hand, in situations where the sample size is large and the
techniques depend solely on the behavior of or distances involving of the form

the assumption of normality for the individual observa-
tions is less crucial. But to some degree, the quality of inferences made by these
methods depends on how closely the true parent population resembles the multi-
variate normal form. It is imperative, then, that procedures exist for detecting cases
where the data exhibit moderate to extreme departures from what is expected
under multivariate normality.

We want to answer this question: Do the observations appear to violate the
assumption that they came from a normal population? Based on the properties of
normal distributions, we know that all linear combinations of normal variables are
normal and the contours of the multivariate normal density are ellipsoids. There-
fore, we address these questions:

1. Do the marginal distributions of the elements of X appear to be normal? What
about a few linear combinations of the components 

2. Do the scatter plots of pairs of observations on different characteristics give the
elliptical appearance expected from normal populations?

3. Are there any “wild” observations that should be checked for accuracy?

It will become clear that our investigations of normality will concentrate on the
behavior of the observations in one or two dimensions (for example, marginal dis-
tributions and scatter plots). As might be expected, it has proved difficult to con-
struct a “good” overall test of joint normality in more than two dimensions because
of the large number of things that can go wrong.To some extent, we must pay a price
for concentrating on univariate and bivariate examinations of normality: We can
never be sure that we have not missed some feature that is revealed only in higher
dimensions. (It is possible, for example, to construct a nonnormal bivariate distribu-
tion with normal marginals. [See Exercise 4.8.]) Yet many types of nonnormality are
often reflected in the marginal distributions and scatter plots. Moreover, for most
practical work, one-dimensional and two-dimensional investigations are ordinarily
sufficient. Fortunately, pathological data sets that are normal in lower dimensional
representations, but nonnormal in higher dimensions, are not frequently encoun-
tered in practice.

Evaluating the Normality of the Univariate Marginal Distributions

Dot diagrams for smaller n and histograms for or so help reveal situations
where one tail of a univariate distribution is much longer than the other. If the his-
togram for a variable appears reasonably symmetric, we can check further by
counting the number of observations in certain intervals.A univariate normal distri-
bution assigns probability .683 to the interval and proba-
bility .954 to the interval Consequently, with a large
sample size n, we expect the observed proportion of the observations lying in thepn i 1

mi + 21si i2.1mi - 21si i ,
mi + 1si i21mi - 1si i ,

Xi

n 7 25

Xi ?

Xj

n1 X - M2
œ

 S-11 X - M2,
XX,
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Chapter 4 The Multivariate Normal Distribution

interval to be about .683. Similarly, the observed proportion
of the observations in should be about .954. Using the

normal approximation to the sampling distribution of (see [9]), we observe that
either

or

(4-29)

would indicate departures from an assumed normal distribution for the ith charac-
teristic. When the observed proportions are too small, parent distributions with
thicker tails than the normal are suggested.

Plots are always useful devices in any data analysis. Special plots called Q–Q
plots can be used to assess the assumption of normality. These plots can be made for
the marginal distributions of the sample observations on each variable. They are, in
effect, plots of the sample quantile versus the quantile one would expect to observe if
the observations actually were normally distributed. When the points lie very nearly
along a straight line, the normality assumption remains tenable. Normality is suspect
if the points deviate from a straight line. Moreover, the pattern of the deviations can
provide clues about the nature of the nonnormality. Once the reasons for the non-
normality are identified, corrective action is often possible. (See Section 4.8.)

To simplify notation, let represent n observations on any single
characteristic Let represent these observations after
they are ordered according to magnitude. For example, is the second smallest
observation and is the largest observation. The ’s are the sample quantiles.
When the are distinct, exactly j observations are less than or equal to (This
is theoretically always true when the observations are of the continuous type, which
we usually assume.) The proportion of the sample at or to the left of is often 
approximated by for analytical convenience.1

For a standard normal distribution, the quantiles are defined by the relation

(4-30)

(See Table 1 in the appendix). Here is the probability of getting a value less than
or equal to in a single drawing from a standard normal population.

The idea is to look at the pairs of quantiles with the same associated 

cumulative probability If the data arise from a normal population, the
pairs will be approximately linearly related, since is nearly the
expected sample quantile.2
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Assessing the Assumption of Normality

Example 4.9 (Constructing a Q–Q plot) A sample of observations gives the
values in the following table:

n = 10

Here, for example, = [See (4-30).]

Let us now construct the Q–Q plot and comment on its appearance. The Q–Q
plot for the foregoing data, which is a plot of the ordered data against the nor-
mal quantiles is shown in Figure 4.5.The pairs of points lie very near-
ly along a straight line, and we would not reject the notion that these data are
normally distributed—particularly with a sample size as small as n = 10.
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Figure 4.5 A Q–Q plot for the
data in Example 4.9. ■

The calculations required for Q–Q plots are easily programmed for electronic
computers. Many statistical programs available commercially are capable of produc-
ing such plots.

The steps leading to a Q–Q plot are as follows:

1. Order the original observations to get and their corresponding

probability values
2. Calculate the standard normal quantiles and
3. Plot the pairs of observations and exam-

ine the “straightness” of the outcome.
1q1n2 , x1n22,1q122 , x1222, Á ,1q112 , x1122,

q112 , q122 , Á , q1n2;
An -

1
2 B >n;A2 -

1
2 B >n, Á ,A1 -

1
2 B >n,

x112 , x122 , Á , x1n2

179



Chapter 4 The Multivariate Normal Distribution

Q–Q plots are not particularly informative unless the sample size is moderate to
large—for instance, There can be quite a bit of variability in the straightness
of the Q–Q plot for small samples, even when the observations are known to come
from a normal population.

Example 4.10 (A Q–Q plot for radiation data) The quality-control department of a
manufacturer of microwave ovens is required by the federal government to monitor
the amount of radiation emitted when the doors of the ovens are closed. Observa-
tions of the radiation emitted through closed doors of randomly selected
ovens were made. The data are listed in Table 4.1.

n = 42

n Ú 20.

Table 4.1 Radiation Data (Door Closed)

Oven Oven Oven
no. Radiation no. Radiation no. Radiation

1 .15 16 .10 31 .10
2 .09 17 .02 32 .20
3 .18 18 .10 33 .11
4 .10 19 .01 34 .30
5 .05 20 .40 35 .02
6 .12 21 .10 36 .20
7 .08 22 .05 37 .20
8 .05 23 .03 38 .30
9 .08 24 .05 39 .30

10 .10 25 .15 40 .40
11 .07 26 .10 41 .30
12 .02 27 .15 42 .05
13 .01 28 .09
14 .10 29 .08
15 .10 30 .18

Source: Data courtesy of J. D. Cryer.

In order to determine the probability of exceeding a prespecified tolerance
level, a probability distribution for the radiation emitted was needed. Can we regard
the observations here as being normally distributed?

A computer was used to assemble the pairs and construct the Q–Q
plot, pictured in Figure 4.6 on page 181. It appears from the plot that the data as
a whole are not normally distributed.The points indicated by the circled locations in
the figure are outliers—values that are too large relative to the rest of the
observations.

For the radiation data, several observations are equal. When this occurs, those
observations with like values are associated with the same normal quantile. This
quantile is calculated using the average of the quantiles the tied observations would
have if they all differed slightly. ■

1q1j2 , x1j22
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Assessing the Assumption of Normality

The straightness of the Q–Q plot can be measured by calculating the correlation co-
efficient of the points in the plot.The correlation coefficient for the Q–Q plot is defined by

(4-31)

and a powerful test of normality can be based on it. (See [5], [10], and [12].) Formally,
we reject the hypothesis of normality at level of significance if falls below the
appropriate value in Table 4.2.
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Figure 4.6 A Q–Q plot of
the radiation data (door
closed) from Example 4.10.
(The integers in the plot
indicate the number of
points occupying the same
location.)

Table 4.2 Critical Points for the Q–Q Plot
Correlation Coefficient Test for Normality

Significance levels Sample size
n .01 .05 .10

5 .8299 .8788 .9032
10 .8801 .9198 .9351
15 .9126 .9389 .9503
20 .9269 .9508 .9604
25 .9410 .9591 .9665
30 .9479 .9652 .9715
35 .9538 .9682 .9740
40 .9599 .9726 .9771
45 .9632 .9749 .9792
50 .9671 .9768 .9809
55 .9695 .9787 .9822
60 .9720 .9801 .9836
75 .9771 .9838 .9866

100 .9822 .9873 .9895
150 .9879 .9913 .9928
200 .9905 .9931 .9942
300 .9935 .9953 .9960

a
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Chapter 4 The Multivariate Normal Distribution

Example 4.11 (A correlation coefficient test for normality) Let us calculate the cor-
relation coefficient from the Q–Q plot of Example 4.9 (see Figure 4.5) and test
for normality.

Using the information from Example 4.9, we have and

Since always,

A test of normality at the 10% level of significance is provided by referring 
to the entry in Table 4.2 corresponding to and This entry is .9351. Since

we do not reject the hypothesis of normality. ■

Instead of some software packages evaluate the original statistic proposed
by Shapiro and Wilk [12]. Its correlation form corresponds to replacing by a
function of the expected value of standard normal-order statistics and their covari-
ances. We prefer because it corresponds directly to the points in the normal-
scores plot. For large sample sizes, the two statistics are nearly the same (see [13]), so
either can be used to judge lack of fit.

Linear combinations of more than one characteristic can be investigated. Many
statisticians suggest plotting

in which is the largest eigenvalue of S. Here is the jth
observation on the p variables The linear combination corre-
sponding to the smallest eigenvalue is also frequently singled out for inspection.
(See Chapter 8 and [6] for further details.)

Evaluating Bivariate Normality

We would like to check on the assumption of normality for all distributions of
dimensions. However, as we have pointed out, for practical work it is usu-

ally sufficient to investigate the univariate and bivariate distributions. We consid-
ered univariate marginal distributions earlier. It is now of interest to examine the
bivariate case.

In Chapter 1, we described scatter plots for pairs of characteristics. If the obser-
vations were generated from a multivariate normal distribution, each bivariate dis-
tribution would be normal, and the contours of constant density would be ellipses.
The scatter plot should conform to this structure by exhibiting an overall pattern
that is nearly elliptical.

Moreover, by Result 4.7, the set of bivariate outcomes x such that
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Assessing the Assumption of Normality

has probability .5. Thus, we should expect roughly the same percentage, 50%, of
sample observations to lie in the ellipse given by

where we have replaced by its estimate and by its estimate If not, the
normality assumption is suspect.

Example 4.12 (Checking bivariate normality) Although not a random sample, data
consisting of the pairs of observations for the 10 largest
companies in the world are listed in Exercise 1.4. These data give

so

From Table 2 in the appendix, Thus, any observation 
satisfying

is on or inside the estimated 50% contour. Otherwise the observation is outside this
contour. The first pair of observations in Exercise 1.4 is =

In this case

and this point falls outside the 50% contour. The remaining nine points have gener-
alized distances from of .30, .62, 1.79, 1.30, 4.38, 1.64, 3.53, 1.71, and 1.16, respec-
tively. Since four of these distances are less than 1.39, a proportion, .40, of the data
falls within the 50% contour. If the observations were normally distributed, we
would expect about half, or 5, of them to be within this contour. This difference in
proportions might ordinarily provide evidence for rejecting the notion of bivariate
normality; however, our sample size of 10 is too small to reach this conclusion. (See
also Example 4.13.) ■

Computing the fraction of the points within a contour and subjectively compar-
ing it with the theoretical probability is a useful, but rather rough, procedure.
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Chapter 4 The Multivariate Normal Distribution

A somewhat more formal method for judging the joint normality of a data set is
based on the squared generalized distances

(4-32)

where are the sample observations. The procedure we are about to de-
scribe is not limited to the bivariate case; it can be used for all 

When the parent population is multivariate normal and both n and are
greater than 25 or 30, each of the squared distances should behave
like a chi-square random variable. [See Result 4.7 and Equations (4-26) and (4-27).]
Although these distances are not independent or exactly chi-square distributed, it is
helpful to plot them as if they were. The resulting plot is called a chi-square plot or
gamma plot, because the chi-square distribution is a special case of the more general
gamma distribution. (See [6].)

To construct the chi-square plot,

1. Order the squared distances in (4-32) from smallest to largest as

2. Graph the pairs where is the

quantile of the chi-square distribution with p degrees of freedom.

Quantiles are specified in terms of proportions, whereas percentiles are speci-
fied in terms of percentages.

The quantiles are related to the upper percentiles of a

chi-squared distribution. In particular, =

The plot should resemble a straight line through the origin having slope 1. A
systematic curved pattern suggests lack of normality. One or two points far above
the line indicate large distances, or outlying observations, that merit further
attention.

Example 4.13 (Constructing a chi-square plot) Let us construct a chi-square plot of
the generalized distances given in Example 4.12. The ordered distances and the
corresponding chi-square percentiles for and are listed in the follow-
ing table:

n = 10p = 2

xp
2 A An - j +

1
2 B >n B .qc, p A Aj -

1
2 B >n B

qc, p A Aj -
1
2 B >n B

100 Aj -
1
2 B >n

qc, p A Aj -
1
2 B >n BAqc, p A Aj -

1
2 B >n B , d1j2

2 B ,
d112

2
… d122

2
…

Á
… d1n2

2 .

d1
2 , d2

2
 , Á , dn

2
n - p

p Ú 2.
x1 , x2 , Á , xn

dj
2

= 1xj - x–2œ  S-11xj - x–2, j = 1, 2, Á , n

j

1 .30 .10
2 .62 .33
3 1.16 .58
4 1.30 .86
5 1.61 1.20
6 1.64 1.60
7 1.71 2.10
8 1.79 2.77
9 3.53 3.79

10 4.38 5.99

qc, 2 ¢ j -
1
2

10
≤d1j2

2
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Assessing the Assumption of Normality

A graph of the pairs is shown in Figure 4.7.The points in
Figure 4.7 are reasonably straight. Given the small sample size it is difficult to
reject bivariate normality on the evidence in this graph. If further analysis of the
data were required, it might be reasonable to transform them to observations
more nearly bivariate normal. Appropriate transformations are discussed in
Section 4.8. ■

In addition to inspecting univariate plots and scatter plots, we should check mul-
tivariate normality by constructing a chi-squared or plot. Figure 4.8 contains d2d2

Aqc, 2 A Aj -
1
2 B >10 B , d1j2

2 B

0
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qc,2(( j�  ) /10)2
1

Figure 4.7 A chi-square plot of the ordered distances in Example 4.13.
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Figure 4.8 Chi-square plots for two simulated four-variate normal data sets with n = 30.
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Chapter 4 The Multivariate Normal Distribution

plots based on two computer-generated samples of 30 four-variate normal random
vectors. As expected, the plots have a straight-line pattern, but the top two or three
ordered squared distances are quite variable.

The next example contains a real data set comparable to the simulated data set
that produced the plots in Figure 4.8.

Example 4.14 (Evaluating multivariate normality for a four-variable data set) The
data in Table 4.3 were obtained by taking four different measures of stiffness,

and of each of boards.The first measurement involves sending
a shock wave down the board, the second measurement is determined while vibrat-
ing the board, and the last two measurements are obtained from static tests. The
squared distances = are also presented in the table.1xj - x–2œ  S-11xj - x–2dj

2

n = 30x4 ,x1 , x2 , x3 ,

Table 4.3 Four Measurements of Stiffness

Observation Observation
no. no.

1 1889 1651 1561 1778 .60 16 1954 2149 1180 1281 16.85
2 2403 2048 2087 2197 5.48 17 1325 1170 1002 1176 3.50
3 2119 1700 1815 2222 7.62 18 1419 1371 1252 1308 3.99
4 1645 1627 1110 1533 5.21 19 1828 1634 1602 1755 1.36
5 1976 1916 1614 1883 1.40 20 1725 1594 1313 1646 1.46
6 1712 1712 1439 1546 2.22 21 2276 2189 1547 2111 9.90
7 1943 1685 1271 1671 4.99 22 1899 1614 1422 1477 5.06
8 2104 1820 1717 1874 1.49 23 1633 1513 1290 1516 .80
9 2983 2794 2412 2581 12.26 24 2061 1867 1646 2037 2.54

10 1745 1600 1384 1508 .77 25 1856 1493 1356 1533 4.58
11 1710 1591 1518 1667 1.93 26 1727 1412 1238 1469 3.40
12 2046 1907 1627 1898 .46 27 2168 1896 1701 1834 2.38
13 1840 1841 1595 1741 2.70 28 1655 1675 1414 1597 3.00
14 1867 1685 1493 1678 .13 29 2326 2301 2065 2234 6.28
15 1859 1649 1389 1714 1.08 30 1490 1382 1214 1284 2.58

Source: Data courtesy of William Galligan.

d2x4x3x2x1d2x4x3x2x1

The marginal distributions appear quite normal (see Exercise 4.33), with the
possible exception of specimen (board) 9.

To further evaluate multivariate normality, we constructed the chi-square plot
shown in Figure 4.9. The two specimens with the largest squared distances are clear-
ly removed from the straight-line pattern. Together, with the next largest point or
two, they make the plot appear curved at the upper end. We will return to a discus-
sion of this plot in Example 4.15. �

We have discussed some rather simple techniques for checking the multivariate
normality assumption. Specifically, we advocate calculating the 

[see Equation (4-32)] and comparing the results with quantiles. For example,
p-variate normality is indicated if

1. Roughly half of the are less than or equal to qc, p1.502.dj
2

x2

j = 1, 2, Á , ndj
2 ,
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Detecting Outliers and Cleaning Data

2. A plot of the ordered squared distances versus

respectively, is nearly a straight

line having slope 1 and that passes through the origin.

(See [6] for a more complete exposition of methods for assessing normality.)
We close this section by noting that all measures of goodness of fit suffer the same

serious drawback.When the sample size is small, only the most aberrant behavior will
be identified as lack of fit. On the other hand, very large samples invariably produce
statistically significant lack of fit. Yet the departure from the specified distribution
may be very small and technically unimportant to the inferential conclusions.

4.7 Detecting Outliers and Cleaning Data
Most data sets contain one or a few unusual observations that do not seem to be-
long to the pattern of variability produced by the other observations. With data
on a single characteristic, unusual observations are those that are either very
large or very small relative to the others. The situation can be more complicated
with multivariate data. Before we address the issue of identifying these outliers,
we must emphasize that not all outliers are wrong numbers. They may, justifiably,
be part of the group and may lead to a better understanding of the phenomena
being studied.

qc, p ¢n -
1
2

n
≤ ,qc, p ¢2 -

1
2

n
≤ , Á ,qc, p ¢ 1 -

1
2

n
≤ ,

d112
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2

0 2 4 6 8 10 12
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0

d2
( j )

� 1
2�

qc,4(( j ) )/30

Figure 4.9 A chi-square plot for the data in Example 4.14.
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Chapter 4 The Multivariate Normal Distribution

Outliers are best detected visually whenever this is possible. When the number
of observations n is large, dot plots are not feasible. When the number of character-
istics p is large, the large number of scatter plots may prevent viewing
them all. Even so, we suggest first visually inspecting the data whenever possible.

What should we look for? For a single random variable, the problem is one di-
mensional, and we look for observations that are far from the others. For instance,
the dot diagram

reveals a single large observation which is circled.
In the bivariate case, the situation is more complicated. Figure 4.10 shows a

situation with two unusual observations.
The data point circled in the upper right corner of the figure is detached 

from the pattern, and its second coordinate is large relative to the rest of the x2

x

p1p - 12>2

x2

x1

Figure 4.10 Two outliers; one univariate and one bivariate.
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Detecting Outliers and Cleaning Data

measurements, as shown by the vertical dot diagram. The second outlier, also cir-
cled, is far from the elliptical pattern of the rest of the points, but, separately, each of
its components has a typical value. This outlier cannot be detected by inspecting the
marginal dot diagrams.

In higher dimensions, there can be outliers that cannot be detected from the
univariate plots or even the bivariate scatter plots. Here a large value of

will suggest an unusual observation, even though it cannot be
seen visually.

Steps for Detecting Outliers

1. Make a dot plot for each variable.

2. Make a scatter plot for each pair of variables.

3. Calculate the standardized values = for 
and each column Examine these standardized values for large
or small values.

4. Calculate the generalized squared distances Examine
these distances for unusually large values. In a chi-square plot, these would be
the points farthest from the origin.

In step 3, “large” must be interpreted relative to the sample size and number of
variables. There are standardized values. When and there are
500 values.You expect 1 or 2 of these to exceed 3 or be less than even if the data
came from a multivariate distribution that is exactly normal. As a guideline, 3.5
might be considered large for moderate sample sizes.

In step 4,“large” is measured by an appropriate percentile of the chi-square dis-
tribution with p degrees of freedom. If the sample size is we would expect
5 observations to have values of that exceed the upper fifth percentile of the chi-
square distribution. A more extreme percentile must serve to determine observa-
tions that do not fit the pattern of the remaining data.

The data we presented in Table 4.3 concerning lumber have already been
cleaned up somewhat. Similar data sets from the same study also contained data on

strength. Nine observation vectors, out of the total of 112, are given as
rows in the following table, along with their standardized values.
x5 = tensile

dj
2

n = 100,

-3,
p = 5,n = 100n * p

1xj - x–2œ  S-11xj - x–2.

k = 1, 2, Á , p.
j = 1, 2, Á , n1xj k - x–k2>1sk kzj k

1xj - x–2œ  S-11xj - x–2

1631 1528 1452 1559 1602 .06 .05 .28
1770 1677 1707 1738 1785 .64 .43 1.07 .94 .60
1376 1190 723 1285 2791 4.57
1705 1577 1332 1703 1664 .37 .04 .81 .13
1643 1535 1510 1494 1582 .11 .28 .04
1567 1510 1301 1405 1553
1528 1591 1714 1685 1698 .10 1.10 .75 .26
1803 1826 1748 2746 1764 .78 1.01 1.23 4.65 .52
1587 1554 1352 1554 1551 .26

ooooo ooooo

- .32- .35- .05- .13

- .38
- .31- .28- .56- .22- .21
- .20- .12

- .43
- .73-2.87-1.47-1.01

- .12- .15
ooooo ooooo

z5z4z3z2z1x5x4x3x2x1
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Chapter 4 The Multivariate Normal Distribution

The standardized values are based on the sample mean and variance, calculated
from all 112 observations.There are two extreme standardized values.Both are too large
with standardized values over 4.5. During their investigation, the researchers recorded
measurements by hand in a logbook and then performed calculations that produced the
values given in the table. When they checked their records regarding the values pin-
pointed by this analysis, errors were discovered. The value was corrected to
1241, and was corrected to 1670. Incorrect readings on an individual variable
are quickly detected by locating a large leading digit for the standardized value.

The next example returns to the data on lumber discussed in Example 4.14.

Example 4.15 (Detecting outliers in the data on lumber) Table 4.4 contains the data
in Table 4.3, along with the standardized observations. These data consist of four
different measures of stiffness and on each of boards. Recall
that the first measurement involves sending a shock wave down the board, the second
measurement is determined while vibrating the board, and the last two measurements
are obtained from static tests.The standardized measurements are

n = 30x4 ,x1 , x2 , x3 ,

x4 = 2746
x5 = 2791

Table 4.4 Four Measurements of Stiffness with Standardized Values

Observation no.

1889 1651 1561 1778 1 .2 .2 .60
2403 2048 2087 2197 2 1.5 .9 1.9 1.5 5.48
2119 1700 1815 2222 3 .7 1.0 1.5 7.62
1645 1627 1110 1533 4 5.21
1976 1916 1614 1883 5 .2 .5 .3 .5 1.40
1712 1712 1439 1546 6 2.22
1943 1685 1271 1671 7 .1 4.99
2104 1820 1717 1874 8 .6 .2 .7 .5 1.49
2983 2794 2412 2581 9 3.3 3.3 3.0 2.7 12.26
1745 1600 1384 1508 10 .77
1710 1591 1518 1667 11 .0 1.93
2046 1907 1627 1898 12 .4 .5 .4 .5 .46
1840 1841 1595 1741 13 .3 .3 .0 2.70
1867 1685 1493 1678 14 .13
1859 1649 1389 1714 15 1.08
1954 2149 1180 1281 16 .1 1.3 16.85
1325 1170 1002 1176 17 3.50
1419 1371 1252 1308 18 3.99
1828 1634 1602 1755 19 .3 .1 1.36
1725 1594 1313 1646 20 1.46
2276 2189 1547 2111 21 1.1 1.4 .1 1.2 9.90
1899 1614 1422 1477 22 5.06
1633 1513 1290 1516 23 .80
2061 1867 1646 2037 24 .5 .4 .5 1.0 2.54
1856 1493 1356 1533 25 4.58
1727 1412 1238 1469 26 3.40
2168 1896 1701 1834 27 .8 .5 .6 .3 2.38
1655 1675 1414 1597 28 3.00
2326 2301 2065 2234 29 1.3 1.7 1.8 1.6 6.28
1490 1382 1214 1284 30 2.58-1.4-1.0-1.2-1.3

- .4- .3- .2- .8

- .8- .9-1.1- .6
- .6- .5- .8- .2

- .6- .7- .7- .8
- .8- .3- .4- .0

- .2- .6- .5- .6
- .4- .2

-1.3- .8-1.2-1.5
-1.7-1.7-1.8-1.8
-1.4-1.1
- .0- .4- .3- .1
- .1- .1- .2- .1

- .2

- .2- .5- .6
- .7- .4- .5- .5

- .2- .8- .2
- .6- .2- .1- .6

- .6-1.3- .4- .8
- .2

- .3- .1

d2z4z3z2z1x4x3x2x1
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Detecting Outliers and Cleaning Data

and the squares of the distances are 
The last column in Table 4.4 reveals that specimen 16 is a multivariate outlier,

since yet all of the individual measurements are well within their
respective univariate scatters. Specimen 9 also has a large value.

The two specimens (9 and 16) with large squared distances stand out as clearly
different from the rest of the pattern in Figure 4.9. Once these two points are
removed, the remaining pattern conforms to the expected straight-line relation.
Scatter plots for the lumber stiffness measurements are given in Figure 4.11 above.

d2
x4

21.0052 = 14.86;

dj
2

= 1xj - x–2œ  S-11xj - x–2.

zj k =

xj k - x–k1sk k
, k = 1, 2, 3, 4; j = 1, 2, Á , 30
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16
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Figure 4.11 Scatter plots for the lumber stiffness data with specimens 9 and 16 plotted as solid dots.
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Chapter 4 The Multivariate Normal Distribution

The solid dots in these figures correspond to specimens 9 and 16.Although the dot for
specimen 16 stands out in all the plots, the dot for specimen 9 is “hidden” in the scat-
ter plot of versus and nearly hidden in that of versus However, specimen 9
is clearly identified as a multivariate outlier when all four variables are considered.

Scientists specializing in the properties of wood conjectured that specimen 9
was unusually clear and therefore very stiff and strong. It would also appear that
specimen 16 is a bit unusual, since both of its dynamic measurements are above av-
erage and the two static measurements are low. Unfortunately, it was not possible to
investigate this specimen further because the material was no longer available. �

If outliers are identified, they should be examined for content, as was done in
the case of the data on lumber stiffness in Example 4.15. Depending upon the
nature of the outliers and the objectives of the investigation, outliers may be delet-
ed or appropriately “weighted” in a subsequent analysis.

Even though many statistical techniques assume normal populations, those
based on the sample mean vectors usually will not be disturbed by a few moderate
outliers. Hawkins [7] gives an extensive treatment of the subject of outliers.

4.8 Transformations to Near Normality
If normality is not a viable assumption, what is the next step? One alternative is to
ignore the findings of a normality check and proceed as if the data were normally
distributed. This practice is not recommended, since, in many instances, it could lead
to incorrect conclusions. A second alternative is to make nonnormal data more
“normal looking” by considering transformations of the data. Normal-theory analy-
ses can then be carried out with the suitably transformed data.

Transformations are nothing more than a reexpression of the data in different
units. For example, when a histogram of positive observations exhibits a long right-
hand tail, transforming the observations by taking their logarithms or square roots
will often markedly improve the symmetry about the mean and the approximation
to a normal distribution. It frequently happens that the new units provide more
natural expressions of the characteristics being studied.

Appropriate transformations are suggested by (1) theoretical considerations or
(2) the data themselves (or both). It has been shown theoretically that data that are
counts can often be made more normal by taking their square roots. Similarly, the
logit transformation applied to proportions and Fisher’s z-transformation applied to
correlation coefficients yield quantities that are approximately normally distributed.

Helpful Transformations To Near Normality
Original Scale Transformed Scale

1. Counts, y

2. Proportions, (4-33)

3. Correlations, r Fisher’s z1r2 =

1
2

 log ¢1 + r

1 - r
≤logit1pn2 =

1
2

 log ¢ pn

1 - pn
≤pn

1y

x3 .x1x4x3
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Transformations to Near Normality

In many instances, the choice of a transformation to improve the approximation
to normality is not obvious. For such cases, it is convenient to let the data suggest a
transformation. A useful family of transformations for this purpose is the family of
power transformations.

Power transformations are defined only for positive variables. However, this is
not as restrictive as it seems, because a single constant can be added to each obser-
vation in the data set if some of the values are negative.

Let x represent an arbitrary observation. The power family of transformations
is indexed by a parameter A given value for implies a particular transformation.
For example, consider with Since this choice of corre-
sponds to the reciprocal transformation. We can trace the family of transformations
as ranges from negative to positive powers of x. For we define A
sequence of possible transformations is

To select a power transformation, an investigator looks at the marginal dot dia-
gram or histogram and decides whether large values have to be “pulled in” or
“pushed out” to improve the symmetry about the mean.Trial-and-error calculations
with a few of the foregoing transformations should produce an improvement. The
final choice should always be examined by a Q–Q plot or other checks to see
whether the tentative normal assumption is satisfactory.

The transformations we have been discussing are data based in the sense that it
is only the appearance of the data themselves that influences the choice of an appro-
priate transformation. There are no external considerations involved, although the
transformation actually used is often determined by some mix of information sup-
plied by the data and extra-data factors, such as simplicity or ease of interpretation.

A convenient analytical method is available for choosing a power transforma-
tion. We begin by focusing our attention on the univariate case.

Box and Cox [3] consider the slightly modified family of power transformations

(4-34)

which is continuous in for (See [8].) Given the observations 
the Box–Cox solution for the choice of an appropriate power is the solution that
maximizes the expression

(4-35)

We note that is defined in (4-34) and
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Chapter 4 The Multivariate Normal Distribution

is the arithmetic average of the transformed observations. The first term in (4-35) is,
apart from a constant, the logarithm of a normal likelihood function, after maximiz-
ing it with respect to the population mean and variance parameters.

The calculation of for many values of is an easy task for a computer. It is
helpful to have a graph of versus as well as a tabular display of the pairs

in order to study the behavior near the maximizing value For instance,
if either (logarithm) or (square root) is near one of these may be pre-
ferred because of its simplicity.

Rather than program the calculation of (4-35), some statisticians recommend
the equivalent procedure of fixing creating the new variable

(4-37)

and then calculating the sample variance.The minimum of the variance occurs at the
same that maximizes (4-35).

Comment. It is now understood that the transformation obtained by maximiz-
ing usually improves the approximation to normality. However, there is no
guarantee that even the best choice of will produce a transformed set of values
that adequately conform to a normal distribution. The outcomes produced by a
transformation selected according to (4-35) should always be carefully examined for
possible violations of the tentative assumption of normality. This warning applies
with equal force to transformations selected by any other technique.

Example 4.16 (Determining a power transformation for univariate data) We gave
readings of the microwave radiation emitted through the closed doors of 
ovens in Example 4.10. The Q–Q plot of these data in Figure 4.6 indicates that the
observations deviate from what would be expected if they were normally distrib-
uted. Since all the observations are positive, let us perform a power transformation
of the data which, we hope, will produce results that are more nearly normal.
Restricting our attention to the family of transformations in (4-34), we must find
that value of maximizing the function in (4-35).

The pairs are listed in the following table for several values of l:1l, /1l22
/1l2l

n = 42

l

/1l2

l

yj
1l2

=

xj
l

- 1

l B ¢qn
i = 1

 xi≤1>nRl-1
 j = 1, Á , n

l,

ln ,l =
1
2l = 0

ln .1l, /1l22,
l,/1l2

l/1l2

70.52
75.65 .40 106.20
80.46 .50 105.50
84.94 .60 104.43
89.06 .70 103.03
92.79 .80 101.33
96.10 .90 99.34
98.97 1.00 97.10

101.39 1.10 94.64
103.35 1.20 91.96

.00 104.83 1.30 89.10

.10 105.84 1.40 86.07

.20 106.39 1.50 82.88

.30 106.51

- .10
- .20
- .30
- .40
- .50
- .60
- .70
- .80
- .90

-1.00

/1l2l/1l2l
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Transformations to Near Normality

The curve of versus that allows the more exact determination is
shown in Figure 4.12 .

It is evident from both the table and the plot that a value of around .30
maximizes For convenience, we choose The data were
reexpressed as

and a Q–Q plot was constructed from the transformed quantities. This plot is shown
in Figure 4.13 on page 196.The quantile pairs fall very close to a straight line, and we
would conclude from this evidence that the are approximately normal. �

Transforming Multivariate Observations

With multivariate observations, a power transformation must be selected for each of
the variables. Let be the power transformations for the p measured
characteristics. Each can be selected by maximizing

(4-38)/k1l2 = -  
n

2
 ln B 1

n
 a

n

j = 1
 1xj k
1l

k
2

- xk
1lk22

2R + 1lk - 12 a
n

j = 1
 ln xj k

lk

l1 , l2 , Á , lp

xj
11>42

xj
11>42

=

xj
1>4

- 1
1
4

 j = 1, 2, Á , 42

xjln = .25./1l2.
ln

ln = .28l/1l2

0.0 0.1 0.2 0.3 0.4 0.5

10
6.

5
10

6.
0

10
5.

5
10

5.
0

 λ

 ( λ)�

  λ = 0.28

Figure 4.12 Plot of versus for radiation data (door closed).l/1l2
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where are the n observations on the kth variable,
Here

(4-39)

is the arithmetic average of the transformed observations. The jth transformed mul-
tivariate observation is

where are the values that individually maximize (4-38).ln1 , ln2 , Á , lnp

x1Ln 2j = H
xln 1

j 1 - 1

ln 1

xln 2
j 2 - 1

ln2

o

xln p
j p - 1

lnp

X

xk
1lk2

=

1
n

 a
n

j = 1
 xj k
1lk2

=

1
n

 a
n

j = 1
 a

xj k
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- 1

lk
b

k = 1, 2, Á , p.x1 k , x2 k , Á , xn k
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Figure 4.13 A Q–Q plot of the transformed radiation data (door closed).
(The integers in the plot indicate the number of points occupying the same
location.)
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Transformations to Near Normality

The procedure just described is equivalent to making each marginal distribution
approximately normal. Although normal marginals are not sufficient to ensure that
the joint distribution is normal, in practical applications this may be good enough.
If not, we could start with the values obtained from the preceding
transformations and iterate toward the set of values which col-
lectively maximizes

(4-40)

where is the sample covariance matrix computed from

Maximizing (4-40) not only is substantially more difficult than maximizing the indi-
vidual expressions in (4-38), but also is unlikely to yield remarkably better results. The
selection method based on Equation (4-40) is equivalent to maximizing a multivariate
likelihood over and whereas the method based on (4-38) corresponds to maxi-
mizing the kth univariate likelihood over and The latter likelihood is
generated by pretending there is some for which the observations

have a normal distribution. See [3] and [2] for detailed discussions of the
univariate and multivariate cases, respectively. (Also, see [8].)

Example 4.17 (Determining power transformations for bivariate data) Radiation
measurements were also recorded through the open doors of the 
microwave ovens introduced in Example 4.10. The amount of radiation emitted
through the open doors of these ovens is listed in Table 4.5.

In accordance with the procedure outlined in Example 4.16, a power transfor-
mation for these data was selected by maximizing in (4-35). The approximate 
maximizing value was Figure 4.14 on page 199 shows Q–Q plots of the un-
transformed and transformed door-open radiation data. (These data were actually

ln = .30.
/1l2

n = 42

j = 1, 2, Á , n
1xj k
lk

- 12>lk ,lk

lk .mk , sk k ,
L,M, �

xj
1L2

= H
xj 1
l1

- 1

l1

xj 2
l2

- 1

l2

o

xj p
lp

- 1

lp

X  j = 1, 2, Á , n

S1L2

+
Á

+ 1lp - 12 a
n

j = 1
 ln xj p

 = -  
n

2
 ln ƒ S1L2 ƒ + 1l1 - 12 a

n

j = 1
 ln xj 1 + 1l2 - 12 a

n

j = 1
 ln xj 2

/1l1 , l2 , Á , lp2

L¿ = [l1 , l2 , Á , lp],
ln 1 , ln2 , Á , lnp
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Chapter 4 The Multivariate Normal Distribution

transformed by taking the fourth root, as in Example 4.16.) It is clear from the figure
that the transformed data are more nearly normal, although the normal approxima-
tion is not as good as it was for the door-closed data.

Let us denote the door-closed data by and the door-open data
by Choosing a power transformation for each set by maximizing
the expression in (4-35) is equivalent to maximizing in (4-38) with 
Thus, using the outcomes from Example 4.16 and the foregoing results, we have

and These powers were determined for the marginal distribu-
tions of and 

We can consider the joint distribution of and and simultaneously deter-
mine the pair of powers that makes this joint distribution approximately
bivariate normal. To do this, we must maximize in (4-40) with respect to
both and 

We computed for a grid of values covering and
and we constructed the contour plot shown in Figure 4.15 on 

page 200. We see that the maximum occurs at about 
The “best” power transformations for this bivariate case do not differ substan-

tially from those obtained by considering each marginal distribution. �

As we saw in Example 4.17, making each marginal distribution approximately
normal is roughly equivalent to addressing the bivariate distribution directly and
making it approximately normal. It is generally easier to select appropriate transfor-
mations for the marginal distributions than for the joint distributions.

1ln1 , ln22 = 1.16, .162.
0 … l2 … .50,

0 … l1 … .50l1 , l2/1l1 , l22
l2 .l1

/1l1 , l22
1l1 , l22

x2x1

x2 .x1

ln2 = .30.ln1 = .30

k = 1, 2./k1l2
x1 2 , x2 2 , Á , x4 2, 2.

x1 1 , x 21 , Á , x4 2, 1

Table 4.5 Radiation Data (Door Open)

Oven Oven Oven
no. Radiation no. Radiation no. Radiation

1 .30 16 .20 31 .10
2 .09 17 .04 32 .10
3 .30 18 .10 33 .10
4 .10 19 .01 34 .30
5 .10 20 .60 35 .12
6 .12 21 .12 36 .25
7 .09 22 .10 37 .20
8 .10 23 .05 38 .40
9 .09 24 .05 39 .33
10 .10 25 .15 40 .32
11 .07 26 .30 41 .12
12 .05 27 .15 42 .12
13 .01 28 .09
14 .45 29 .09
15 .12 30 .28

Source: Data courtesy of J. D. Cryer.
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q( j)

x( j)

(a)

Figure 4.14 Q–Q plots of (a) the original and (b) the transformed
radiation data (with door open). (The integers in the plot indicate the
number of points occupying the same location.)
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Chapter 4 The Multivariate Normal Distribution

If the data includes some large negative values and have a single long tail, a
more general transformation (see Yeo and Johnson [14]) should be applied.

Exercises

4.1. Consider a bivariate normal distribution with and

(a) Write out the bivariate normal density.

(b) Write out the squared statistical distance expression as a qua-
dratic function of and 

4.2. Consider a bivariate normal population with and

(a) Write out the bivariate normal density.

r1 2 = .5.
s2 2 = 1,s1 1 = 2,m2 = 2,m1 = 0,

x2 .x1

1x - M2 ¿  �-11x - M2

r12 = - .8.
s2 2 = 1s1 1 = 2,m2 = 3,m1 = 1,

x1l2 = d 51x + 12l - 16/l x Ú 0, l � 0
ln 1x + 12 x Ú 0, l = 0
-51-x + 122 -l

- 16/12 - l2 x 6 0, l � 2
- ln 1-x + 12 x 6 0, l = 2
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Figure 4.15 Contour plot of for the radiation data./1l1 , l22
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Exercises

(b) Write out the squared generalized distance expression as a
function of and 

(c) Determine (and sketch) the constant-density contour that contains 50% of the
probability.

4.3. Let X be with and

Which of the following random variables are independent? Explain.

(a) and 

(b) and 

(c) and 

(d) and 

(e) and 

4.4. Let X be with and

(a) Find the distribution of 

(b) Relabel the variables if necessary, and find a vector a such that and

are independent.

4.5. Specify each of the following.

(a) The conditional distribution of given that for the joint distribution in
Exercise 4.2.

(b) The conditional distribution of given that and for the joint dis-
tribution in Exercise 4.3.

(c) The conditional distribution of given that and for the joint dis-
tribution in Exercise 4.4.

4.6. Let X be distributed as where and

Which of the following random variables are independent? Explain.

(a) and 

(b) and 

(c) and 

(d) and 

(e) and X1 + 3X2 - 2X3X1

X21X1 , X32

X3X2

X3X1

X2X1

� = C 4 0 - 1
0 5 0

- 1 0 2
S

M ¿ = 71, - 1, 28N31M , �2,

X2 = x2X1 = x1X3 ,

X3 = x3X1 = x1X2 ,

X2 = x2X1 ,

X2 - a¿BX1

X3
R X22 * 1

3X1 - 2X2 + X3 .

� = C 1 1 1
1 3 2
1 2 2

S
M ¿ = 72, - 3, 18N31M , �2

X2 -
5
2 X1 - X3X2

X3
X1 + X2

2

X31X1 , X22

X3X2

X2X1

� = C 1 - 2 0
- 2 5 0

0 0 2
S

M ¿ = 7- 3, 1, 48N31M , �2

x2 .x1

1x - M2 ¿  �-11x - M2
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Chapter 4 The Multivariate Normal Distribution

4.7. Refer to Exercise 4.6 and specify each of the following.

(a) The conditional distribution of given that 

(b) The conditional distribution of given that and 

4.8. (Example of a nonnormal bivariate distribution with normal marginals.) Let be
and let

Show each of the following.

(a) also has an distribution.

(b) and do not have a bivariate normal distribution.

Hint:

(a) Since is � for any x. When
� � �

� � � But
� from the symmetry argument in the first line of this hint.
Thus, � � � which is
a standard normal probability.

(b) Consider the linear combination which equals zero with probability

4.9. Refer to Exercise 4.8, but modify the construction by replacing the break point 1 by 
c so that

Show that c can be chosen so that but that the two random variables
are not independent.

Hint:
For evaluate =

For c very large, evaluate 

4.10. Show each of the following.

(a)

(b)

Hint:

(a) = Expanding the determinant by the first row 

(see Definition 2A.24) gives 1 times a determinant of the same form, with the order
of I reduced by one. This procedure is repeated until is obtained. Similarly,

expanding the determinant by the last row gives `
A 0
0 ¿ I

` = ƒ A ƒ .`
A 0
0 ¿ I

`

1 * ƒ B ƒ

`
I 0
0 ¿ B

``
A 0
0 ¿ I

` `
I 0
0 ¿ B

` .`
A 0
0 ¿ B

`

`
A C
0¿ B

` = ƒ A ƒ ƒ B ƒ for ƒ A ƒ Z 0

`
A 0
0 ¿ B

` = ƒ A ƒ ƒ B ƒ

Cov 1X1 , X22 � E7X11- X128.E7X11X128Cov 1X1 , X22c = 0,

Cov 1X1 , X22 = 0,

X2 = b - X1 if - c … X1 … c

X1 elsewhere

P7 ƒ X1 ƒ 7 18 = .3174.

X1 - X2 ,

P7X1 … x28,P7- 1 6 X1 … x28P7X1 … - 18P7X2 … x28P7- 1 6 X1 … x28 P7- x2 … X1 6 18P7- x2 … X1 6 18.P7X1 … - 18P7- 1 6 - X1 … x28 P7X1 … - 18P7- 1 6 X2 … x28P7X2 … - 18P7X2 … x28-1 6 x2 6 1,
P7- x … X1 6 18P7- 1 6 X1 … x8N10, 12,X1

X2X1

N10, 12X2

X2 = b -X1 if -1 … X1 … 1
X1 otherwise

N10, 12,
X1

X3 = x3 .X2 = x2X1 ,

X3 = x3 .X1 ,
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(b) = But expanding the determinant 

by the last row gives Now use the result in Part a.

4.11. Show that, if A is square,

Hint: Partition A and verify that

Take determinants on both sides of this equality. Use Exercise 4.10 for the first and 
third determinants on the left and for the determinant on the right. The second equality
for follows by considering

4.12. Show that, for A symmetric,

Thus, is the upper left-hand block of 

Hint: Premultiply the expression in the hint to Exercise 4.11 by and

postmultiply by Take inverses of the resulting expression.

4.13. Show the following if X is with 

(a) Check that (Note that can be factored into
the product of contributions from the marginal and conditional distributions.)

(b) Check that

(Thus, the joint density exponent can be written as the sum of two terms corresponding
to contributions from the conditional and marginal distributions.)

(c) Given the results in Parts a and b, identify the marginal distribution of and the
conditional distribution of X1  ƒ   X2 = x2 .

X2

+ 1x2 - M22 ¿  �2 2
-11x2 - M22

* 1�1 1 - �1 2 �2 2
-1

 �2 12
-17x1 - M1 - �1 2 �2 2

-11x2 - M2281x - M2 ¿  �-11x - M2 = 7x1 - M1 - �1 2 �2 2
-11x2 - M228œ

ƒ � ƒƒ � ƒ = ƒ �2 2 ƒ ƒ �1 1 - �1 2 �2 2
-1

 �2 1 ƒ .
ƒ � ƒ Z 0.Np(M , �)

B I 0
-A2 2

-1
 A2 1 I

R-1

.

B I -A1 2 A2 2
-1

0¿ I
R-1

A-1.1A1 1 - A1 2 A2 2
-1

 A2 12
-1

A-1
= B I 0

- A2 2
-1

 A2 1 I
R   B1A1 1 - A1 2 A2 2

-1
 A2 12

-1 0
0 ¿ A2 2

-1R   B I - A1 2 A2 2
-1

0 ¿ I
R

B I - A1 1
-1

 A1 2

0 ¿ I
R = BA1 1 0

0 ¿ A2 2 - A2 1 A1 1
-1

 A1 2
RB I 0

- A2 1 A1 1
-1 I

R   BA1 1 A1 2

A2 1 A2 2
Rƒ  A  ƒ

= BA1 1 - A1 2 A2 2
-1

 A2 1 0
0 ¿ A2 2

RB I - A1 2 A2 2
-1

0 ¿ I
R   BA1 1 A1 2

A2 1 A2 2
R   B I 0

- A2 2
-1

 A2 1 I
R

 = ƒ A1 1 ƒ ƒ A2 2 - A2 1 A1 1
-1

 A1 2 ƒ for ƒ A1 1 ƒ Z 0

 ƒ A ƒ = ƒ A2 2 ƒ ƒ A1 1 - A1 2 A2 2
-1

 A2 1 ƒ for ƒ A2 2 ƒ Z 0

`
I A-1

 C
0¿ I

` = 1.

`
I A-1C
0¿ I
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A 0
0¿ B

` `
I A-1

 C
0¿ I

` .`
A C
0¿ B

`
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Chapter 4 The Multivariate Normal Distribution

Hint:

(a) Apply Exercise 4.11.

(b) Note from Exercise 4.12 that we can write as

If we group the product so that

the result follows.

4.14. If X is distributed as with show that the joint density can be written
as the product of marginal densities for

Hint: Show by block multiplication that

Then write

Note that from Exercise 4.10(a). Now factor the joint density.

4.15. Show that and are both matrices of

zeros. Here and

4.16. Let and be independent random vectors.

(a) Find the marginal distributions for each of the random vectors

and

(b) Find the joint density of the random vectors and defined in (a).

4.17. Let and be independent and identically distributed random vectors
with mean vector and covariance matrix Find the mean vector and covariance ma-
trices for each of the two linear combinations of random vectors

1
5 X1 +

1
5 X2 +

1
5 X3 +

1
5 X4 +

1
5 X5

�.M

X5X1 , X2 , X3 , X4 ,

V2V1

V2 =
1
4 X1 +

1
4 X2 -

1
4 X3 -

1
4 X4

V1 =
1
4 X1 -

1
4 X2 +

1
4 X3 -

1
4 X4

Np1M , �2X4X1 , X2 , X3 ,

x– =

1
n

 a
n

j = 1
 xj

j = 1, 2, Á , n,= 7xj 1 , xj 2 , Á , xj p8,x ¿j

p * pa
n

j = 1
 1x– - M21xj - x–2œ

a
n

j = 1
 1xj - x–21x– - M2œ

ƒ � ƒ = ƒ �1 1 ƒ ƒ �2 2 ƒ

 = 1x1 - M12 ¿  �1 1
-11x1 - M12 + 1x2 - M22 ¿  �2 2

-11x2 - M22

 1x - M2 ¿  �-11x - M2 = 71x1 - M12 ¿, 1x2 - M22 ¿8 B�1 1
-1 0

0 ¿ �2 2
-1R   Bx1 - M1

x2 - M2
R

B�1 1
-1 0

0 ¿ �2 2
-1R  is the inverse of � = B�1 1 0

0 ¿ �2 2
R

X  

 1
1q * 12

 and X  

 2
11p - q2* 12

 if �1 2 = 0
1q * 1p - q22

ƒ � ƒ Z 0,Np1M , �2

B I - �1 2 �2 2
-1

0 ¿ I
R   Bx1 - M1

x2 - M2
R = Bx1 - M1 - �1 2 �2 2

-11x2 - M22

x2 - M2
R

* B I - �1 2 �2 2
-1

0 ¿ I
R   Bx1 - M1

x2 - M2
RBx1 - M1
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R œ

  B I 0
- �2 2

-1
 �2 1 I

R   B1�1 1 - �1 2 �2 2
-1

 �2 12
-1 0

0 ¿ �2 2
-1R1x - M2 ¿  �-11x - M2
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Exercises

and

in terms of and Also, obtain the covariance between the two linear combinations of
random vectors.

4.18. Find the maximum likelihood estimates of the mean vector and the 
covariance matrix based on the random sample

from a bivariate normal population.

4.19. Let be a random sample of size from an population.
Specify each of the following completely.

(a) The distribution of 

(b) The distributions of and 

(c) The distribution of S

4.20. For the random variables in Exercise 4.19, specify the distribution of
in each case.

(a)

(b)

4.21. Let be a random sample of size 60 from a four-variate normal distribution
having mean and covariance Specify each of the following completely.

(a) The distribution of 

(b) The distribution of 

(c) The distribution of 

(d) The approximate distribution of 

4.22. Let be a random sample from a population distribution with mean 
and covariance matrix What is the approximate distribution of each of the following?

(a)

(b)

4.23. Consider the annual rates of return (including dividends) on the Dow-Jones 
industrial average for the years 1996–2005. These data, multiplied by 100, are 

0.6 3.1 25.3 7.1 6.2 25.216.1 22.6 26.0.

Use these 10 observations to complete the following.

(a) Construct a Q–Q plot. Do the data seem to be normally distributed? Explain.

(b) Carry out a test of normality based on the correlation coefficient [See (4–31).]
Let the significance level be 

4.24. Exercise 1.4 contains data on three variables for the world’s 10 largest companies as of
April 2005. For the sales and profits data:

(a) Construct Q–Q plots. Do these data appear to be normally distributed? Explain.

1x221x12

a = .10.
rQ .

-16.8

n1X - M2œS-11X - M2
X

.
MX1 , X2, Á , X7 5

n1X - M2œS-11X - M2
n1X - M2œ -11X - M2
1X1 - M2 ¿ -11X1 - M2
X

.M

X1, Á , X6 0

B = B1 0 0 0 0 0
0 0 1 0 0 0

RB = B1 -  
1
2 -  

1
2 0 0 0

0 0 0 -  
1
2 -  

1
2 1

RB119S2B¿

X1 , X2, Á , X2 0

1n - 12
1n1X - M2X

1X1 - M2 ¿ -11X1 - M2

N61M , 2n = 20X1 , X2, Á , X2 0

X = D3 6
4 4
5 7
4 7

T 2 * 2M2 * 1

.M

X1 - X2 + X3 - X4 + X5
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Chapter 4 The Multivariate Normal Distribution

(b) Carry out a test of normality based on the correlation coefficient [See (4–31).]
Set the significance level at Do the results of these tests corroborate the re-
sults in Part a?

4.25. Refer to the data for the world’s 10 largest companies in Exercise 1.4. Construct a chi-
square plot using all three variables. The chi-square quantiles are

4.26. Exercise 1.2 gives the age measured in years, as well as the selling price measured
in thousands of dollars, for used cars. These data are reproduced as follows:n = 10

x2 ,x1 ,

0.3518 0.7978 1.2125 1.6416 2.1095 2.6430 3.2831 4.1083 5.3170 7.8147

a = .10.
rQ.

1 2 3 3 4 5 6 8 9 11

18.95 19.00 17.95 15.54 14.00 12.95 8.94 7.49 6.00 3.99x2

x1

(a) Use the results of Exercise 1.2 to calculate the squared statistical distances
where 

(b) Using the distances in Part a, determine the proportion of the observations falling
within the estimated 50% probability contour of a bivariate normal distribution.

(c) Order the distances in Part a and construct a chi-square plot.

(d) Given the results in Parts b and c, are these data approximately bivariate normal?
Explain.

4.27. Consider the radiation data (with door closed) in Example 4.10. Construct a Q–Q plot
for the natural logarithms of these data. [Note that the natural logarithm transformation
corresponds to the value in (4-34).] Do the natural logarithms appear to be nor-
mally distributed? Compare your results with Figure 4.13. Does the choice or

make much difference in this case?

The following exercises may require a computer.

4.28. Consider the air-pollution data given in Table 1.5. Construct a Q–Q plot for the solar
radiation measurements and carry out a test for normality based on the correlation
coefficient [see (4-31)]. Let and use the entry corresponding to in
Table 4.2.

4.29. Given the air-pollution data in Table 1.5, examine the pairs and for
bivariate normality.

(a) Calculate statistical distances where

(b) Determine the proportion of observations falling
within the approximate 50% probability contour of a bivariate normal distribution.

(c) Construct a chi-square plot of the ordered distances in Part a.

4.30. Consider the used-car data in Exercise 4.26.

(a) Determine the power transformation that makes the values approximately
normal. Construct a Q–Q plot for the transformed data.

(b) Determine the power transformations that makes the values approximately
normal. Construct a Q–Q plot for the transformed data.

(c) Determine the power transformations that make the values
jointly normal using (4-40). Compare the results with those obtained in Parts a and b.

7x1 , x28Ln ¿ = 7ln1 , ln28
x2ln2

x1ln1

j = 1, 2, Á , 42,xj
œ

= 7xj 5 , xj 68,xj
œ

= 7xj 5 , xj 68. j = 1, 2, Á , 42,1xj - x–2œ

 S-11xj - x–2,

X6 = O3X5 = NO2

n = 40a = .05rQ

l = 0
l =

1
4

l = 0

x œ

j = 7xj 1 , xj 28.j = 1, 2, Á , 10,1xj - xq2œ  S-11xj - xq2,
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4.31. Examine the marginal normality of the observations on variables for the
multiple-sclerosis data in Table 1.6. Treat the non-multiple-sclerosis and multiple-sclerosis
groups separately. Use whatever methodology, including transformations, you feel is
appropriate.

4.32. Examine the marginal normality of the observations on variables for the
radiotherapy data in Table 1.7. Use whatever methodology, including transformations,
you feel is appropriate.

4.33. Examine the marginal and bivariate normality of the observations on variables
and for the data in Table 4.3.

4.34. Examine the data on bone mineral content in Table 1.8 for marginal and bivariate nor-
mality.

4.35. Examine the data on paper-quality measurements in Table 1.2 for marginal and multi-
variate normality.

4.36. Examine the data on women’s national track records in Table 1.9 for marginal and mul-
tivariate normality.

4.37. Refer to Exercise 1.18. Convert the women’s track records in Table 1.9 to speeds mea-
sured in meters per second. Examine the data on speeds for marginal and multivariate
normality.

4.38. Examine the data on bulls in Table 1.10 for marginal and multivariate normality. Consider
only the variables YrHgt, FtFrBody, PrctFFB, BkFat, SaleHt, and SaleWt.

4.39. The data in Table 4.6 (see the psychological profile data: www.prenhall.com/statistics) con-
sist of 130 observations generated by scores on a psychological test administered to Peru-
vian teenagers (ages 15, 16, and 17). For each of these teenagers the gender (male � 1,
female � 2) and socioeconomic status (low � 1, medium � 2) were also recorded. The
scores were accumulated into five subscale scores labeled independence (indep), support
(supp), benevolence (benev), conformity (conform), and leadership (leader).

X4X1 , X2 , X3 ,

X6X1 , X2 , Á ,

X5X1 , X2 , Á ,

Table 4.6 Psychological Profile Data

Indep Supp Benev Conform Leader Gender Socio

27 13 14 20 11 2 1
12 13 24 25 6 2 1
14 20 15 16 7 2 1
18 20 17 12 6 2 1
9 22 22 21 6 2 1

10 11 26 17 10 1 2
14 12 14 11 29 1 2
19 11 23 18 13 2 2
27 19 22 7 9 2 2
10 17 22 22 8 2 2

Source: Data courtesy of C. Soto.

ooooooo

(a) Examine each of the variables independence, support, benevolence, conformity and
leadership for marginal normality.

(b) Using all five variables, check for multivariate normality.

(c) Refer to part (a). For those variables that are nonnormal, determine the transformation
that makes them more nearly normal.
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Chapter 4 The Multivariate Normal Distribution

4.40. Consider the data on national parks in Exercise 1.27.

(a) Comment on any possible outliers in a scatter plot of the original variables.

(b) Determine the power transformation the makes the x1 values approximately
normal. Construct a Q�Q plot of the transformed observations.

(c) Determine the power transformation the makes the x2 values approximately
normal. Construct a Q�Q plot of the transformed observations.

(d) Determine the power transformation for approximate bivariate normality using 
(4-40).

4.41. Consider the data on snow removal in Exercise .20.

(a) Comment on any possible outliers in a scatter plot of the original variables.

(b) Determine the power transformation the makes the x1 values approximately
normal. Construct a Q�Q plot of the transformed observations.

(c) Determine the power transformation the makes the x2 values approximately
normal. Construct a Q�Q plot of the transformed observations.

(d) Determine the power transformation for approximate bivariate normality using 
(4-40).
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INFERENCES ABOUT A MEAN VECTOR

5.1 Introduction
This chapter is the first of the methodological sections of the book. We shall now use
the concepts and results set forth in Chapters 1 through 4 to develop techniques for
analyzing data. A large part of any analysis is concerned with inference—that is,
reaching valid conclusions concerning a population on the basis of information from a
sample.

At this point, we shall concentrate on inferences about a population mean
vector and its component parts. Although we introduce statistical inference through
initial discussions of tests of hypotheses, our ultimate aim is to present a full statisti-
cal analysis of the component means based on simultaneous confidence statements.

One of the central messages of multivariate analysis is that p correlated
variables must be analyzed jointly. This principle is exemplified by the methods
presented in this chapter.

5.2 The Plausibility of as a Value for a Normal 
Population Mean

Let us start by recalling the univariate theory for determining whether a specific value
is a plausible value for the population mean From the point of view of hypothe-

sis testing, this problem can be formulated as a test of the competing hypotheses

Here is the null hypothesis and is the (two-sided) alternative hypothesis. If
denote a random sample from a normal population, the appropriate

test statistic is

t =

1 X - m0 2

s>1n
, where  X =

1
n

 a
n

j = 1
 Xj and s2

=

1
n - 1

 a
n

j = 1
 1Xj -  X 2

2

X1 , X2 , Á , Xn

H1H0

H0 : m = m0 and H1 : m Z m0

m.m0

m0

C h a p t e r

5
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The Plausibility of as a Value for a Normal Population Meanm0

This test statistic has a student’s t-distribution with degrees of freedom (d.f.).
We reject that is a plausible value of if the observed exceeds a specified
percentage point of a t-distribution with d.f.

Rejecting when is large is equivalent to rejecting if its square,

(5-1)

is large. The variable in (5-1) is the square of the distance from the sample mean
to the test value The units of distance are expressed in terms of or esti-

mated standard deviations of Once and are observed, the test becomes:
Reject in favor of at significance level if

(5-2)

where denotes the upper th percentile of the t-distribution with
d.f.

If is not rejected, we conclude that is a plausible value for the normal
population mean. Are there other values of which are also consistent with the
data? The answer is yes! In fact, there is always a set of plausible values for a nor-
mal population mean. From the well-known correspondence between acceptance
regions for tests of versus and confidence intervals for
we have

is equivalent to

or

(5-3)

The confidence interval consists of all those values that would not be rejected by
the level test of 

Before the sample is selected, the confidence interval in (5-3) is a
random interval because the endpoints depend upon the random variables and s.
The probability that the interval contains is among large numbers of such
independent intervals, approximately of them will contain 

Consider now the problem of determining whether a given vector is a
plausible value for the mean of a multivariate normal distribution.We shall proceed
by analogy to the univariate development just presented.

A natural generalization of the squared distance in (5-1) is its multivariate analog

(5-4)T2
= 1 X - M02

œ

a
1
n

 Sb
-1

1 X - M02 = n1 X - M02
œ

 S-11 X - M02

M0p * 1
m.10011 - a2%

1 - a;m

 X
10011 - a2%

H0  : m = m0 .a

m0

x– - tn - 11a>22 
s1n

… m0 … x– + tn - 11a>22 
s1n

em0 lies in the 10011 - a2% confidence interval   x– ; tn - 11a>22 
s1n
f

5Do not reject H0 : m = m0 at level a6 or `
x– - m0

s>1n
` … tn - 11a>22

m,H1  : m Z m0H0  : m = m0

m

m0H0

n - 1
1001a>22tn - 11a>22

n1x– - m0 21s22
-1
1x– - m0 2 7 tn - 1

2 1a>22

a,H1 ,H0

s2
 X X.

s>1n ,m0 . X
t2

t2
=

1 X - m0 2
2

s2>n
= n1 X - m0 21s22

-1
1 X - m0 2

H0ƒ t ƒH0

n - 1
ƒ t ƒm,m0H0 ,

n - 1
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Chapter 5 Inferences about a Mean Vector

where

The statistic is called Hotelling’s in honor of Harold Hotelling, a pioneer in
multivariate analysis, who first obtained its sampling distribution. Here is the
estimated covariance matrix of (See Result 3.1.)

If the observed statistical distance is too large—that is, if is “too far” from
—the hypothesis is rejected. It turns out that special tables of per-

centage points are not required for formal tests of hypotheses. This is true because

(5-5)

where denotes a random variable with an F-distribution with p and d.f.
To summarize, we have the following:

Let be a random sample from an population. Then

with and –

(5-6)

whatever the true and Here is the upper th percentile of
the distribution.

Statement (5-6) leads immediately to a test of the hypothesis versus
At the level of significance, we reject in favor of if the

observed

(5-7)

It is informative to discuss the nature of the -distribution briefly and its cor-
respondence with the univariate test statistic. In Section 4.4, we described the man-
ner in which the Wishart distribution generalizes the chi-square distribution. We
can write

T2
= 1n 1 X - M0 2

œ 
£anj = 1

 1Xj - X 21Xj - X 2
œ

n - 1
≥-1

 1n 1 X - M0 2

T2
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The Plausibility of as a Value for a Normal Population Meanm0

which combines a normal, random vector and a Wishart, random
matrix in the form

(5-8)

This is analogous to

or

for the univariate case. Since the multivariate normal and Wishart random variables
are independently distributed [see (4-23)], their joint density function is the product
of the marginal normal and Wishart distributions. Using calculus, the distribution
(5-5) of as given previously can be derived from this joint distribution and the
representation (5-8).

It is rare, in multivariate situations, to be content with a test of 
where all of the mean vector components are specified under the null hypothesis.
Ordinarily, it is preferable to find regions of values that are plausible in light of
the observed data. We shall return to this issue in Section 5.4.

Example 5.1 (Evaluating ) Let the data matrix for a random sample of size 
from a bivariate normal population be

Evaluate the observed for What is the sampling distribution of in
this case? We find

and

 s2 2 =

19 - 622 + 16 - 622 + 13 - 622

2
= 9

 s1 2 =

16 - 8219 - 62 + 110 - 8216 - 62 + 18 - 8213 - 62

2
= -3

 s1 1 =

16 - 822 + 110 - 822 + 18 - 822

2
= 4

x– = Bx–1

x–2
R = D6 + 10 + 8

3
9 + 6 + 3

3

T = B8
6
R

T2Mœ

0 = 79, 58.T2

X = C 6 9
10 6
8 3

S
n = 3T 

2

M
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T2

tn - 1
2
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random variable≤ £ 1scaled2 chi-square
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 ¢ normal
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 = Np10, �2¿ c
1
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Chapter 5 Inferences about a Mean Vector

so

Thus,

and, from (5-4),

Before the sample is selected, has the distribution of a

random variable. �

The next example illustrates a test of the hypothesis using data
collected as part of a search for new diagnostic techniques at the University of
Wisconsin Medical School.

Example 5.2 (Testing a multivariate mean vector with ) Perspiration from 20
healthy females was analyzed. Three components, rate,
content, and content, were measured, and the results, which we call
the sweat data, are presented in Table 5.1.

Test the hypothesis against at level of
significance 

Computer calculations provide

and

We evaluate

= 20 7.640, -4.600, - .0358 C .467
- .042

.160
S = 9.74

20 74.640 - 4, 45.400 - 50, 9.965 - 108  C .586 - .022 .258
- .022 .006 - .002

.258 - .002 .402
S   C 4.640 - 4

45.400 - 50
9.965 - 10

ST2
=

S-1
= C .586 - .022 .258

- .022 .006 - .002
.258 - .002 .402

S
x– = C 4.640

45.400
9.965

S ,  S = C 2.879 10.010 -1.810
10.010 199.788 -5.640
-1.810 -5.640 3.628

S
a = .10.

H1  : M¿ Z 74, 50, 108H0  : M¿ = 74, 50, 108X3 = potassium
X2 = sodiumX1 = sweat

T 
2

H0  : M = M0

13 - 122

13 - 22
 F2, 3 - 2 = 4F2, 1

T2

T2
= 3 78 - 9, 6 - 58 B1

3
1
9

1
9

4
27

R  B8 - 9
6 - 5

R = 3 7-1, 18 B -  
2
9
1
27

R =
7
9

S-1
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1
142192 - 1-321-32

 B9 3
3 4

R = B1
3

1
9

1
9

4
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R
S = B 4 -3

-3 9
R
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The Plausibility of as a Value for a Normal Population Meanm0

Comparing the observed with the critical value

we see that and consequently, we reject at the 10% level of
significance.

We note that will be rejected if one or more of the component means, or
some combination of means, differs too much from the hypothesized values

At this point, we have no idea which of these hypothesized values may
not be supported by the data.

We have assumed that the sweat data are multivariate normal. The Q–Q plots
constructed from the marginal distributions of and all approximate
straight lines. Moreover, scatter plots for pairs of observations have approximate
elliptical shapes, and we conclude that the normality assumption was reasonable in
this case. (See Exercise 5.4.) �

One feature of the -statistic is that it is invariant (unchanged) under changes
in the units of measurements for X of the form

(5-9)Y
1p * 12

= C
1p * p2

X
1p * 12

+ d
1p * 12

,  C nonsingular

T2

X3X1 , X2 ,

34, 50, 104.

H0

H0T2
= 9.74 7 8.18,

1n - 12p

1n - p2
 Fp, n - p1.102 =

19132

17
 F3, 171.102 = 3.35312.442 = 8.18

T2
= 9.74

Table 5.1 Sweat Data

Individual (Sweat rate) (Sodium) (Potassium)

1 3.7 48.5 9.3
2 5.7 65.1 8.0
3 3.8 47.2 10.9
4 3.2 53.2 12.0
5 3.1 55.5 9.7
6 4.6 36.1 7.9
7 2.4 24.8 14.0
8 7.2 33.1 7.6
9 6.7 47.4 8.5

10 5.4 54.1 11.3
11 3.9 36.9 12.7
12 4.5 58.8 12.3
13 3.5 27.8 9.8
14 4.5 40.2 8.4
15 1.5 13.5 10.1
16 8.5 56.4 7.1
17 4.5 71.6 8.2
18 6.5 52.8 10.9
19 4.1 44.1 11.2
20 5.5 40.9 9.4

Source: Courtesy of Dr. Gerald Bargman.

X3X2X1
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Chapter 5 Inferences about a Mean Vector

A transformation of the observations of this kind arises when a constant is
subtracted from the ith variable to form and the result is multiplied 
by a constant to get Premultiplication of the centered and 
scaled quantities by any nonsingular matrix will yield Equation (5-9).
As an example, the operations involved in changing to correspond
exactly to the process of converting temperature from a Fahrenheit to a Celsius
reading.

Given observations and the transformation in (5-9), it immediately
follows from Result 3.6 that

Moreover, by (2-24) and (2-45),

Therefore, computed with the y’s and a hypothesized value = is

The last expression is recognized as the value of computed with the x’s.

5.3 Hotelling’s and Likelihood Ratio Tests
We introduced the -statistic by analogy with the univariate squared distance 
There is a general principle for constructing test procedures called the likelihood
ratio method, and the -statistic can be derived as the likelihood ratio test of 

The general theory of likelihood ratio tests is beyond the scope of this
book. (See [3] for a treatment of the topic.) Likelihood ratio tests have several
optimal properties for reasonably large samples, and they are particularly conve-
nient for hypotheses formulated in terms of multivariate normal parameters.

We know from (4-18) that the maximum of the multivariate normal likelihood
as and are varied over their possible values is given by

(5-10)

where

are the maximum likelihood estimates. Recall that and are those choices for 
and that best explain the observed values of the random sample.�
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Hotelling’s and Likelihood Ratio TestsT2

Under the hypothesis the normal likelihood specializes to

The mean is now fixed, but can be varied to find the value that is “most likely”
to have led, with fixed, to the observed sample. This value is obtained by maxi-
mizing with respect to 

Following the steps in (4-13), the exponent in may be written as

Applying Result 4.10 with and we have

(5-11)

with

To determine whether is a plausible value of the maximum of is
compared with the unrestricted maximum of The resulting ratio is called
the likelihood ratio statistic.

Using Equations (5-10) and (5-11), we get

(5-12)

The equivalent statistic is called Wilks’ lambda. If the
observed value of this likelihood ratio is too small, the hypothesis is
unlikely to be true and is, therefore, rejected. Specifically, the likelihood ratio test of

against rejects if

(5-13)

where is the lower th percentile of the distribution of (Note that the
likelihood ratio test statistic is a power of the ratio of generalized variances.) Fortu-
nately, because of the following relation between and we do not need the
distribution of the latter to carry out the test.
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Chapter 5 Inferences about a Mean Vector

Result 5.1. Let be a random sample from an population.
Then the test in (5-7) based on is equivalent to the likelihood ratio test of

versus because

Proof. Let the matrix

By Exercise 4.11, = =

from which we obtain

Since, by (4-14),

the foregoing equality involving determinants can be written

or

Thus,

(5-14)

Here is rejected for small values of or, equivalently, large values of The
critical values of are determined by (5-6). �T2
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Hotelling’s and Likelihood Ratio TestsT2

Incidentally, relation (5-14) shows that may be calculated from two determi-
nants, thus avoiding the computation of Solving (5-14) for we have

(5-15)

Likelihood ratio tests are common in multivariate analysis. Their optimal 
large sample properties hold in very general contexts, as we shall indicate shortly.
They are well suited for the testing situations considered in this book. Likelihood
ratio methods yield test statistics that reduce to the familiar F- and t-statistics in uni-
variate situations.

General Likelihood Ratio Method

We shall now consider the general likelihood ratio method. Let be a vector consist-
ing of all the unknown population parameters, and let be the likelihood function
obtained by evaluating the joint density of at their observed values

The parameter vector takes its value in the parameter set For
example, in the p-dimensional multivariate normal case,

and consists of the p-dimensional
space, where combined with the

-dimensional space of variances and covariances such that is positive
definite.Therefore, has dimension ± Under the null hypothesis

is restricted to lie in a subset of For the multivariate normal
situation with and unspecified, =

with positive so has
dimension =

A likelihood ratio test of rejects in favor of if

(5-16)

where c is a suitably chosen constant. Intuitively, we reject if the maximum of the
likelihood obtained by allowing to vary over the set is much smaller than
the maximum of the likelihood obtained by varying over all values in When the
maximum in the numerator of expression (5-16) is much smaller than the maximum
in the denominator, does not contain plausible values for 

In each application of the likelihood ratio method, we must obtain the sampling
distribution of the likelihood-ratio test statistic Then c can be selected to produce
a test with a specified significance level However, when the sample size is large
and certain regularity conditions are satisfied, the sampling distribution of 
is well approximated by a chi-square distribution.This attractive feature accounts, in
part, for the popularity of likelihood ratio procedures.

-2 ln ¶
a.

¶.

U.∏0

∏.U

∏0U

H0

¶ =

max
UH ∏0

 L1U2

max
UH ∏

 L1U2
6 c

H1 : U � ∏0H0H0 : U H ∏0

p1p + 12>2.n0 = 0 + p1p + 12>2
∏0definite6,�sp psp - 1, p ,s2 p , Á ,s2 2 , Á ,s1 1 , Á , s1 p ,

mp = mp 0 ;m2 = m2 0 , Á ,5m1 = m1 0 ,∏0�M = M0

∏.∏0U = U0 , UH0  :
p1p + 12>2.n = p∏

�7p1p + 12>28 - q 6 mp 6 q- q 6 m1 6 q , Á ,
∏sp - 1, p , sp p8s2 2 , Á , s2 p , Á ,s1 1 , Á , s1 p ,

U¿ = 7m1 , Á , mp ,
∏.Ux1 , x2 , Á , xn .

X1 , X2 , Á , Xn

L1U2
U

 =

1n - 12 ` a
n

j = 1
 1xj - M0 2 1xj - M0 2¿ `

` a
n

j = 1
 1xj - x–2 1xj - x–2œ `

- 1n - 12

 T2
=

1n - 12 ƒ  �N 0 ƒ

ƒ  � 
N

ƒ

- 1n - 12

T2,S-1.
T2

219



Chapter 5 Inferences about a Mean Vector

Result 5.2. When the sample size n is large, under the null hypothesis 

is, approximately, a random variable. Here the degrees of freedom are 
= – �

Statistical tests are compared on the basis of their power, which is defined as the
curve or surface whose height is evaluated at each parameter
vector Power measures the ability of a test to reject when it is not true. In the
rare situation where is completely specified under and the alternative 
consists of the single specified value the likelihood ratio test has the highest
power among all tests with the same significance level = =

In many single-parameter cases ( has one component), the likelihood ratio test is
uniformly most powerful against all alternatives to one side of In other
cases, this property holds approximately for large samples.

We shall not give the technical details required for discussing the optimal prop-
erties of likelihood ratio tests in the multivariate situation. The general import of
these properties, for our purposes, is that they have the highest possible (average)
power when the sample size is large.

5.4 Confidence Regions and Simultaneous Comparisons 
of Component Means

To obtain our primary method for making inferences from a sample, we need to ex-
tend the concept of a univariate confidence interval to a multivariate confidence re-
gion. Let be a vector of unknown population parameters and be the set of all
possible values of A confidence region is a region of likely values. This region is
determined by the data, and for the moment, we shall denote it by where

is the data matrix.
The region is said to be a confidence region if, before the

sample is selected,

(5-17)

This probability is calculated under the true, but unknown, value of 
The confidence region for the mean of a p-dimensional normal population is

available from (5-6). Before the sample is selected,

whatever the values of the unknown and In words, will be within

of with probability provided that distance is defined in terms of 
For a particular sample, and S can be computed, and the inequality x–
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will define a region 
within the space of all possible parameter values. In this case, the region will be an
ellipsoid centered at This ellipsoid is the confidence region for 

A confidence region for the mean of a p-dimensional normal
distribution is the ellipsoid determined by all such that

(5-18)

where and are

the sample observations.

To determine whether any lies within the confidence region (is a 
plausible value for ), we need to compute the generalized squared distance

and compare it with If the
squared distance is larger than is not in the confi-
dence region. Since this is analogous to testing versus [see
(5-7)], we see that the confidence region of (5-18) consists of all vectors for which
the -test would not reject in favor of at significance level 

For we cannot graph the joint confidence region for However, we can
calculate the axes of the confidence ellipsoid and their relative lengths. These are
determined from the eigenvalues and eigenvectors of S. As in (4-7), the direc-
tions and lengths of the axes of

are determined by going

units along the eigenvectors Beginning at the center the axes of the confidence
ellipsoid are

(5-19)

The ratios of the ’s will help identify relative amounts of elongation along pairs
of axes.

Example 5.3 (Constructing a confidence ellipse for ) Data for radiation from
microwave ovens were introduced in Examples 4.10 and 4.17. Let

and

x2 = 24  measured radiation with door open

x1 = 24 measured radiation with door closed
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For the pairs of transformed observations, we find that

The eigenvalue and eigenvector pairs for S are

The 95% confidence ellipse for consists of all values satisfying

or, since 

To see whether is in the confidence region, we compute

We conclude that is in the region. Equivalently, a test of 

would not be rejected in favor of at the level  

of significance.
The joint confidence ellipsoid is plotted in Figure 5.1. The center is at

and the half-lengths of the major and minor axes are given by

and

respectively. The axes lie along and when these
vectors are plotted with as the origin. An indication of the elongation of the confi-
dence ellipse is provided by the ratio of the lengths of the major and minor axes.
This ratio is
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The length of the major axis is 3.6 times the length of the minor axis. ■

Simultaneous Confidence Statements

While the confidence region for c a constant, correctly
assesses the joint knowledge concerning plausible values of any summary of con-
clusions ordinarily includes confidence statements about the individual component
means. In so doing, we adopt the attitude that all of the separate confidence state-
ments should hold simultaneously with a specified high probability. It is the guaran-
tee of a specified probability against any statement being incorrect that motivates
the term simultaneous confidence intervals. We begin by considering simultaneous
confidence statements which are intimately related to the joint confidence region
based on the -statistic.

Let X have an distribution and form the linear combination

From (2-43),

and

Moreover, by Result 4.2, Z has an distribution. If a random sample
from the population is available, a corresponding sample

of Z’s can be created by taking linear combinations. Thus,

The sample mean and variance of the observed values are, by (3-36),
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Figure 5.1 A 95% confidence
ellipse for based on microwave-
radiation data.
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Chapter 5 Inferences about a Mean Vector

and

where and S are the sample mean vector and covariance matrix of the ’s,
respectively.

Simultaneous confidence intervals can be developed from a consideration of con-
fidence intervals for for various choices of a. The argument proceeds as follows.

For a fixed and unknown, a confidence interval for 
is based on student’s t-ratio

(5-20)

and leads to the statement

or

(5-21)

where is the upper th percentile of a t-distribution with d.f.
Inequality (5-21) can be interpreted as a statement about the components of the

mean vector For example, with and (5-21) becomes
the usual confidence interval for a normal population mean. (Note, in this case, that

) Clearly, we could make several confidence statements about the com-
ponents of each with associated confidence coefficient by choosing differ-
ent coefficient vectors a. However, the confidence associated with all of the
statements taken together is not

Intuitively, it would be desirable to associate a “collective” confidence coeffi-
cient of with the confidence intervals that can be generated by all choices of
a. However, a price must be paid for the convenience of a large simultaneous confi-
dence coefficient: intervals that are wider (less precise) than the interval of (5-21)
for a specific choice of a.

Given a data set and a particular a, the confidence interval in
(5-21) is that set of values for which

or, equivalently,

(5-22)

A simultaneous confidence region is given by the set of values such that is rel-
atively small for all choices of a. It seems reasonable to expect that the constant

in (5-22) will be replaced by a larger value, when statements are devel-
oped for many choices of a.
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Considering the values of a for which we are naturally led to the deter-
mination of

Using the maximization lemma (2-50) with and we get

(5-23)

with the maximum occurring for a proportional to 

Result 5.3. Let be a random sample from an population
with positive definite. Then, simultaneously for all a, the interval

will contain with probability 

Proof. From (5-23),

for every a, or

for every a. Choosing [see (5-6)] gives intervals
that will contain for all a, with probability �

It is convenient to refer to the simultaneous intervals of Result 5.3 as 
-intervals, since the coverage probability is determined by the distribution of 

The successive choices and so on through
for the -intervals allow us to conclude that

(5-24)

all hold simultaneously with confidence coefficient Note that, without modi-
fying the coefficient we can make statements about the differences 
corresponding to where andai = 1ak , 0, Á , 08,ai , 0, Á , 0,a¿ = 70, Á , 0,

mi - mk1 - a,
1 - a.

Ap1n - 12

1n - p2
 Fp, n - p1a2Ap1n - 12

1n - p2
 Fp, n - p1a2

oAp1n - 12

1n - p2
 Fp, n - p1a2

 

A s1 1

nA s2 2

n
 A sp p

n

x–1 - Ap1n - 12

1n - p2
 Fp, n - p1a2

x–2 - Ap1n - 12

1n - p2
 Fp, n - p1a2

o

x–p - Ap1n - 12

1n - p2
 Fp, n - p1a2

A s1 1

n
… m1 … x–1A s2 2

n
… m2 … x–2

o

 A sp p

n
… mp … x–p

+

+

 

+

T2a¿ = 70, 0, Á , 18 a¿ = 70, 1, Á , 08,a¿ = 71, 0, Á , 08, T2.T2

1 - a = P7T2
… c28.a¿  M

c2
= p1n - 12Fp, n - p1a2>1n - p2

a¿  x– - c Aa¿  Sa
n

… a¿  M … a¿  x– + c Aa¿Sa
n

T2
= n1x– - M2

œ

 S-11x– - M2 … c2 implies 
n1a¿  x– - a¿  M2

2

a¿  Sa
… c2

1 - a.a¿  M

¢a¿  X - Ap1n - 12

n1n - p2
 Fp, n - p1a2 a¿  Sa ,  a¿X + Ap1n - 12

n1n - p2
 Fp, n - p1a2 a¿  Sa  ≤�

Np1M, �2X1 , X2 , Á , Xn

S-11x– - M2.

max
a

 
n1a¿1x– - M22

2

a¿  Sa
= n Bmax

a
 
1a¿1x– - M22

2

a¿  Sa
R = n1x– - M2

œ

 S-11x– - M2 = T2

B = S,d = 1xq - M2,x = a,

max
a

 t2
= max

a
 
n1a¿1x– - M22

2

a¿  Sa

t2
… c2,

225



Chapter 5 Inferences about a Mean Vector

In this case and we have the statement

(5-25)

The simultaneous confidence intervals are ideal for “data snooping.” The
confidence coefficient remains unchanged for any choice of a, so linear com-
binations of the components that merit inspection based upon an examination of
the data can be estimated.

In addition, according to the results in Supplement 5A, we can include the state-
ments about belonging to the sample mean-centered ellipses

(5-26)

and still maintain the confidence coefficient for the whole set of statements.
The simultaneous confidence intervals for the individual components of a

mean vector are just the shadows, or projections, of the confidence ellipsoid on the
component axes. This connection between the shadows of the ellipsoid and the si-
multaneous confidence intervals given by (5-24) is illustrated in the next example.

Example 5.4 (Simultaneous confidence intervals as shadows of the confidence ellipsoid)
In Example 5.3, we obtained the 95% confidence ellipse for the means of the fourth
roots of the door-closed and door-open microwave radiation measurements. The 95%
simultaneous intervals for the two component means are, from (5-24),

In Figure 5.2, we have redrawn the 95% confidence ellipse from Example 5.3.
The 95% simultaneous intervals are shown as shadows, or projections, of this ellipse
on the axes of the component means. �

Example 5.5 (Constructing simultaneous confidence intervals and ellipses) The
scores obtained by college students on the College Level Examination Pro-
gram (CLEP) subtest and the College Qualification Test (CQT) subtests and

are given in Table 5.2 on page 228 for science and history,
and These data giveX3 = science.X2 = verbal,

X1 = socialX3
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Let us compute the 95% simultaneous confidence intervals for and
We have

and we obtain the simultaneous confidence statements [see (5-24)]

or

or
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Figure 5.2 Simultaneous -intervals for the component means as shadows of the
confidence ellipse on the axes—microwave radiation data.
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Table 5.2 College Test Data

(Social (Social
science and science and

Individual history) (Verbal) (Science) Individual history) (Verbal) (Science)

1 468 41 26 45 494 41 24
2 428 39 26 46 541 47 25
3 514 53 21 47 362 36 17
4 547 67 33 48 408 28 17
5 614 61 27 49 594 68 23
6 501 67 29 50 501 25 26
7 421 46 22 51 687 75 33
8 527 50 23 52 633 52 31
9 527 55 19 53 647 67 29

10 620 72 32 54 647 65 34
11 587 63 31 55 614 59 25
12 541 59 19 56 633 65 28
13 561 53 26 57 448 55 24
14 468 62 20 58 408 51 19
15 614 65 28 59 441 35 22
16 527 48 21 60 435 60 20
17 507 32 27 61 501 54 21
18 580 64 21 62 507 42 24
19 507 59 21 63 620 71 36
20 521 54 23 64 415 52 20
21 574 52 25 65 554 69 30
22 587 64 31 66 348 28 18
23 488 51 27 67 468 49 25
24 488 62 18 68 507 54 26
25 587 56 26 69 527 47 31
26 421 38 16 70 527 47 26
27 481 52 26 71 435 50 28
28 428 40 19 72 660 70 25
29 640 65 25 73 733 73 33
30 574 61 28 74 507 45 28
31 547 64 27 75 527 62 29
32 580 64 28 76 428 37 19
33 494 53 26 77 481 48 23
34 554 51 21 78 507 61 19
35 647 58 23 79 527 66 23
36 507 65 23 80 488 41 28
37 454 52 28 81 607 69 28
38 427 57 21 82 561 59 34
39 521 66 26 83 614 70 23
40 468 57 14 84 527 49 30
41 587 55 30 85 474 41 16
42 507 61 31 86 441 47 26
43 574 54 31 87 607 67 32
44 507 53 23

Source: Data courtesy of Richard W. Johnson.

X3X2X1X3X2X1
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or

With the possible exception of the verbal scores, the marginal Q–Q plots and two-
dimensional scatter plots do not reveal any serious departures from normality for
the college qualification test data. (See Exercise 5.18.) Moreover, the sample size is
large enough to justify the methodology, even though the data are not quite normally
distributed. (See Section 5.5.)

The simultaneous -intervals above are wider than univariate intervals because
all three must hold with 95% confidence. They may also be wider than necessary, be-
cause, with the same confidence, we can make statements about differences.

For instance, with the interval for has endpoints

so is a 95% confidence interval for Simultaneous intervals
can also be constructed for the other differences.

Finally, we can construct confidence ellipses for pairs of means, and the same
95% confidence holds. For example, for the pair we have

This ellipse is shown in Figure 5.3 on page 230,along with the 95% confidence ellipses for
the other two pairs of means.The projections or shadows of these ellipses on the axes are
also indicated, and these projections are the -intervals. �

A Comparison of Simultaneous Confidence Intervals 
with One-at-a-Time Intervals

An alternative approach to the construction of confidence intervals is to consider
the components one at a time, as suggested by (5-21) with 

where This approach ignores the covariance structure of the
p variables and leads to the intervals

(5-27)
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Although prior to sampling, the ith interval has probability of covering 
we do not know what to assert, in general, about the probability of all intervals con-
taining their respective ’s. As we have pointed out, this probability is not 

To shed some light on the problem, consider the special case where the obser-
vations have a joint normal distribution and

Since the observations on the first variable are independent of those on the second
variable, and so on, the product rule for independent events can be applied. Before
the sample is selected,

If and this probability is 1.9526 = .74.p = 6,1 - a = .95

 = 11 - a2p
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Figure 5.3 95% confidence ellipses for pairs of means and the simultaneous 
-intervals—college test data.T2
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Confidence Regions and Simultaneous Comparisons of Component Means

To guarantee a probability of that all of the statements about the compo-
nent means hold simultaneously, the individual intervals must be wider than the sepa-
rate t-intervals; just how much wider depends on both p and n, as well as on 

For and the multipliers of in (5-24) and
(5-27) are

and respectively. Consequently, in this case the simultaneous in-
tervals are wider than those derived from the one-
at-a-time t method.

Table 5.3 gives some critical distance multipliers for one-at-a-time t-intervals
computed according to (5-21), as well as the corresponding simultaneous -inter-
vals. In general, the width of the -intervals, relative to the t-intervals, increases for
fixed n as p increases and decreases for fixed p as n increases.

T2
T2

10014.14 - 2.1452>2.145 = 93%
tn - 11.0252 = 2.145,

Ap1n - 12

1n - p2
 Fp, n - p1.052 = A41142

11
 13.362 = 4.14

2si i >np = 4,n = 15,1 - a = .95,
1 - a.

1 - a

Table 5.3 Critical Distance Multipliers for One-at-a-Time t- Intervals and 
-Intervals for Selected n and 

n

15 2.145 4.14 11.52
25 2.064 3.60 6.39
50 2.010 3.31 5.05

100 1.970 3.19 4.61
1.960 3.08 4.28q

p = 10p = 4tn - 11.0252

A 1n - 12p

1n - p2
 Fp, n - p1.052

p 11 - a = .952T2

The comparison implied by Table 5.3 is a bit unfair, since the confidence level
associated with any collection of -intervals, for fixed n and p, is .95, and the over-
all confidence associated with a collection of individual t intervals, for the same n,
can, as we have seen, be much less than .95. The one-at-a-time t intervals are too
short to maintain an overall confidence level for separate statements about, say, all
p means. Nevertheless, we sometimes look at them as the best possible information
concerning a mean, if this is the only inference to be made. Moreover, if the one-at-
a-time intervals are calculated only when the -test rejects the null hypothesis,
some researchers think they may more accurately represent the information about
the means than the -intervals do.

The -intervals are too wide if they are applied only to the p component means.
To see why, consider the confidence ellipse and the simultaneous intervals shown in
Figure 5.2. If lies in its -interval and lies in its -interval, then lies in
the rectangle formed by these two intervals. This rectangle contains the confidence
ellipse and more.The confidence ellipse is smaller but has probability .95 of covering
the mean vector with its component means and Consequently, the probabil-
ity of covering the two individual means and will be larger than .95 for the rec-
tangle formed by the -intervals. This result leads us to consider a second approach
to making multiple comparisons known as the Bonferroni method.

T2
m2m1

m2 .m1M

1m1 , m22T2m2T2m1

T2
T2

T2

T2
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Chapter 5 Inferences about a Mean Vector

The Bonferroni Method of Multiple Comparisons

Often, attention is restricted to a small number of individual confidence statements.
In these situations it is possible to do better than the simultaneous intervals of
Result 5.3. If the number m of specified component means or linear combinations

is small, simultaneous confidence intervals can be
developed that are shorter (more precise) than the simultaneous -intervals.
The alternative method for multiple comparisons is called the Bonferroni method,
because it is developed from a probability inequality carrying that name.

Suppose that, prior to the collection of data, confidence statements about m lin-
ear combinations are required. Let denote a confidence state-
ment about the value of with Now (see
Exercise 5.6),

(5-28)

Inequality (5-28), a special case of the Bonferroni inequality, allows an investi-
gator to control the overall error rate regardless of the correla-
tion structure behind the confidence statements. There is also the flexibility of
controlling the error rate for a group of important statements and balancing it by
another choice for the less important statements.

Let us develop simultaneous interval estimates for the restricted set consisting
of the components of Lacking information on the relative importance of these
components, we consider the individual t-intervals

with Since contains =

we have, from (5-28),

Therefore, with an overall confidence level greater than or equal to we can
make the following statements:

o o o

(5-29)
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Confidence Regions and Simultaneous Comparisons of Component Means

The statements in (5-29) can be compared with those in (5-24). The percentage
point replaces but otherwise the inter-
vals are of the same structure.

Example 5.6 (Constructing Bonferroni simultaneous confidence intervals and com-
paring them with -intervals) Let us return to the microwave oven radiation data
in Examples 5.3 and 5.4. We shall obtain the simultaneous 95% Bonferroni confi-
dence intervals for the means, and of the fourth roots of the door-closed and
door-open measurements with We make use of the results in
Example 5.3, noting that and = to get

Figure 5.4 shows the 95% simultaneous confidence intervals for from
Figure 5.2, along with the corresponding 95% Bonferroni intervals. For each com-
ponent mean, the Bonferroni interval falls within the -interval. Consequently,
the rectangular (joint) region formed by the two Bonferroni intervals is contained
in the rectangular region formed by the two -intervals. If we are interested only in
the component means, the Bonferroni intervals provide more precise estimates than

T2

T2

m1 , m2T2

 x–2 ; t411.01252 A s2 2

n
= .603 ; 2.327 A .0146

42
  or  .560 … m2 … .646

 x–1 ; t411.01252 A s1 1

n
= .564 ; 2.327 A .0144

42
  or  .521 … m1 … .607

t411.01252 = 2.327,t411.05>21222n = 42
i = 1, 2.ai = .05>2,

m2 ,m1

T2

21n - 12pFp, n - p1a2>1n - p2 ,tn - 11a>2p2

0.
54

0.500 0.6040.552

0.
58

0.
62

0.
66

µ2

µ1
.516
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.521 .612.607

T 2

Bonferroni

Figure 5.4 The 95% and 95% Bonferroni simultaneous confidence intervals for the
component means—microwave radiation data.

T2
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Chapter 5 Inferences about a Mean Vector

the -intervals. On the other hand, the 95% confidence region for gives the
plausible values for the pairs when the correlation between the measured
variables is taken into account. ■

The Bonferroni intervals for linear combinations and the analogous 
-intervals (recall Result 5.3) have the same general form:

Consequently, in every instance where 

(5-30)

which does not depend on the random quantities and S.As we have pointed out, for
a small number m of specified parametric functions the Bonferroni intervals will
always be shorter. How much shorter is indicated in Table 5.4 for selected n and p.

a¿M,
X

Length of Bonferroni interval

Length of T2-interval
=

tn - 11a>2m2Ap1n - 12
n - p

 Fp, n - p1a2

ai = a>m,

a¿  X ; 1critical value2 Aa¿  Sa
n

T2
a¿  M

1m1 , m22
MT2

Table 5.4 (Length of Bonferroni Interval)>(Length of -Interval)
for and 

n 2 4 10

15 .88 .69 .29
25 .90 .75 .48
50 .91 .78 .58

100 .91 .80 .62
.91 .81 .66q

m = p

ai = .05>m1 - a = .95
T2

We see from Table 5.4 that the Bonferroni method provides shorter intervals
when Because they are easy to apply and provide the relatively short confi-
dence intervals needed for inference, we will often apply simultaneous t-intervals
based on the Bonferroni method.

5.5 Large Sample Inferences about a Population Mean Vector
When the sample size is large, tests of hypotheses and confidence regions for can
be constructed without the assumption of a normal population. As illustrated in
Exercises 5.15, 5.16, and 5.17, for large n, we are able to make inferences about the
population mean even though the parent distribution is discrete. In fact, serious de-
partures from a normal population can be overcome by large sample sizes. Both
tests of hypotheses and simultaneous confidence statements will then possess (ap-
proximately) their nominal levels.

The advantages associated with large samples may be partially offset by a loss in
sample information caused by using only the summary statistics and S. On the
other hand, since is a sufficient summary for normal populations [see (4-21)],1x– , S2

x–,

M

m = p.
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Large Sample Inferences about a Population Mean Vector

the closer the underlying population is to multivariate normal, the more efficiently
the sample information will be utilized in making inferences.

All large-sample inferences about are based on a -distribution. From (4-28),
we know that = is approxi-
mately with p d.f., and thus,

(5-31)

where is the upper th percentile of the -distribution.
Equation (5-31) immediately leads to large sample tests of hypotheses and simul-

taneous confidence regions. These procedures are summarized in Results 5.4 and 5.5.

Result 5.4. Let be a random sample from a population with mean
and positive definite covariance matrix When is large, the hypothesis

is rejected in favor of at a level of significance approxi-
mately if the observed

Here is the upper th percentile of a chi-square distribution with p d.f. �

Comparing the test in Result 5.4 with the corresponding normal theory test in
(5-7), we see that the test statistics have the same structure, but the critical values
are different. A closer examination, however, reveals that both tests yield essential-
ly the same result in situations where the -test of Result 5.4 is appropriate. This
follows directly from the fact that and are ap-
proximately equal for n large relative to p. (See Tables 3 and 4 in the appendix.)

Result 5.5. Let be a random sample from a population with mean
and positive definite covariance If is large,

will contain for every a, with probability approximately Consequently,
we can make the simultaneous confidence statements

and, in addition, for all pairs the sample mean-centered
ellipses
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Chapter 5 Inferences about a Mean Vector

Proof. The first part follows from Result 5A.1, with The probability
level is a consequence of (5-31). The statements for the are obtained by the spe-
cial choices where The ellipsoids
for pairs of means follow from Result 5A.2 with The overall confidence
level of approximately for all statements is, once again, a result of the large
sample distribution theory summarized in (5-31). �

The question of what is a large sample size is not easy to answer. In one or two
dimensions, sample sizes in the range 30 to 50 can usually be considered large. As
the number characteristics becomes large, certainly larger sample sizes are required
for the asymptotic distributions to provide good approximations to the true distrib-
utions of various test statistics. Lacking definitive studies, we simply state that n � p
must be large and realize that the true case is more complicated. An application
with p � 2 and sample size 50 is much different than an application with p � 52 and
sample size 100 although both have n � p � 48.

It is good statistical practice to subject these large sample inference procedures
to the same checks required of the normal-theory methods. Although small to
moderate departures from normality do not cause any difficulties for n large,
extreme deviations could cause problems. Specifically, the true error rate may be far
removed from the nominal level If, on the basis of Q–Q plots and other investiga-
tive devices, outliers and other forms of extreme departures are indicated (see, for
example, [2]), appropriate corrective actions, including transformations, are desir-
able. Methods for testing mean vectors of symmetric multivariate distributions that
are relatively insensitive to departures from normality are discussed in [11]. In some
instances, Results 5.4 and 5.5 are useful only for very large samples.

The next example allows us to illustrate the construction of large sample simul-
taneous statements for all single mean components.

Example 5.7 (Constructing large sample simultaneous confidence intervals) A music
educator tested thousands of Finnish students on their native musical ability in order
to set national norms in Finland. Summary statistics for part of the data set are given
in Table 5.5. These statistics are based on a sample of Finnish 12th graders.n = 96

a.

1 - a

c2
= xp

21a2.
i = 1, 2, Á , p.ai = 1,a¿ = 70, Á , 0, ai , 0, Á , 08, mi

c2
= xp

21a2.

Table 5.5 Musical Aptitude Profile Means and Standard Deviations for 96
12th-Grade Finnish Students Participating in a Standardization Program

Raw score

Variable Mean Standard deviation 

28.1 5.76
26.6 5.85
35.4 3.82
34.2 5.12
23.6 3.76
22.0 3.93
22.7 4.03

Source: Data courtesy of V. Sell.

X7 = style
X6 = balance
X5 = phrasing
X4 = meter
X3 = tempo
X2 = harmony
X1 = melody

11si i21x–i2
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Large Sample Inferences about a Population Mean Vector

Let us construct 90% simultaneous confidence intervals for the individual mean
components 

From Result 5.5, simultaneous 90% confidence limits are given by

where Thus, with approxi-

mately 90% confidence,

Based, perhaps, upon thousands of American students, the investigator could hy-
pothesize the musical aptitude profile to be

We see from the simultaneous statements above that the melody, tempo, and meter
components of do not appear to be plausible values for the corresponding means
of Finnish scores. �

When the sample size is large, the one-at-a-time confidence intervals for indi-
vidual means are

where is the upper th percentile of the standard normal distribu-
tion. The Bonferroni simultaneous confidence intervals for the statements
about the individual means take the same form, but use the modified percentile

to give
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Chapter 5 Inferences about a Mean Vector

Table 5.6 gives the individual, Bonferroni, and chi-square-based (or shadow of
the confidence ellipsoid) intervals for the musical aptitude data in Example 5.7.

Table 5.6 The Large Sample 95% Individual, Bonferroni, and -Intervals for
the Musical Aptitude Data

The one-at-a-time confidence intervals use 
The simultaneous Bonferroni intervals use 
The simultaneous or shadows of the ellipsoid, use 

One-at-a-time Bonferroni Intervals Shadow of Ellipsoid
Variable Lower Upper Lower Upper Lower Upper

26.95 29.25 26.52 29.68 25.90 30.30
25.43 27.77 24.99 28.21 24.36 28.84
34.64 36.16 34.35 36.45 33.94 36.86
33.18 35.22 32.79 35.61 32.24 36.16
22.85 24.35 22.57 24.63 22.16 25.04
21.21 22.79 20.92 23.08 20.50 23.50
21.89 23.51 21.59 23.81 21.16 24.24X7 = style

X6 = balance
X5 = phrasing
X4 = meter
X3 = tempo
X2 = harmony
X1 = melody

x7
21.052 = 14.07.T2,

z1.025>72 = 2.69.
z1.0252 = 1.96.

T2

Table 5.7 The 95% Individual, Bonferroni, and -Intervals for the 
Musical Aptitude Data

The one-at-a-time confidence intervals use 
The simultaneous Bonferroni intervals use 
The simultaneous or shadows of the ellipsoid, use 

One-at-a-time Bonferroni Intervals Shadow of Ellipsoid
Variable Lower Upper Lower Upper Lower Upper

26.93 29.27 26.48 29.72 25.76 30.44
25.41 27.79 24.96 28.24 24.23 28.97
34.63 36.17 34.33 36.47 33.85 36.95
33.16 35.24 32.76 35.64 32.12 36.28
22.84 24.36 22.54 24.66 22.07 25.13
21.20 22.80 20.90 23.10 20.41 23.59
21.88 23.52 21.57 23.83 21.07 24.33X7 = style

X6 = balance
X5 = phrasing
X4 = meter
X3 = tempo
X2 = harmony
X1 = melody

F7, 891.052 = 2.11.T2,
t951.025>72 = 2.75.
t951.0252 = 1.99.

T2

Although the sample size may be large, some statisticians prefer to retain the 
F- and t-based percentiles rather than use the chi-square or standard normal-based
percentiles. The latter constants are the infinite sample size limits of the former
constants.The F and t percentiles produce larger intervals and, hence, are more con-
servative. Table 5.7 gives the individual, Bonferroni, and F-based, or shadow of the
confidence ellipsoid, intervals for the musical aptitude data. Comparing Table 5.7
with Table 5.6, we see that all of the intervals in Table 5.7 are larger. However, with
the relatively large sample size the differences are typically in the third, or
tenths, digit.

n = 96,
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Multivariate Quality Control Charts

5.6 Multivariate Quality Control Charts
To improve the quality of goods and services, data need to be examined for causes
of variation. When a manufacturing process is continuously producing items or
when we are monitoring activities of a service, data should be collected to evaluate
the capabilities and stability of the process. When a process is stable, the variation is
produced by common causes that are always present, and no one cause is a major
source of variation.

The purpose of any control chart is to identify occurrences of special causes of
variation that come from outside of the usual process. These causes of variation
often indicate a need for a timely repair, but they can also suggest improvements to
the process. Control charts make the variation visible and allow one to distinguish
common from special causes of variation.

A control chart typically consists of data plotted in time order and horizontal
lines, called control limits, that indicate the amount of variation due to common
causes. One useful control chart is the -chart (read X-bar chart). To create an 

-chart,

1. Plot the individual observations or sample means in time order.

2. Create and plot the centerline the sample mean of all of the observations.

3. Calculate and plot the control limits given by

The standard deviation in the control limits is the estimated standard deviation 
of the observations being plotted. For single observations, it is often the sample
standard deviation. If the means of subsamples of size m are plotted, then 
the standard deviation is the sample standard deviation divided by The 
control limits of plus and minus three standard deviations are chosen so that 
there is a very small chance, assuming normally distributed data, of falsely signal-
ing an out-of-control observation—that is, an observation suggesting a special
cause of variation.

Example 5.8 (Creating a univariate control chart) The Madison, Wisconsin, police
department regularly monitors many of its activities as part of an ongoing quality
improvement program. Table 5.8 gives the data on five different kinds of over-
time hours. Each observation represents a total for 12 pay periods, or about half 
a year.

We examine the stability of the legal appearances overtime hours. A computer
calculation gives Since individual values will be plotted, is the same as

Also, the sample standard deviation is and the control limits are

 LCL = xp1 - 311s1 1 2 = 3558 - 316072 = 1737

 UCL = xp1 + 311s1 1 2 = 3558 + 316072 = 5379

1s1 1 = 607,xp1.
xq1xq1 = 3558.

1m .

Lower control limit 1LCL2  = xp - 31standard deviation2

Upper control limit 1UCL2 = xp + 31standard deviation2

xp,

 X
 X
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Figure 5.5 The -chart for appearances overtime hours.x1 = legal X

Table 5.8 Five Types of Overtime Hours for the Madison, Wisconsin, Police
Department

Legal Appearances Extraordinary Holdover COA1 Meeting
Hours Event Hours Hours Hours Hours

3387 2200 1181 14,861 236
3109 875 3532 11,367 310
2670 957 2502 13,329 1182
3125 1758 4510 12,328 1208
3469 868 3032 12,847 1385
3120 398 2130 13,979 1053
3671 1603 1982 13,528 1046
4531 523 4675 12,699 1100
3678 2034 2354 13,534 1349
3238 1136 4606 11,609 1150
3135 5326 3044 14,189 1216
5217 1658 3340 15,052 660
3728 1945 2111 12,236 299
3506 344 1291 15,482 206
3824 807 1365 14,900 239
3516 1223 1175 15,078 161

1Compensatory overtime allowed.

x5x4x3x2x1

The data, along with the centerline and control limits, are plotted as an -chart in
Figure 5.5.

 X
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Multivariate Quality Control Charts

The legal appearances overtime hours are stable over the period in which the
data were collected. The variation in overtime hours appears to be due to common
causes, so no special-cause variation is indicated. �

With more than one important characteristic, a multivariate approach should be
used to monitor process stability. Such an approach can account for correlations
between characteristics and will control the overall probability of falsely signaling a
special cause of variation when one is not present. High correlations among the
variables can make it impossible to assess the overall error rate that is implied by a
large number of univariate charts.

The two most common multivariate charts are (i) the ellipse format chart and
(ii) the -chart.

Two cases that arise in practice need to be treated differently:

1. Monitoring the stability of a given sample of multivariate observations

2. Setting a control region for future observations

Initially, we consider the use of multivariate control procedures for a sample of mul-
tivariate observations Later, we discuss these procedures when the
observations are subgroup means.

Charts for Monitoring a Sample of Individual Multivariate
Observations for Stability

We assume that are independently distributed as By
Result 4.8,

has

and

Each has a normal distribution but, is not independent of the sam-
ple covariance matrix S. However to set control limits, we approximate that

has a chi-square distribution.

Ellipse Format Chart. The ellipse format chart for a bivariate control region is the
more intuitive of the charts, but its approach is limited to two variables. The two
characteristics on the jth unit are plotted as a pair The 95% quality ellipse
consists of all x that satisfy
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Chapter 5 Inferences about a Mean Vector

Example 5.9 (An ellipse format chart for overtime hours) Let us refer to Example
5.8 and create a quality ellipse for the pair of overtime characteristics (legal appear-
ances, extraordinary event) hours. A computer calculation gives

We illustrate the quality ellipse format chart using the 99% ellipse, which con-
sists of all x that satisfy

Here so and the ellipse becomes

This ellipse format chart is graphed, along with the pairs of data, in Figure 5.6.
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Figure 5.6 The quality control 
99% ellipse for legal
appearances and extraordinary
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Multivariate Quality Control Charts

Notice that one point, indicated with an arrow, is definitely outside of the el-
lipse. When a point is out of the control region, individual charts are constructed.
The -chart for was given in Figure 5.5; that for is given in Figure 5.7.

When the lower control limit is less than zero for data that must be non-
negative, it is generally set to zero.The limit is shown by the dashed line in
Figure 5.7.

Was there a special cause of the single point for extraordinary event overtime
that is outside the upper control limit in Figure 5.7? During this period, the United
States bombed a foreign capital, and students at Madison were protesting. A major-
ity of the extraordinary overtime was used in that four-week period.Although, by its
very definition, extraordinary overtime occurs only when special events occur and is
therefore unpredictable, it still has a certain stability. �

-Chart. A -chart can be applied to a large number of characteristics. Unlike the
ellipse format, it is not limited to two variables. Moreover, the points are displayed in
time order rather than as a scatter plot, and this makes patterns and trends visible.

For the jth point, we calculate the -statistic

(5-33)

We then plot the -values on a time axis.The lower control limit is zero, and we use
the upper control limit

or, sometimes,
There is no centerline in the -chart. Notice that the -statistic is the same as

the quantity used to test normality in Section 4.6.dj
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Chapter 5 Inferences about a Mean Vector

Example 5.10 (A -chart for overtime hours) Using the police department data in
Example 5.8, we construct a -plot based on the two variables appear-
ances hours and event hours. -charts with more than two
variables are considered in Exercise 5.26. We take to be consistent with
the ellipse format chart in Example 5.9.

The -chart in Figure 5.8 reveals that the pair (legal appearances, extraordi-
nary event) hours for period 11 is out of control. Further investigation, as in Exam-
ple 5.9, confirms that this is due to the large value of extraordinary event overtime
during that period. �

T2

a = .01
T2X2 = extraordinary

X1 = legalT2
T2

12

10

8

6

4

2

2 40 6 8 10 12 14 16

0

T
2

Period

Figure 5.8 The -chart for legal appearances hours and extraordinary event hours,a = .01.T2

When the multivariate -chart signals that the jth unit is out of control, it should
be determined which variables are responsible.A modified region based on Bonferroni
intervals is frequently chosen for this purpose. The kth variable is out of control if 
does not lie in the interval

where p is the total number of measured variables.

Example 5.11 (Control of robotic welders—more than needed) The assembly of a
driveshaft for an automobile requires the circle welding of tube yokes to a tube.The
inputs to the automated welding machines must be controlled to be within certain
operating limits where a machine produces welds of good quality. In order to con-
trol the process, one process engineer measured four critical variables:

 X4 = 1inert2 Gas flow 1cfm2
 X3 = Feed speed1in>min2
 X2 = Current 1amps2
 X1 = Voltage 1volts2

T2

1x–k - tn - 11.005>p21sk k , x–k + tn - 11.005>p21sk k  2

xj k

T2
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Multivariate Quality Control Charts

Table 5.9 Welder Data

Case Voltage Current Feed speed Gas flow 

1 23.0 276 289.6 51.0
2 22.0 281 289.0 51.7
3 22.8 270 288.2 51.3
4 22.1 278 288.0 52.3
5 22.5 275 288.0 53.0
6 22.2 273 288.0 51.0
7 22.0 275 290.0 53.0
8 22.1 268 289.0 54.0
9 22.5 277 289.0 52.0

10 22.5 278 289.0 52.0
11 22.3 269 287.0 54.0
12 21.8 274 287.6 52.0
13 22.3 270 288.4 51.0
14 22.2 273 290.2 51.3
15 22.1 274 286.0 51.0
16 22.1 277 287.0 52.0
17 21.8 277 287.0 51.0
18 22.6 276 290.0 51.0
19 22.3 278 287.0 51.7
20 23.0 266 289.1 51.0
21 22.9 271 288.3 51.0
22 21.3 274 289.0 52.0
23 21.8 280 290.0 52.0
24 22.0 268 288.3 51.0
25 22.8 269 288.7 52.0
26 22.0 264 290.0 51.0
27 22.5 273 288.6 52.0
28 22.2 269 288.2 52.0
29 22.6 273 286.0 52.0
30 21.7 283 290.0 52.7
31 21.9 273 288.7 55.3
32 22.3 264 287.0 52.0
33 22.2 263 288.0 52.0
34 22.3 266 288.6 51.7
35 22.0 263 288.0 51.7
36 22.8 272 289.0 52.3
37 22.0 277 287.7 53.3
38 22.7 272 289.0 52.0
39 22.6 274 287.2 52.7
40 22.7 270 290.0 51.0

Source: Data courtesy of Mark Abbotoy.

1X421X321X221X12

Table 5.9 gives the values of these variables at five-second intervals.
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Chapter 5 Inferences about a Mean Vector

The normal assumption is reasonable for most variables, but we take the natur-
al logarithm of gas flow. In addition, there is no appreciable serial correlation for
successive observations on each variable.

A -chart for the four welding variables is given in Figure 5.9. The dotted line
is the 95% limit and the solid line is the 99% limit. Using the 99% limit, no points
are out of control, but case 31 is outside the 95% limit.

What do the quality control ellipses (ellipse format charts) show for two vari-
ables? Most of the variables are in control. However, the 99% quality ellipse for gas
flow and voltage, shown in Figure 5.10, reveals that case 31 is out of control and 
this is due to an unusually large volume of gas flow. The univariate chart for 
ln(gas flow), in Figure 5.11, shows that this point is outside the three sigma limits.
It appears that gas flow was reset at the target for case 32. All the other univariate 

-charts have all points within their three sigma control limits. X

 X
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T
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Figure 5.9 The -chart for the
welding data with 95% and 
99% limits.
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Figure 5.10 The 99% quality
control ellipse for ln(gas flow) and
voltage.
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In this example, a shift in a single variable was masked with 99% limits, or almost
masked (with 95% limits), by being combined into a single -value. �

Control Regions for Future Individual Observations

The goal now is to use data collected when a process is stable, to set a
control region for a future observation x or future observations.The region in which
a future observation is expected to lie is called a forecast, or prediction, region. If the
process is stable, we take the observations to be independently distributed as

Because these regions are of more general importance than just for mon-
itoring quality, we give the basic distribution theory as Result 5.6.

Result 5.6. Let be independently distributed as and let
X be a future observation from the same distribution. Then

and a p-dimensional prediction ellipsoid is given by all x satisfying

Proof. We first note that has mean 0. Since X is a future observation, X and
are independent, so

and, by Result 4.8, is distributed as Now,A n

n + 1
 1X - X 2

œ

 S-1
 A n

n + 1
 1X - X 2

Np10, �2.2n>1n + 12 1X - X2

Cov 1X - X 2 = Cov 1X2 + Cov 1 X 2 = � +

1
n

 � =

1n + 12
n

 �

X
X - X

1x - x–2œ  S-11x - x–2 …

1n2
- 12p

n1n - p2
 Fp, n - p1a2

10011 - a2%
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n

n + 1
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Figure 5.11 The univariate 
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Chapter 5 Inferences about a Mean Vector

which combines a multivariate normal, random vector and an independent
Wishart, random matrix in the form

has the scaled F distribution claimed according to (5-8) and the discussion on 
page 213.

The constant for the ellipsoid follows from (5-6). �

Note that the prediction region in Result 5.6 for a future observed value x is an
ellipsoid. It is centered at the initial sample mean and its axes are determined by
the eigenvectors of S. Since

before any new observations are taken, the probability that X will fall in the predic-
tion ellipse is 

Keep in mind that the current observations must be stable before they can be
used to determine control regions for future observations.

Based on Result 5.6, we obtain the two charts for future observations.

Control Ellipse for Future Observations

With the 95% prediction ellipse in Result 5.6 specializes to

(5-34)

Any future observation x is declared to be out of control if it falls out of the con-
trol ellipse.

Example 5.12 (A control ellipse for future overtime hours) In Example 5.9, we
checked the stability of legal appearances and extraordinary event overtime hours.
Let’s use these data to determine a control region for future pairs of values.

From Example 5.9 and Figure 5.6, we find that the pair of values for period 11
were out of control.We removed this point and determined the new 99% ellipse.All
of the points are then in control, so they can serve to determine the 95% prediction
region just defined for This control ellipse is shown in Figure 5.12 along with
the initial 15 stable observations.

Any future observation falling in the ellipse is regarded as stable or in control.
An observation outside of the ellipse represents a potential out-of-control observa-
tion or special-cause variation. �

-Chart for Future Observations

For each new observation x, plot

T2
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n

n + 1
 1x - x–2œ  S-11x - x–2

T2

p = 2.
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1n2
- 122

n1n - 22
 F2, n - 21.052
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¿
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Wp, n - 11�2,
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in time order. Set and take

Points above the upper control limit represent potential special cause variation
and suggest that the process in question should be examined to determine
whether immediate corrective action is warranted. See [9] for discussion of other
procedures.

Control Charts Based on Subsample Means

It is assumed that each random vector of observations from the process is indepen-
dently distributed as We proceed differently when the sampling procedure
specifies that units be selected, at the same time, from the process. From the
first sample, we determine its sample mean and covariance matrix When
the population is normal, these two random quantities are independent.

For a general subsample mean has a normal distribution with
mean 0 and

Cov 1Xj - X 2 = a1 -

1
n
b

2

 Cov 1 Xj2 +
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Figure 5.12 The 95% control
ellipse for future legal
appearances and extraordinary
event overtime.
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where

As will be described in Section 6.4, the sample covariances from the n sub-
samples can be combined to give a single estimate (called in Chapter 6) of the
common covariance This pooled estimate is

Here is independent of each and, therefore, of their mean 
Further, is distributed as a Wishart random matrix with degrees
of freedom. Notice that we are estimating internally from the data collected in
any given period. These estimators are combined to give a single estimator with a
large number of degrees of freedom. Consequently,

(5-35)

is distributed as

Ellipse Format Chart. In an analogous fashion to our discussion on individual
multivariate observations, the ellipse format chart for pairs of subsample means is

(5-36)

although the right-hand side is usually approximated as 
Subsamples corresponding to points outside of the control ellipse should be

carefully checked for changes in the behavior of the quality characteristics being
measured. The interested reader is referred to [10] for additional discussion.

-Chart. To construct a -chart with subsample data and p characteristics, we
plot the quantity

for where the

The UCL is often approximated as when n is large.
Values of that exceed the UCL correspond to potentially out-of-control or

special cause variation, which should be checked. (See [10].)
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Inferences about Mean Vectors When Some Observations Are Missing

Control Regions for Future Subsample Observations

Once data are collected from the stable operation of a process, they can be used to
set control limits for future observed subsample means.

If is a future subsample mean, then has a multivariate normal distrib-
ution with mean 0 and

Consequently,

is distributed as

Control Ellipse for Future Subsample Means. The prediction ellipse for a future
subsample mean for characteristics is defined by the set of all such that

(5-37)

where, again, the right-hand side is usually approximated as 

-Chart for Future Subsample Means. As before, we bring into the
control limit and plot the quantity

for future sample means in chronological order. The upper control limit is then

The UCL is often approximated as when n is large.
Points outside of the prediction ellipse or above the UCL suggest that the cur-

rent values of the quality characteristics are different in some way from those of the
previous stable process. This may be good or bad, but almost certainly warrants a
careful search for the reasons for the change.

5.7 Inferences about Mean Vectors When Some 
Observations Are Missing

Often, some components of a vector observation are unavailable. This may occur be-
cause of a breakdown in the recording equipment or because of the unwillingness of
a respondent to answer a particular item on a survey questionnaire. The best way to
handle incomplete observations, or missing values, depends, to a large extent, on the
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Chapter 5 Inferences about a Mean Vector

experimental context. If the pattern of missing values is closely tied to the value of
the response, such as people with extremely high incomes who refuse to respond in a
survey on salaries, subsequent inferences may be seriously biased.To date, no statisti-
cal techniques have been developed for these cases. However, we are able to treat sit-
uations where data are missing at random—that is, cases in which the chance
mechanism responsible for the missing values is not influenced by the value of the
variables.

A general approach for computing maximum likelihood estimates from incom-
plete data is given by Dempster, Laird, and Rubin [5]. Their technique, called the
EM algorithm, consists of an iterative calculation involving two steps. We call them
the prediction and estimation steps:

1. Prediction step. Given some estimate of the unknown parameters, predict
the contribution of any missing observation to the (complete-data) sufficient
statistics.

2. Estimation step. Use the predicted sufficient statistics to compute a revised
estimate of the parameters.

The calculation cycles from one step to the other, until the revised estimates do
not differ appreciably from the estimate obtained in the previous iteration.

When the observations are a random sample from a p-variate
normal population, the prediction–estimation algorithm is based on the complete-
data sufficient statistics [see (4-21)]

and

In this case, the algorithm proceeds as follows:We assume that the population mean
and variance— and respectively—are unknown and must be estimated.

Prediction step. For each vector with missing values, let denote the miss-
ing components and denote those components which are available. Thus,

Given estimates and from the estimation step, use the mean of the condi-
tional normal distribution of given to estimate the missing values. That is,1

(5-38)
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and

The contributions in (5-38) and (5-39) are summed over all with missing compo-
nents.The results are combined with the sample data to yield and 

Estimation step. Compute the revised maximum likelihood estimates (see Result 4.11):

(5-40)

We illustrate the computational aspects of the prediction–estimation algorithm
in Example 5.13.

Example 5.13 (Illustrating the EM algorithm) Estimate the normal population mean
and covariance using the incomplete data set

Here and parts of observation vectors and are missing.
We obtain the initial sample averages

from the available observations. Substituting these averages for any missing values,
so that for example, we can obtain initial covariance estimates. We shall
construct these estimates using the divisor n because the algorithm eventually pro-
duces the maximum likelihood estimate Thus,

The prediction step consists of using the initial estimates and to predict the
contributions of the missing values to the sufficient statistics and [See (5-38)
and (5-39).]
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The first component of is missing, so we partition and as

and predict

For the two missing components of we partition and as

and predict

for the contribution to Also, from (5-39),
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are the contributions to Thus, the predicted complete-data sufficient statistics
are
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+ 62

+ 22
+ 52

S
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'

2 = Dx1 1
2
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+ x3 1
2

+ x4 1
2

  

x1 1 x1 2 + x2 1 x2 2 + x3 1 x3 2 + x4 1 x4 2 x1 2
2

+ x2 2
2

+ x3 2
2

+ x4 2
2

 

x1 1 x1 3 + x2 1 x2 3 + x3 1 x3 3 + x4 1 x4 3 x1 2 x1 3 + x2 2 x2 3 + x3 2 x3 3 + x4 2 x4 3 x1 3
2

+ x2 3
2

+ x3 3
2
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2

T
 T
'

1 = C x
'

1 1 + x2 1 + x3 1 + x
'

4 1

x1 2 + x2 2 + x3 2 + x
'

4 2

x1 3 + x2 3 + x3 3 + x4 3

S = C5.73 + 7 + 5 + 6.4
0 + 2 + 1 + 1.3
3 + 6 + 2 + 5

S = C24.13
4.30

16.00
S

˜
˜

˜

˜ ˜
˜˜˜

This completes one prediction step.
The next estimation step, using (5-40), provides the revised estimates2

Note that and are larger than the corresponding initial esti-
mates obtained by replacing the missing observations on the first and second vari-
ables by the sample means of the remaining values. The third variance estimate
remains unchanged, because it is not affected by the missing components.

The iteration between the prediction and estimation steps continues until the
elements of and remain essentially unchanged. Calculations of this sort are
easily handled with a computer. �

�
'

M
'

s
'

3 3

s
'

2 2 = .59s
'

1 1 = .61

 = C .61 .33 1.17
.33 .59 .83

1.17 .83 2.50
S

 =
1
4 C148.05 27.27 101.18

27.27 6.97 20.50
101.18 20.50 74.00

S - C6.03
1.08
4.00
S 76.03 1.08 4.008

 �
'

=

1
n

 T
'

2 - M
'

 M
'

¿

M
'

=

1
n

 T
'

1 =
1
4 C24.13

4.30
16.00

S = C6.03
1.08
4.00
S

2The final entries in are exact to two decimal places.�
'
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Chapter 5 Inferences about a Mean Vector

Once final estimates and are obtained and relatively few missing compo-
nents occur in it seems reasonable to treat

(5-41)

as an approximate confidence ellipsoid. The simultaneous confidence
statements would then follow as in Section 5.5, but with replaced by and S re-
placed by 

Caution. The prediction–estimation algorithm we discussed is developed on the
basis that component observations are missing at random. If missing values are re-
lated to the response levels, then handling the missing values as suggested may in-
troduce serious biases into the estimation procedures. Typically, missing values are
related to the responses being measured. Consequently, we must be dubious of any
computational scheme that fills in values as if they were lost at random. When more
than a few values are missing, it is imperative that the investigator search for the sys-
tematic causes that created them.

5.8 Difficulties Due to Time Dependence in Multivariate
Observations

For the methods described in this chapter, we have assumed that the multivariate
observations constitute a random sample; that is, they are indepen-
dent of one another. If the observations are collected over time, this assumption
may not be valid. The presence of even a moderate amount of time dependence
among the observations can cause serious difficulties for tests, confidence regions,
and simultaneous confidence intervals, which are all constructed assuming that in-
dependence holds.

We will illustrate the nature of the difficulty when the time dependence can be
represented as a multivariate first order autoregressive [AR(1)] model. Let the

random vector follow the multivariate AR(1) model

(5-42)

where the are independent and identically distributed with and
and all of the eigenvalues of the coefficient matrix are between 

and 1. Under this model where

The AR(1) model (5-42) relates the observation at time t, to the observation at time
through the coefficient matrix Further, the autoregressive model says the

observations are independent, under multivariate normality, if all the entries in the
coefficient matrix are 0. The name autoregressive model comes from the fact that
(5-42) looks like a multivariate version of a regression with as the dependent
variable and the previous value as the independent variable.Xt - 1

Xt

≥

≥.t - 1,

�x = a

q

j = 0
 ≥j

 �E ≥¿
j

Cov 1Xt , Xt - r2 = ≥
r

 �x

-1≥Cov 1Et2 = �E

E [Et] = 0Et

Xt - M = ≥1Xt - 1 - M2 + Et

Xtp * 1

X1 , X2 , Á , Xn

�N .
Mnx–

10011 - a2%

all M such that n1Mn - M2¿  �N -11Mn - M2 … xp
21a2

X,
�NMn
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Difficulties Due to Time Dependence in Multivariate Observations

As shown in Johnson and Langeland [8],

where the arrow above indicates convergence in probability, and

(5-43)

Moreover, for large n, is approximately normal with mean 0 and covari-
ance matrix given by (5-43).

To make the calculations easy, suppose the underlying process has
where Now consider the large sample nominal 95% confidence ellipsoid
for

This ellipsoid has large sample coverage probability .95 if the observations are inde-
pendent. If the observations are related by our autoregressive model, however, this
ellipsoid has large sample coverage probability

Table 5.10 shows how the coverage probability is related to the coefficient and the
number of variables p.

According to Table 5.10, the coverage probability can drop very low, to .632,
even for the bivariate case.

The independence assumption is crucial, and the results based on this assump-
tion can be very misleading if the observations are, in fact, dependent.

f

P 7xp
2

… 11 - f2 11 + f2-1
 xp

21.0528

5all M such that n1 X - M2
œ

 S-11 X - M2 … xp
21.0526

M.
ƒ f ƒ 6 1.

≥ = fI

1n 1 X - M2

Cov an-1>2 a
n

t = 1
 Xtb : 1I - ≥2-1

 �X + �X1I - ≥¿2
-1

- �X

X : M, S =

1
n - 1

 a
n

t = 1
 1Xt - X 21Xt - X 2

œ : �X

Table 5.10 Coverage Probability of the Nominal 95% Confidence
Ellipsoid

0 .25 .5

1 .989 .950 .871 .742
2 .993 .950 .834 .632

p 5 .998 .950 .751 .405
10 .999 .950 .641 .193
15 1.000 .950 .548 .090

- .25
f

257



SIMULTANEOUS CONFIDENCE
INTERVALS AND ELLIPSES AS SHADOWS
OF THE p-DIMENSIONAL ELLIPSOIDS

We begin this supplementary section by establishing the general result concerning
the projection (shadow) of an ellipsoid onto a line.

Result 5A.1. Let the constant and positive definite matrix A deter-
mine the ellipsoid For a given vector and z belonging to the
ellipsoid, the

which extends from 0 along u with length When u is a unit vector, the
shadow extends units, so The shadow also extends

units in the direction.

Proof. By Definition 2A.12, the projection of any z on u is given by Its
squared length is We want to maximize this shadow over all z with

The extended Cauchy–Schwarz inequality in (2-49) states that
with equality when Setting 

and we obtain

The choice yields equalities and thus gives the maximum shadow,
besides belonging to the boundary of the ellipsoid. That is, =

= for this z that provides the longest shadow. Consequently, the projection of thec2
c2

 u¿  Au>u¿  Auz¿  A-1
 z

z = cAu>2u¿  Au

 … c2
  u¿  Au for all z: z¿  A-1

 z … c2

1u¿  u2 1length of projection22 = 1z¿  u22 … 1z¿  A-1
 z2 1u¿  Au2

B = A-1,
d = u,b = z,b = kB-1

 d.1b¿  d22 … 1b¿  Bd2 1d¿  B-1
 d2,

z¿  A-1
 z … c2.

1z¿  u22>u¿  u.
1z¿  u2 u>u¿  u.

-uc2u¿  Au
ƒ z¿  u ƒ … c2u¿  Au.c2u¿  Au

c2u¿  Au>u¿  u.

¢Projection 1shadow2 of
5z¿  A-1

 z … c26 on u ≤ = c 
2u¿  Au

u¿  u
 u

u Z 0,5z: z¿  A-1
 z … c26.

p * pc 7 0

S u p p l e m e n t  

5A
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Simultaneous Confidence Intervals and Ellipses as Shadows of the p-Dimensional Ellipsoids

ellipsoid on u is and its length is With the unit vector
the projection extends

The projection of the ellipsoid also extends the same length in the direction �

Result 5A.2. Suppose that the ellipsoid is given and that
is arbitrary but of rank two. Then

or

Proof. We first establish a basic inequality. Set =

where Note that and so =

Next, using = we write = and 
= Then

(5A-1)

Since and U was arbitrary, the result follows. �

Our next result establishes the two-dimensional confidence ellipse as a projection
of the p-dimensional ellipsoid. (See Figure 5.13.)
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Figure 5.13 The shadow of the
ellipsoid on the 

plane is an ellipse.u1 , u2
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Chapter 5 Inferences about a Mean Vector

Projection on a plane is simplest when the two vectors and determining
the plane are first converted to perpendicular vectors of unit length. (See 
Result 2A.3.)

Result 5A.3. Given the ellipsoid and two perpendicular unit
vectors and the projection (or shadow) of on the
plane results in the two-dimensional ellipse where

Proof. By Result 2A.3, the projection of a vector z on the plane is

The projection of the ellipsoid consists of all with
Consider the two coordinates of the projection Let z be-

long to the set so that belongs to the shadow of the ellipsoid.
By Result 5A.2,

so the ellipse contains the coefficient vectors for the
shadow of the ellipsoid.

Let Ua be a vector in the plane whose coefficients a belong to the ellipse
If we set it follows that

and

Thus, belongs to the coefficient vector ellipse, and z belongs to the ellipsoid
Consequently, the ellipse contains only coefficient vectors from the

projection of onto the plane. �

Remark. Projecting the ellipsoid first to the plane and then to
the line is the same as projecting it directly to the line determined by In the
context of confidence ellipsoids, the shadows of the two-dimensional ellipses give
the single component intervals.

Remark. Results 5A.2 and 5A.3 remain valid if consists of
linearly independent columns.2 6 q … p

U = 7u1 , Á , uq8
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Exercises

Exercises

5.1. (a) Evaluate for testing using the data

(b) Specify the distribution of for the situation in (a).

(c) Using (a) and (b), test at the level. What conclusion do you reach?

5.2. Using the data in Example 5.1, verify that remains unchanged if each observation
is replaced by where

Note that the observations

yield the data matrix

5.3. (a) Use expression (5-15) to evaluate for the data in Exercise 5.1.

(b) Use the data in Exercise 5.1 to evaluate in (5-13). Also, evaluate Wilks’ lambda.

5.4. Use the sweat data in Table 5.1. (See Example 5.2.)

(a) Determine the axes of the 90% confidence ellipsoid for Determine the lengths of
these axes.

(b) Construct Q–Q plots for the observations on sweat rate, sodium content, and
potassium content, respectively. Construct the three possible scatter plots for pairs
of observations. Does the multivariate normal assumption seem justified in this
case? Comment.

5.5. The quantities S, and are given in Example 5.3 for the transformed microwave-
radiation data. Conduct a test of the null hypothesis at the 
level of significance. Is your result consistent with the 95% confidence ellipse for pic-
tured in Figure 5.1? Explain.

5.6. Verify the Bonferroni inequality in (5-28) for 
Hint: A Venn diagram for the three events and may help.

5.7. Use the sweat data in Table 5.1 (See Example 5.2.) Find simultaneous 95% confi-
dence intervals for and using Result 5.3. Construct the 95% Bonferroni inter-
vals using (5-29). Compare the two sets of intervals.

m3m1 , m2 ,
T2

C3C1 , C2 ,
m = 3.

M

a = .05H0  : M ¿ = 7.55, .608S-1x–,

M .

¶

T2

B16 - 92 110 - 62 18 - 32
16 + 92 110 + 62 18 + 32

R ¿

C  xj = Bxj 1 - xj 2

xj 1 + xj 2
R

C = B1 - 1
1 1

R
C  xj ,xj , j = 1, 2, 3,

T2

a = .05H0

T2

X = D2 12
8 9
6 9
8 10

T
H0  : M ¿ = 77, 118,T2,
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Chapter 5 Inferences about a Mean Vector

5.8. From (5-23), we know that is equal to the largest squared univariate t-value
constructed from the linear combination with Using the 
results in Example 5.3 and the in Exercise 5.5, evaluate a for the transformed
microwave-radiation data. Verify that the -value computed with this a is equal to 
in Exercise 5.5.

5.9. Harry Roberts, a naturalist for the Alaska Fish and Game department, studies grizzly
bears with the goal of maintaining a healthy population. Measurements on bears
provided the following summary statistics (see also Exercise 8.23):

n = 61

T2t2
H0

a = S-11x– - M02.a ¿  xj

T2

Variable Weight Body Neck Girth Head Head
(kg) length (cm) (cm) length width

(cm) (cm) (cm)

Sample
mean 95.52 164.38 55.69 93.39 17.98 31.13x–

Covariance matrix

(a) Obtain the large sample 95% simultaneous confidence intervals for the six popula-
tion mean body measurements.

(b) Obtain the large sample 95% simultaneous confidence ellipse for mean weight and
mean girth.

(c) Obtain the 95% Bonferroni confidence intervals for the six means in Part a.

(d) Refer to Part b. Construct the 95% Bonferroni confidence rectangle for the mean
weight and mean girth using Compare this rectangle with the confidence
ellipse in Part b.

(e) Obtain the 95% Bonferroni confidence interval for 

mean head width � mean head length

using to allow for this statement as well as statements about each
individual mean.

5.10. Refer to the bear growth data in Example 1.10 (see Table 1.4). Restrict your attention to
the measurements of length.

(a) Obtain the 95% simultaneous confidence intervals for the four population means
for length.

(b) Refer to Part a. Obtain the 95% simultaneous confidence intervals for the three
successive yearly increases in mean length.

(c) Obtain the 95% confidence ellipse for the mean increase in length from 2 to 3
years and the mean increase in length from 4 to 5 years.

T2

T2

T2

m = 6 + 1 = 7

m = 6.

S = F
3266.46 1343.97 731.54
1343.97 721.91 324.25

731.54 324.25 179.28
1175.50 537.35 281.17

162.68 80.17 39.15
238.37 117.73 56.80

 

1175.50 162.68 238.37
537.35 80.17 117.73
281.17 39.15 56.80
474.98 63.73 94.85

63.73 9.95 13.88
94.85 13.88 21.26

V
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(d) Refer to Parts a and b. Construct the 95% Bonferroni confidence intervals for the
set consisting of four mean lengths and three successive yearly increases in mean
length.

(e) Refer to Parts c and d. Compare the 95% Bonferroni confidence rectangle for the
mean increase in length from 2 to 3 years and the mean increase in length from 4 to
5 years with the confidence ellipse produced by the -procedure.

5.11. A physical anthropologist performed a mineral analysis of nine ancient Peruvian hairs.
The results for the chromium and strontium levels, in parts per million (ppm),
were as follows:

1x221x12

T2

(Cr) .48 40.53 2.19 .55 .74 .66 .93 .37 .22

(St) 12.57 73.68 11.13 20.03 20.29 .78 4.64 .43 1.08

Source: Benfer and others, “Mineral Analysis of Ancient Peruvian Hair,” American
Journal of Physical Anthropology, 48, no. 3 (1978), 277–282.

x2

x1

It is known that low levels (less than or equal to .100 ppm) of chromium suggest the
presence of diabetes, while strontium is an indication of animal protein intake.

(a) Construct and plot a 90% joint confidence ellipse for the population mean vector
assuming that these nine Peruvian hairs represent a random sample

from individuals belonging to a particular ancient Peruvian culture.

(b) Obtain the individual simultaneous 90% confidence intervals for and by “pro-
jecting” the ellipse constructed in Part a on each coordinate axis. (Alternatively, we
could use Result 5.3.) Does it appear as if this Peruvian culture has a mean strontium
level of 10? That is, are any of the points ( arbitrary, 10) in the confidence regions?
Is a plausible value for Discuss.

(c) Do these data appear to be bivariate normal? Discuss their status with reference to
Q–Q plots and a scatter diagram. If the data are not bivariate normal, what implica-
tions does this have for the results in Parts a and b?

(d) Repeat the analysis with the obvious “outlying” observation removed. Do the infer-
ences change? Comment.

5.12. Given the data

with missing components, use the prediction–estimation algorithm of Section 5.7 to
estimate and Determine the initial estimates, and iterate to find the first revised
estimates.

5.13. Determine the approximate distribution of for the sweat data in
Table 5.1. (See Result 5.2.)

5.14. Create a table similar to Table 5.4 using the entries (length of one-at-a-time t-interval)>
(length of Bonferroni t-interval).

- n ln1 ƒ  �N
 
ƒ   >  ƒ  �N 0 ƒ2

�.M

X = D 3 6 0
4 4 3

— 8 3
5 — —

T

M?7.30, 108¿ m1

m2m1

M ¿ = 7m1 , m28,
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Chapter 5 Inferences about a Mean Vector

Exercises 5.15, 5.16, and 5.17 refer to the following information:

Frequently, some or all of the population characteristics of interest are in the form of
attributes. Each individual in the population may then be described in terms of the
attributes it possesses. For convenience, attributes are usually numerically coded with re-
spect to their presence or absence. If we let the variable X pertain to a specific attribute,
then we can distinguish between the presence or absence of this attribute by defining

In this way, we can assign numerical values to qualitative characteristics.
When attributes are numerically coded as 0–1 variables, a random sample from the

population of interest results in statistics that consist of the counts of the number of
sample items that have each distinct set of characteristics. If the sample counts are 
large, methods for producing simultaneous confidence statements can be easily adapted
to situations involving proportions.

We consider the situation where an individual with a particular combination of
attributes can be classified into one of mutually exclusive and exhaustive 
categories. The corresponding probabilities are denoted by Since
the categories include all possibilities, we take = An
individual from category k will be assigned the vector value 

with 1 in the kth position.
The probability distribution for an observation from the population of individuals in

mutually exclusive and exhaustive categories is known as the multinomial distrib-
ution. It has the following structure:

Category 1 2 k q

Outcome (value)

Probability
(proportion)

Let be a random sample of size n from the multinomial
distribution.

The kth component, of is 1 if the observation (individual) is from category k
and is 0 otherwise. The random sample can be converted to a sample
proportion vector, which, given the nature of the preceding observations, is a sample
mean vector. Thus,

pN = D pn 1

pn 2

o

pn q + 1

T =

1
n

 a
n

j = 1
 X j with E1pN 2 = p = D p1

p2
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pq + 1

T
X1 , X2 , Á , Xn

X jXj k ,
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pq + 1 = 1 - a
q
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 pipq
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o
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1
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Á
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q + 1

X = e
1
0

if attribute present
if attribute absent
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and

For large n, the approximate sampling distribution of is provided by the central limit
theorem. We have

where the elements of are = and 
=

The normal approx-
imation remains valid when is estimated by = and is estimated
by 

=

Since each individual must belong to exactly one category, =

so = ± and as a result,

has rank q. The usual inverse of does not exist, but it is still possible to develop simul-
taneous confidence intervals for all linear combinations 

Result. Let be a random sample from a category multinomial
distribution with = Approximate
simultaneous confidence regions for all linear combinations 
= ± are given by the observed values of

provided that is large. Here and is a 

matrix with and Also, is the upper
th percentile of the chi-square distribution with q d.f. �

In this result, the requirement that is large is interpreted to mean is
about 20 or more for each category.

We have only touched on the possibilities for the analysis of categorical data. Com-
plete discussions of categorical data analysis are available in [1] and [4].

5.15. Let and be the ith and kth components, respectively, of 

(a) Show that and =

(b) Show that = Why must this covariance neces-
sarily be negative?

5.16. As part of a larger marketing research project, a consultant for the Bank of Shorewood
wants to know the proportion of savers that uses the bank’s facilities as their primary ve-
hicle for saving. The consultant would also like to know the proportions of savers who
use the three major competitors: Bank B, Bank C, and Bank D. Each individual contact-
ed in a survey responded to the following question:
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1100a2
xq

21a2i Z k.sn i k = - pn i  pn k ,sn k k = pn k11 - pn k2
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Chapter 5 Inferences about a Mean Vector

Which bank is your primary savings bank?

Response:

A sample of people with savings accounts produced the following counts
when asked to indicate their primary savings banks (the people with no savings will be
ignored in the comparison of savers, so there are five categories):

n = 355

Bank of
Shorewood

 `  Bank B `  Bank C `  Bank D `  
Another

Bank
 `  

No
Savings

Category

None Moderate Heavy
(1–3 joints) (4 or more joints)

Number of
responses 117 62 21

Let the population proportions be

(a) Construct simultaneous 95% confidence intervals for 

(b) Construct a simultaneous 95% confidence interval that allows a comparison of the
Bank of Shorewood with its major competitor, Bank B. Interpret this interval.

5.17. In order to assess the prevalence of a drug problem among high school students in a
particular city, a random sample of 200 students from the city’s five high schools 
were surveyed. One of the survey questions and the corresponding responses are 
as follows:

What is your typical weekly marijuana usage?

p1 , p2 , Á , p5 .

 1 - 1p1 + p2 + p3 + p42 = proportion of savers at other banks

 p4 = proportion of savers at Bank D

 p3 = proportion of savers at Bank C

 p2 = proportion of savers at Bank B

 p1 = proportion of savers at Bank of Shorewood

Bank (category) Bank of Shorewood Bank B Bank C Bank D Another bank

Observed
number 105 119 56 25 50

Population
proportion

Observed sample
proportion

pn5 = .14pn4 = .07pn3 = .16pn2 = .33pn1 =

105
355

= .30

1p1 + p2 + p3 + p42
p5 = 1 -p4p3p2p1

`
Total
n = 355
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Exercises

Construct 95% simultaneous confidence intervals for the three proportions and

The following exercises may require a computer.

5.18. Use the college test data in Table 5.2. (See Example 5.5.)

(a) Test the null hypothesis versus at the
level of significance. Suppose represent average scores for

thousands of college students over the last 10 years. Is there reason to believe that the
group of students represented by the scores in Table 5.2 is scoring differently?
Explain.

(b) Determine the lengths and directions for the axes of the 95% confidence ellipsoid for

(c) Construct Q–Q plots from the marginal distributions of social science and history,
verbal, and science scores. Also, construct the three possible scatter diagrams from
the pairs of observations on different variables. Do these data appear to be normally
distributed? Discuss.

5.19. Measurements of and strength for a sample of pieces
of a particular grade of lumber are given in Table 5.11. The units are pounds>
Using the data in the table,

1inches22.
n = 30x2 = bendingx1 = stiffness

M .

7500, 50, 308¿a = .05
H1  : M ¿ Z 7500, 50, 308H0  : M ¿ = 7500, 50, 308

p3 = 1 - 1p1 + p22.
p1 , p2 ,

Table 5.11 Lumber Data

(Stiffness: (Stiffness:
modulus of elasticity) (Bending strength) modulus of elasticity) (Bending strength)

1232 4175 1712 7749
1115 6652 1932 6818
2205 7612 1820 9307
1897 10,914 1900 6457
1932 10,850 2426 10,102
1612 7627 1558 7414
1598 6954 1470 7556
1804 8365 1858 7833
1752 9469 1587 8309
2067 6410 2208 9559
2365 10,327 1487 6255
1646 7320 2206 10,723
1579 8196 2332 5430
1880 9709 2540 12,090
1773 10,370 2322 10,072

Source: Data courtesy of U.S. Forest Products Laboratory.

x2x1x2x1

(a) Construct and sketch a 95% confidence ellipse for the pair where
and 

(b) Suppose and represent “typical” values for stiffness and
bending strength, respectively. Given the result in (a), are the data in Table 5.11 con-
sistent with these values? Explain.

m2 0 = 10,000m1 0 = 2000

m2 = E1X22.m1 = E1X12
7m1 , m28¿,
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Chapter 5 Inferences about a Mean Vector

(c) Is the bivariate normal distribution a viable population model? Explain with refer-
ence to Q–Q plots and a scatter diagram.

5.20. A wildlife ecologist measured length (in millimeters) and length (in
millimeters) for a sample of female hook-billed kites.These data are displayed in
Table 5.12. Using the data in the table,

n = 45
x2 = wingx1 = tail

Table 5.12 Bird Data

(Tail (Wing (Tail (Wing (Tail (Wing
length) length) length) length) length) length)

191 284 186 266 173 271
197 285 197 285 194 280
208 288 201 295 198 300
180 273 190 282 180 272
180 275 209 305 190 292
188 280 187 285 191 286
210 283 207 297 196 285
196 288 178 268 207 286
191 271 202 271 209 303
179 257 205 285 179 261
208 289 190 280 186 262
202 285 189 277 174 245
200 272 211 310 181 250
192 282 216 305 189 262
199 280 189 274 188 258

Source: Data courtesy of S. Temple.

x2x1x2x1x2x1

(a) Find and sketch the 95% confidence ellipse for the population means and 
Suppose it is known that mm and mm for male hook-billed
kites. Are these plausible values for the mean tail length and mean wing length for
the female birds? Explain.

(b) Construct the simultaneous 95% -intervals for and and the 95% Bonferroni
intervals for and Compare the two sets of intervals.What advantage, if any, do
the -intervals have over the Bonferroni intervals?

(c) Is the bivariate normal distribution a viable population model? Explain with
reference to Q–Q plots and a scatter diagram.

5.21. Using the data on bone mineral content in Table 1.8, construct the 95% Bonferroni
intervals for the individual means. Also, find the 95% simultaneous -intervals.
Compare the two sets of intervals.

5.22. A portion of the data contained in Table 6.10 in Chapter 6 is reproduced in Table 5.13.
These data represent various costs associated with transporting milk from farms to dairy
plants for gasoline trucks. Only the first 25 multivariate observations for gasoline trucks
are given. Observations 9 and 21 have been identified as outliers from the full data set of
36 observations. (See [2].)

T2

T2
m2 .m1

m2m1T2

m2 = 275m1 = 190
m2 .m1
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Table 5.13 Milk Transportation-Cost Data

Fuel Repair Capital 

16.44 12.43 11.23
7.19 2.70 3.92
9.92 1.35 9.75
4.24 5.78 7.78

11.20 5.05 10.67
14.25 5.78 9.88
13.50 10.98 10.60
13.32 14.27 9.45
29.11 15.09 3.28
12.68 7.61 10.23
7.51 5.80 8.13
9.90 3.63 9.13

10.25 5.07 10.17
11.11 6.15 7.61
12.17 14.26 14.39
10.24 2.59 6.09
10.18 6.05 12.14
8.88 2.70 12.23

12.34 7.73 11.68
8.51 14.02 12.01

26.16 17.44 16.89
12.95 8.24 7.18
16.93 13.37 17.59
14.70 10.78 14.58
10.32 5.16 17.00

1x321x221x12

(a) Construct Q–Q plots of the marginal distributions of fuel, repair, and capital costs.
Also, construct the three possible scatter diagrams from the pairs of observations on
different variables. Are the outliers evident? Repeat the Q–Q plots and the scatter
diagrams with the apparent outliers removed. Do the data now appear to be nor-
mally distributed? Discuss.

(b) Construct 95% Bonferroni intervals for the individual cost means. Also, find the
95% -intervals. Compare the two sets of intervals.

5.23. Consider the 30 observations on male Egyptian skulls for the first time period given in
Table 6.13 on page 349.

(a) Construct Q–Q plots of the marginal distributions of the maxbreath, basheight,
baslength and nasheight variables. Also, construct a chi-square plot of the
multivariate observations. Do these data appear to be normally distributed?
Explain.

(b) Construct 95% Bonferroni intervals for the individual skull dimension variables.
Also, find the 95% -intervals. Compare the two sets of intervals.

5.24. Using the Madison, Wisconsin, Police Department data in Table 5.8, construct individual
charts for hours and hours. Do these individual process

characteristics seem to be in control? (That is, are they stable?) Comment.
x4 = COAx3 = holdover X

T2

T2
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5.25. Refer to Exercise 5.24. Using the data on the holdover and COA overtime hours, con-
struct a quality ellipse and a -chart. Does the process represented by the bivariate
observations appear to be in control? (That is, is it stable?) Comment. Do you learn
something from the multivariate control charts that was not apparent in the individual

-charts?

5.26. Construct a -chart using the data on appearances overtime hours,
event overtime hours, and overtime hours from

Table 5.8. Compare this chart with the chart in Figure 5.8 of Example 5.10. Does plotting
with an additional characteristic change your conclusion about process stability?

Explain.

5.27. Using the data on hours and hours from Table 5.8, construct
a prediction ellipse for a future observation Remember, a prediction
ellipse should be calculated from a stable process. Interpret the result.

5.28 As part of a study of its sheet metal assembly process, a major automobile manufacturer
uses sensors that record the deviation from the nominal thickness (millimeters) at six lo-
cations on a car. The first four are measured when the car body is complete and the last
two are measured on the underbody at an earlier stage of assembly. Data on 50 cars are
given in Table 5.14.

(a) The process seems stable for the first 30 cases. Use these cases to estimate S and .
Then construct a chart using all of the variables. Include all 50 cases.

(b) Which individual locations seem to show a cause for concern?

5.29 Refer to the car body data in Exercise 5.28. These are all measured as deviations from
target value so it is appropriate to test the null hypothesis that the mean vector is zero.
Using the first 30 cases, test H0: mm� 0 at a � .05

5.30 Refer to the data on energy consumption in Exercise 3.18.

(a) Obtain the large sample 95% Bonferroni confidence intervals for the mean con-
sumption of each of the four types, the total of the four, and the difference, petrole-
um minus natural gas.

(b) Obtain the large sample 95% simultaneous T2 intervals for the mean consumption
of each of the four types, the total of the four, and the difference, petroleum minus
natural gas. Compare with your results for Part a.

5.31 Refer to the data on snow storms in Exercise 3.20.

(a) Find a 95% confidence region for the mean vector after taking an appropriate trans-
formation.

(b) On the same scale, find the 95% Bonferroni confidence intervals for the two compo-
nent means.

T2
x–

x ¿ = 1x3 , x42 .
x4 = COAx3 = holdover

T2

x3 = holdoverx2 = extraordinary
x1 = legalT2

 X

T2
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TABLE 5.14 Car Body Assembly Data

Index x1 x2 x3 x4 x5 x6

1 �0.12 0.36 0.40 0.25 1.37 �0.13
2 �0.60 �0.35 0.04 �0.28 �0.25 �0.15
3 �0.13 0.05 0.84 0.61 1.45 0.25
4 �0.46 �0.37 0.30 0.00 �0.12 �0.25
5 �0.46 �0.24 0.37 0.13 0.78 �0.15
6 �0.46 �0.16 0.07 0.10 1.15 �0.18
7 �0.46 �0.24 0.13 0.02 0.26 �0.20
8 �0.13 0.05 �0.01 0.09 �0.15 �0.18
9 �0.31 �0.16 �0.20 0.23 0.65 0.15

10 �0.37 �0.24 0.37 0.21 1.15 0.05
11 �1.08 �0.83 �0.81 0.05 0.21 0.00
12 �0.42 �0.30 0.37 �0.58 0.00 �0.45
13 �0.31 0.10 �0.24 0.24 0.65 0.35
14 �0.14 0.06 0.18 �0.50 1.25 0.05
15 �0.61 �0.35 �0.24 0.75 0.15 �0.20
16 �0.61 �0.30 �0.20 �0.21 �0.50 �0.25
17 �0.84 �0.35 �0.14 �0.22 1.65 �0.05
18 �0.96 �0.85 0.19 �0.18 1.00 �0.08
19 �0.90 �0.34 �0.78 �0.15 0.25 0.25
20 �0.46 0.36 0.24 �0.58 0.15 0.25
21 �0.90 �0.59 0.13 0.13 0.60 �0.08
22 �0.61 �0.50 �0.34 �0.58 0.95 �0.08
23 �0.61 �0.20 �0.58 �0.20 1.10 0.00
24 �0.46 �0.30 �0.10 �0.10 0.75 �0.10
25 �0.60 �0.35 �0.45 0.37 1.18 �0.30
26 �0.60 �0.36 �0.34 �0.11 1.68 �0.32
27 �0.31 0.35 �0.45 �0.10 1.00 �0.25
28 �0.60 �0.25 �0.42 0.28 0.75 0.10
29 �0.31 0.25 �0.34 �0.24 0.65 0.10
30 �0.36 �0.16 0.15 �0.38 1.18 �0.10
31 �0.40 �0.12 �0.48 �0.34 0.30 �0.20
32 �0.60 �0.40 �0.20 0.32 0.50 0.10
33 �0.47 �0.16 �0.34 �0.31 0.85 0.60
34 �0.46 �0.18 0.16 0.01 0.60 0.35
35 �0.44 �0.12 �0.20 �0.48 1.40 0.10
36 �0.90 �0.40 0.75 �0.31 0.60 �0.10
37 �0.50 �0.35 0.84 �0.52 0.35 �0.75
38 �0.38 0.08 0.55 �0.15 0.80 �0.10
39 �0.60 �0.35 �0.35 �0.34 0.60 0.85
40 0.11 0.24 0.15 0.40 0.00 �0.10
41 0.05 0.12 0.85 0.55 1.65 �0.10
42 �0.85 �0.65 0.50 0.35 0.80 �0.21
43 �0.37 �0.10 �0.10 �0.58 1.85 �0.11
44 �0.11 0.24 0.75 �0.10 0.65 �0.10
45 �0.60 �0.24 0.13 0.84 0.85 0.15
46 �0.84 �0.59 0.05 0.61 1.00 0.20
47 �0.46 �0.16 0.37 �0.15 0.68 0.25
48 �0.56 �0.35 �0.10 0.75 0.45 0.20
49 �0.56 �0.16 0.37 �0.25 1.05 0.15
50 �0.25 �0.12 �0.05 �0.20 1.21 0.10

Source: Data Courtesy of Darek Ceglarek.
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COMPARISONS OF SEVERAL
MULTIVARIATE MEANS

6.1 Introduction
The ideas developed in Chapter 5 can be extended to handle problems involving the
comparison of several mean vectors. The theory is a little more complicated and
rests on an assumption of multivariate normal distributions or large sample sizes.
Similarly, the notation becomes a bit cumbersome. To circumvent these problems,
we shall often review univariate procedures for comparing several means and then
generalize to the corresponding multivariate cases by analogy. The numerical exam-
ples we present will help cement the concepts.

Because comparisons of means frequently (and should) emanate from designed
experiments, we take the opportunity to discuss some of the tenets of good experi-
mental practice. A repeated measures design, useful in behavioral studies, is explicitly
considered, along with modifications required to analyze growth curves.

We begin by considering pairs of mean vectors. In later sections, we discuss sev-
eral comparisons among mean vectors arranged according to treatment levels. The
corresponding test statistics depend upon a partitioning of the total variation into
pieces of variation attributable to the treatment sources and error. This partitioning
is known as the multivariate analysis of variance (MANOVA).

6.2 Paired Comparisons and a Repeated Measures Design

Paired Comparisons

Measurements are often recorded under different sets of experimental conditions
to see whether the responses differ significantly over these sets. For example, the
efficacy of a new drug or of a saturation advertising campaign may be determined by
comparing measurements before the “treatment” (drug or advertising) with those

C h a p t e r

6

273



Chapter 6 Comparisons of Several Multivariate Means

after the treatment. In other situations, two or more treatments can be administered
to the same or similar experimental units, and responses can be compared to assess
the effects of the treatments.

One rational approach to comparing two treatments, or the presence and ab-
sence of a single treatment, is to assign both treatments to the same or identical units
(individuals, stores, plots of land, and so forth). The paired responses may then be
analyzed by computing their differences, thereby eliminating much of the influence
of extraneous unit-to-unit variation.

In the single response (univariate) case, let denote the response to
treatment 1 (or the response before treatment), and let denote the response to
treatment 2 (or the response after treatment) for the jth trial. That is,
are measurements recorded on the jth unit or jth pair of like units. By design, the 
n differences

(6-1)

should reflect only the differential effects of the treatments.
Given that the differences in (6-1) represent independent observations from

an distribution, the variable

(6-2)

where

(6-3)

has a t-distribution with d.f. Consequently, an -level test of

versus

may be conducted by comparing with —the upper th per-
centile of a t-distribution with d.f.A confidence interval for the
mean difference is provided the statement

(6-4)

(For example, see [11].)
Additional notation is required for the multivariate extension of the paired-

comparison procedure. It is necessary to distinguish between p responses, two treat-
ments, and n experimental units. We label the p responses within the jth unit as

 X2 j p = variable p under treatment 2
 o o

 X2 j 2 = variable 2 under treatment 2
 X2 j 1 = variable 1 under treatment 2

 X1 j p = variable p under treatment 1
 o o

 X1 j 2 = variable 2 under treatment 1
 X1 j 1 = variable 1 under treatment 1

d
–

- tn - 11a>22 

sd1n
… d … d

–
+ tn - 11a>22 

sd1n

d = E1Xj 1 - Xj 22
10011 - a2%n - 1

1001a>22tn - 11a>22ƒ t ƒ

H1  : d Z 0

H0  : d = 0 1zero mean difference for treatments2

an - 1

  D =

1
n

 a
n

j = 1
 Dj and sd

2
=

1
n - 1

 a
n

j = 1
 1Dj -   D 2

2

t =

  D - d

sd >1n

N1d, sd
22

Dj

Dj = Xj 1 - Xj 2 ,  j = 1, 2, Á , n

1Xj 1 , Xj 22
Xj 2

Xj 1
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Paired Comparisons and a Repeated Measures Design

and the p paired-difference random variables become

(6-5)

Let and assume, for that

(6-6)

If, in addition, are independent random vectors, infer-
ences about the vector of mean differences can be based upon a -statistic.

Specifically,

(6-7)
where

(6-8)

Result 6.1. Let the differences be a random sample from an
population. Then

is distributed as an random variable, whatever the true 
and 

If n and are both large, is approximately distributed as a random
variable, regardless of the form of the underlying population of differences.

Proof. The exact distribution of is a restatement of the summary in (5-6), with
vectors of differences for the observation vectors. The approximate distribution of

for n and large, follows from (4-28). �

The condition is equivalent to “no average difference between the two
treatments.” For the ith variable, implies that treatment 1 is larger, on aver-
age, than treatment 2. In general, inferences about can be made using Result 6.1.D

di 7 0
D = 0

n - pT2 ,

T2

xp
2T2n - p

�d .
D71n - 12p>1n - p28Fp, n - p

T2
= n1 D - D2

œ

 Sd
-11 D - D2

Np1D, �d2
D1 , D2 , Á , Dn

D =

1
n

 a
n

j = 1
 Dj and Sd =

1
n - 1

 a
n

j = 1
 1Dj - D21Dj - D2œ

T2
= n1 D - D2

œ

 Sd
-11 D - D2

T2D

Np1D, �d2D1 , D2 , Á , Dn

E1Dj2 = D = Dd1

d2

o

dp

T and Cov 1Dj2 = �d

j = 1, 2, Á , n,Dj
œ

= 7Dj 1 , Dj 2 , Á , Dj p8, Dj p = X1 j p - X2 j p

oo

 Dj 2 = X1 j 2 - X2 j 2

 Dj 1 = X1 j 1 - X2 j 1

Given the observed differences corre-
sponding to the random variables in (6-5), an -level test of versus

for an population rejects if the observed

where is the upper th percentile of an F-distribution with p
and d.f. Here and are given by (6-8).Sdd

–
n - p

1100a2Fp, n - p1a2

T2
= n d

–
¿  Sd

-1
 d
–

7

1n - 12p

1n - p2
 Fp, n - p1a2

H0Np1D, �d2H1  : D Z 0
H0  : D = 0a

j = 1, 2, Á , n,dœ

j = 7dj 1 , dj 2 , Á , dj p8,
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Chapter 6 Comparisons of Several Multivariate Means

Example 6.1 (Checking for a mean difference with paired observations) Municipal
wastewater treatment plants are required by law to monitor their discharges into
rivers and streams on a regular basis. Concern about the reliability of data from one
of these self-monitoring programs led to a study in which samples of effluent were
divided and sent to two laboratories for testing. One-half of each sample was sent to
the Wisconsin State Laboratory of Hygiene, and one-half was sent to a private com-
mercial laboratory routinely used in the monitoring program. Measurements of bio-
chemical oxygen demand (BOD) and suspended solids (SS) were obtained, for

sample splits, from the two laboratories. The data are displayed in Table 6.1.n = 11

Table 6.1 Effluent Data

Commercial lab State lab of hygiene
Sample j (BOD) (SS) (BOD) (SS)

1 6 27 25 15
2 6 23 28 13
3 18 64 36 22
4 8 44 35 29
5 11 30 15 31
6 34 75 44 64
7 28 26 42 30
8 71 124 54 64
9 43 54 34 56

10 33 30 29 20
11 20 14 39 21

Source: Data courtesy of S. Weber.

x2 j 2x2 j 1x1 j 2x1 j 1

A confidence region for consists of all such that

(6-9)

Also, simultaneous confidence intervals for the individual mean
differences are given by

(6-10)

where is the ith element of and is the ith diagonal element of 
For large, and normality

need not be assumed.
The Bonferroni simultaneous confidence intervals for the

individual mean differences are

(6-10a)

where is the upper th percentile of a t-distribution with
d.f.n - 1

1001a>2p2tn - 11a>2p2

di  : d
–

i ; tn-1a
a

2p
b C sdi

2

n

10011 - a2%

71n - 12p>1n - p28Fp, n - p1a2 � xp
21a2n - p

Sd .sdi
2d

–
d
–

i

di : d
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i ; A1n - 12p

1n - p2
 Fp, n-p1a2 C 

sdi
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n
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10011 - a2%

1dq - D2
œ

 Sd
-11dq - D2 …

1n - 12p

n1n - p2
 Fp, n - p1a2

DD10011 - a2%
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Paired Comparisons and a Repeated Measures Design

Here

and

Taking we find that =

= 9.47. Since we reject and conclude that there is a nonzero
mean difference between the measurements of the two laboratories. It appears,
from inspection of the data, that the commercial lab tends to produce lower BOD
measurements and higher SS measurements than the State Lab of Hygiene. The
95% simultaneous confidence intervals for the mean differences and can be
computed using (6-10). These intervals are

The 95% simultaneous confidence intervals include zero, yet the hypothesis 
was rejected at the 5% level.What are we to conclude?

The evidence points toward real differences. The point falls outside 
the 95% confidence region for (see Exercise 6.1), and this result is consistent 
with the -test. The 95% simultaneous confidence coefficient applies to the 
entire set of intervals that could be constructed for all possible linear com-
binations of the form The particular intervals corresponding to the
choices and contain zero. Other choices of 
and will produce simultaneous intervals that do not contain zero. (If the
hypothesis were not rejected, then all simultaneous intervals would
include zero.)

The Bonferroni simultaneous intervals also cover zero. (See Exercise 6.2.)

H0  : D = 0
a2

a11a1 = 0, a2 = 121a1 = 1, a2 = 02
a1 d1 + a2 d2 .

T2
D

D = 0

H0  : D = 0

d2  : 13.27 ; 19.47 A418.61
11

 or 1-5.71, 32.252

or 1-22.46, 3.742

d1  : d
–

1 ; A 1n - 12p

1n - p2
 Fp, n - p1a2 C  

sd1
2

n
= -9.36 ; 1 9.47 A199.26

11

d2d1

H0T2
= 13.6 7 9.47,

F2, 91.052721102>987p1n - 12>1n - p28Fp, n - p1.052a = .05,

T2
= 117-9.36, 13.278 B .0055 - .0012

- .0012 .0026
R B -9.36

13.27
R = 13.6

d
–

= Bd
–

1

d
–

2
R = B -9.36

13.27
R  , Sd = B199.26 88.38

88.38 418.61
R

Do the two laboratories’ chemical analyses agree? If differences exist, what is
their nature?

The -statistic for testing = is constructed from the
differences of paired observations:

70, 08H0  : D ¿ = 7d1 , d28T2

17 9 4

12 10 42 15 11 60 10 -7-2-4-1dj 2 = x1 j 2 - x2 j 2

-19-14-10-4-27-18-22-19dj 1 = x1 j 1 - x2 j 1
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Chapter 6 Comparisons of Several Multivariate Means

Our analysis assumed a normal distribution for the In fact, the situation is
further complicated by the presence of one or, possibly, two outliers. (See Exercise
6.3.) These data can be transformed to data more nearly normal, but with such a
small sample, it is difficult to remove the effects of the outlier(s). (See Exercise 6.4.)

The numerical results of this example illustrate an unusual circumstance that
can occur when making inferences. �

The experimenter in Example 6.1 actually divided a sample by first shaking it and
then pouring it rapidly back and forth into two bottles for chemical analysis. This was
prudent because a simple division of the sample into two pieces obtained by pouring
the top half into one bottle and the remainder into another bottle might result in more
suspended solids in the lower half due to setting.The two laboratories would then not
be working with the same, or even like, experimental units, and the conclusions would
not pertain to laboratory competence, measuring techniques, and so forth.

Whenever an investigator can control the assignment of treatments to experi-
mental units, an appropriate pairing of units and a randomized assignment of treat-
ments can enhance the statistical analysis. Differences, if any, between supposedly
identical units must be identified and most-alike units paired. Further, a random as-
signment of treatment 1 to one unit and treatment 2 to the other unit will help elim-
inate the systematic effects of uncontrolled sources of variation. Randomization can
be implemented by flipping a coin to determine whether the first unit in a pair re-
ceives treatment 1 (heads) or treatment 2 (tails). The remaining treatment is then
assigned to the other unit. A separate independent randomization is conducted for
each pair. One can conceive of the process as follows:

Dj .

1 2 3 n

Experimental Design for Paired Comparisons

Like pairs of 
experimental

units

Treatments
1 and 2
assigned

at random

Treatments
1 and 2
assigned

at random

Treatments
1 and 2
assigned

at random

Treatments
1 and 2
assigned

at random

We conclude our discussion of paired comparisons by noting that and and
hence may be calculated from the full-sample quantities and S. Here is the

vector of sample averages for the p variables on the two treatments given by

(6-11)

and S is the matrix of sample variances and covariances arranged as

(6-12)S = C S  

 1 1
1p * p2

S  

 2 1
1p * p2

S  

 1 2
1p * p2

S  

 2 2
1p * p2

S
2p * 2p

x– ¿ = 7x–1 1 , x–1 2 , Á , x–1 p , x–2 1 , x–2 2 , Á , x–2 p82p * 1
x–x–T2 ,
Sd ,d

–
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Paired Comparisons and a Repeated Measures Design

The matrix contains the sample variances and covariances for the p variables on
treatment 1. Similarly, contains the sample variances and covariances computed
for the p variables on treatment 2. Finally, are the matrices of sample
covariances computed from observations on pairs of treatment 1 and treatment 2
variables.

Defining the matrix

(6-13)

we can verify (see Exercise 6.9) that

(6-14)

Thus,

(6-15)

and it is not necessary first to calculate the differences On the other
hand, it is wise to calculate these differences in order to check normality and the as-
sumption of a random sample.

Each row of the matrix C in (6-13) is a contrast vector, because its elements
sum to zero. Attention is usually centered on contrasts when comparing treatments.
Each contrast is perpendicular to the vector since The
component representing the overall treatment sum, is ignored by the test
statistic presented in this section.

A Repeated Measures Design for Comparing Treatments

Another generalization of the univariate paired t-statistic arises in situations where
q treatments are compared with respect to a single response variable. Each subject
or experimental unit receives each treatment once over successive periods of time.
The jth observation is

where is the response to the ith treatment on the jth unit. The name repeated
measures stems from the fact that all treatments are administered to each unit.

Xj i

Xj = DXj 1

Xj 2

o

Xj q

T  ,  j = 1, 2, Á , n

T2
1¿  xj ,

cœ

i  1 = 0.1¿ = 71, 1, Á , 18cœ

i

d1 , d2 , Á , dn .

T2
= n x– ¿  C¿1CSC¿2

-1
 C x–

 d
–

= C x– and Sd = CSC¿

 dj = C xj ,  j = 1, 2, Á , n

1p + 12st column

c

C
1p * 2p2

= D1 0 Á
   0 -1 0 Á

   0
0 1 Á

   0 0 -1 Á
   0

o o ∞ o o o ∞ o

0 0 Á
   1 0 0 Á

   -1

T

S1 2 = Sœ

2 1

S2 2

S1 1
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Chapter 6 Comparisons of Several Multivariate Means

For comparative purposes, we consider contrasts of the components of
These could be

or

Both and are called contrast matrices, because their rows are linearly
independent and each is a contrast vector.The nature of the design eliminates much
of the influence of unit-to-unit variation on treatment comparisons. Of course, the
experimenter should randomize the order in which the treatments are presented to
each subject.

When the treatment means are equal, In general, the hypoth-
esis that there are no differences in treatments (equal treatment means) becomes

for any choice of the contrast matrix C.
Consequently, based on the contrasts in the observations, we have means
and covariance matrix and we test using the -statistic

T2
= n1C x–2œ1CSC¿2

-1
 Cx–

T2CM = 0CSC¿,C x–
C xj

CM = 0

C1 M = C2 M = 0.

q - 1C2C1

D m2 - m1

m3 - m2

o

mq - mq - 1

T = D -1 1 0 Á 0 0
0 -1 1 Á 0 0
o o o ∞ o o

0 0 0 Á
-1 1

T Dm1

m2

o

mq

T = C2 M

Dm1 - m2

m1 - m3

o

m1 - mq

T = D1 -1 0 Á 0
1 0 -1 Á 0
o o o ∞ o

1 0 0 Á
-1

T Dm1

m2

o

mq

T = C1 M

M = E1Xj2.

1Any pair of contrast matrices and must be related by with B nonsingular.
This follows because each C has the largest possible number, of linearly independent rows,
all perpendicular to the vector 1. Then = =

so computed with or gives the same result.C1 = BC2C2T2Cœ

21C2 SCœ

22
-1

 C2 ,
Cœ

2 B¿1B¿2-11C2 SCœ

22
-1

 B-1
 BC21BC22¿1BC2 SCœ

2 B¿2-11BC22
q - 1,

C1 = BC2 ,C2C1

It can be shown that does not depend on the particular choice of C.1T2

Test for Equality of Treatments in a Repeated Measures Design

Consider an population, and let C be a contrast matrix.An -level test
of (equal treatment means) versus is as follows:
Reject if

(6-16)

where is the upper th percentile of an F-distribution with
and d.f. Here and S are the sample mean vector and covari-

ance matrix defined, respectively, by

x– =

1
n

 a
n

j = 1
 xj and S =

1
n - 1

 a
n

j = 1
 1xj - x–2 1xj - x–2œ

x–n - q + 1q - 1
1100a2Fq - 1, n - q + 11a2

T2
= n1C x–2œ1CSC¿2

-1
 C x– 7  

1n - 121q - 12

1n - q + 12
 Fq - 1, n - q + 11a2

H0

H1  : CM Z 0H0  : CM = 0
aNq1M, �2
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Paired Comparisons and a Repeated Measures Design

A confidence region for contrasts with the mean of a normal population,
is determined by the set of all such that

(6-17)

where and S are as defined in (6-16). Consequently, simultaneous 
confidence intervals for single contrasts for any contrast vectors of interest are
given by (see Result 5A.1)

(6-18)

Example 6.2 (Testing for equal treatments in a repeated measures design) Improved
anesthetics are often developed by first studying their effects on animals. In one
study, 19 dogs were initially given the drug pentobarbitol. Each dog was then ad-
ministered carbon dioxide at each of two pressure levels. Next, halothane (H)
was added, and the administration of was repeated. The response, milliseconds
between heartbeats, was measured for the four treatment combinations:

CO2

CO2

c¿  M: c¿  x– ; A 1n - 121q - 12

1n - q + 12
 Fq - 1, n - q + 11a2 A c¿  Sc

n

c¿  M

10011 - a2%x–

n1C x– - CM2œ1CSC¿2
-1
1C x– - CM2 …

1n - 121q - 12

1n - q + 12
 Fq - 1, n - q + 11a2

CM
MCM,

34

2 1

Present

Halothane

Absent

Low High

CO2 pressure

Table 6.2 contains the four measurements for each of the 19 dogs, where

We shall analyze the anesthetizing effects of pressure and halothane from
this repeated-measures design.

There are three treatment contrasts that might be of interest in the experiment.
Let and correspond to the mean responses for treatments 1, 2, 3, and
4, respectively. Then

 1m1 + m42 - 1m2 + m32 = £ Contrast representing the influence
of halothane on CO2 pressure differences
1H–CO2 pressure “interaction”2

≥
 1m1 + m32 - 1m2 + m42 = ¢CO2 contrast representing the difference

between high and low CO2 pressure ≤
 1m3 + m42 - 1m1 + m22 = £Halothane contrast representing the

difference between the presence and
absence of halothane

≥
m4m1 , m2 , m3 ,

CO2

 Treatment 4 = low CO2 pressure with H

 Treatment 3 = high CO2 pressure with H

 Treatment 2 = low CO2 pressure without H

 Treatment 1 = high CO2 pressure without H
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Chapter 6 Comparisons of Several Multivariate Means

With the contrast matrix C is

The data (see Table 6.2) give

It can be verified that

and

T2
= n1Cx–2œ1CSC¿2

-1
1Cx–2 = 1916.112 = 116

C x– = C 209.31
-60.05
-12.79

S  ;  CSC¿ = C9432.32 1098.92 927.62
1098.92 5195.84 914.54
927.62 914.54 7557.44

S

x– = D368.21
404.63
479.26
502.89

T and S = D2819.29    

3568.42 7963.14   

2943.49 5303.98 6851.32  

2295.35 4065.44 4499.63 4878.99

T

C = C -1 -1 1 1
1 -1 1 -1
1 -1 -1 1

S
M ¿ = 7m1 , m2 , m3 , m48,

Table 6.2 Sleeping-Dog Data

Treatment
Dog 1 2 3 4

1 426 609 556 600
2 253 236 392 395
3 359 433 349 357
4 432 431 522 600
5 405 426 513 513
6 324 438 507 539
7 310 312 410 456
8 326 326 350 504
9 375 447 547 548

10 286 286 403 422
11 349 382 473 497
12 429 410 488 547
13 348 377 447 514
14 412 473 472 446
15 347 326 455 468
16 434 458 637 524
17 364 367 432 469
18 420 395 508 531
19 397 556 645 625

Source: Data courtesy of Dr. J. Atlee.
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Paired Comparisons and a Repeated Measures Design

With 

From (6-16), and we reject (no treatment effects).
To see which of the contrasts are responsible for the rejection of we construct
95% simultaneous confidence intervals for these contrasts. From (6-18), the
contrast

is estimated by the interval

where is the first row of C. Similarly, the remaining contrasts are estimated by

The first confidence interval implies that there is a halothane effect. The pres-
ence of halothane produces longer times between heartbeats. This occurs at both
levels of pressure, since the pressure interaction contrast,

is not significantly different from zero. (See the third
confidence interval.) The second confidence interval indicates that there is an
effect due to pressure:The lower pressure produces longer times between
heartbeats.

Some caution must be exercised in our interpretation of the results because the
trials with halothane must follow those without. The apparent H-effect may be due
to a time trend. (Ideally, the time order of all treatments should be determined at
random.) �

The test in (6-16) is appropriate when the covariance matrix,
cannot be assumed to have any special structure. If it is reasonable to assume that 
has a particular structure, tests designed with this structure in mind have higher
power than the one in (6-16). (For with the equal correlation structure (8-14), see
a discussion of the “randomized block” design in [17] or [22].)

�

�
Cov 1X2 = �,

CO2CO2

1m1 + m42 - 1m2 - m32,
H–CO2CO2

- 12.79 ; 110.94 A7557.44
19

= -12.79 ; 65.97

H–CO2 pressure “interaction” = 1m1 + m42 - 1m2 + m32:

- 60.05 ; 110.94 A5195.84
19

= -60.05 ; 54.70

CO2 pressure influence = 1m1 + m32 - 1m2 + m42:

cœ

1

 = 209.31 ; 73.70

 1x–3 + x–42 - 1x–1 + x–22 ; A18132

16
 F3, 161.052 A cœ

1 Sc1

19
= 209.31 ; 110.94 A9432.32

19

cœ

1 M = 1m3 + m42 - 1m1 + m22 = halothane influence

H0 ,
H0 : CM = 0T2

= 116 7 10.94,

1n - 121q - 12

1n - q + 12
 Fq - 1, n - q + 11a2 =

18132

16
 F3, 161.052 =

18132

16
 13.242 = 10.94

a = .05,
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Chapter 6 Comparisons of Several Multivariate Means

6.3 Comparing Mean Vectors from Two Populations
A -statistic for testing the equality of vector means from two multivariate popula-
tions can be developed by analogy with the univariate procedure. (See [11] for a dis-
cussion of the univariate case.) This -statistic is appropriate for comparing
responses from one set of experimental settings (population 1) with independent re-
sponses from another set of experimental settings (population 2). The comparison
can be made without explicitly controlling for unit-to-unit variability, as in the
paired-comparison case.

If possible, the experimental units should be randomly assigned to the sets of
experimental conditions. Randomization will, to some extent, mitigate the effect
of unit-to-unit variability in a subsequent comparison of treatments. Although some
precision is lost relative to paired comparisons, the inferences in the two-population
case are, ordinarily, applicable to a more general collection of experimental units
simply because unit homogeneity is not required.

Consider a random sample of size from population 1 and a sample of 
size from population 2. The observations on p variables can be arranged as 
follows:

n2

n1

T2

T2

In this notation, the first subscript—1 or 2—denotes the population.
We want to make inferences about 

(mean vector of population 1) (mean vector of population 2)

For instance, we shall want to answer the question, Is (or, equivalently, is
)? Also, if which component means are different?

With a few tentative assumptions,we are able to provide answers to these questions.

Assumptions Concerning the Structure of the Data

1. The sample is a random sample of size from a p-variate
population with mean vector and covariance matrix 

2. The sample is a random sample of size from a p-variate
population with mean vector and covariance matrix 

3. Also, are independent of (6-19)

We shall see later that, for large samples, this structure is sufficient for making
inferences about the vector However, when the sample sizes and

are small, more assumptions are needed.n2

n1M1 - M2 .p * 1

X2 1 , X2 2 , Á , X2 n2
.X1 1 , X1 2 , Á , X1 n1

,

�2 .M2

n2X2 1 , X2 2 , Á , X2 n2
,

�1 .M1

n1X1 1 , X1 2 , Á , X1 n1
,

M1 - M2 Z 0,M1 - M2 = 0
M1 = M2

= M1 - M2 .-

Sample Summary statistics

(Population 1)

(Population 2)
S2 =

1
n2 - 1

 a

n2

j = 1
 1x2 j - x–22 1x2 j - x–22

œx–2 =

1
n2

 a

n2

j = 1
 x2 jx2 1 , x2 2 , Á , x2 n2

S1 =

1
n1 - 1

 a

n1

j = 1
 1x1 j - x–12 1x1 j - x–12

œx–1 =

1
n1

 a

n1

j = 1
 x1 jx1 1 , x1 2 , Á , x1 n1
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Further Assumptions When and Are Small

1. Both populations are multivariate normal.

2. Also, (same covariance matrix). (6-20)

The second assumption, that is much stronger than its univariate counter-
part. Here we are assuming that several pairs of variances and covariances are
nearly equal.

When is an estimate of and 

is an estimate of Consequently, we can pool the

information in both samples in order to estimate the common covariance 
We set

(6-21)

Since has d.f. and has 

d.f., the divisor in (6-21) is obtained by combining the
two component degrees of freedom. [See (4-24).]   Additional support for the pool-
ing procedure comes from consideration of the multivariate normal likelihood. (See
Exercise 6.11.)

To test the hypothesis that a specified vector, we consider the
squared statistical distance from to Now,

Since the independence assumption in (6-19) implies that and are indepen-
dent and thus (see Result 4.5), by (3-9), it follows that

(6-22)

Because estimates we see that

is an estimator of 
The likelihood ratio test of

is based on the square of the statistical distance, and is given by (see [1]).
Reject if

(6-23)T2
= 1x–1 - x–2 - D02

œ B ¢ 1
n1

+

1
n2
≤  SpooledR-1

 1x–1 - x–2 - D02 7 c2

H0

T2 ,

H0  : M1 - M2 = D0

Cov 1 X1 - X22.

¢ 1
n1

+

1
n2
≤  Spooled

�,Spooled

Cov 1 X1 - X22 = Cov 1 X12 + Cov 1 X22 =

1
n1

 � +

1
n2

 � = ¢ 1
n1

+

1
n2
≤  �

Cov 1 X1 , X22 = 0
X2X1

E1 X1 - X22 = E1 X12 - E1 X22 = M1 - M2

D0 .x–1 - x–2

M1 - M2 = D0 ,

1n1 - 12 + 1n2 - 12n2 - 1

a

n2

j = 1
 1x2 j - x–22 1x2 j - x–22

œn1 - 1a

n1

j = 1
 1x1 j - x–12 1x1 j - x–12

œ

 =

n1 - 1
n1 + n2 - 2

 S1 +

n2 - 1
n1 + n2 - 2

 S2

 Spooled =

a

n1

j = 1
 1x1 j - x–12 1x1 j - x–12

œ

+ a

n2

j = 1
 1x2 j - x–22 1x2 j - x–22

œ

n1 + n2 - 2

�.

1n2 - 12�.a

n2

j = 1
1x2 j - x–22 1x2 j - x–22

œ

1n1 - 12�a

n1

j = 1
 1x1 j - x–12 1x1 j - x–12

œ

�1 = �2 = �,

�1 = �2 ,

�1 = �2

n2n1
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where the critical distance is determined from the distribution of the two-sample
-statistic.

Result 6.2. If is a random sample of size from and
is an independent random sample of size from then

is distributed as

Consequently,

(6-24)
where

Proof. We first note that

is distributed as

by Result 4.8, with = and = =

According to (4-23),

By assumption, the ’s and the ’s are independent, so and
are also independent. From (4-24), ± is then dis-

tributed as Therefore,

which is the -distribution specified in (5-8), with n replaced by [See
(5-5) for the relation to F.] �

n1 + n2 - 1.T2

 = Np10, �2¿ BWn1 + n2 - 21�2

n1 + n2 - 2
R-1

  Np10, �2

 = ¢multivariate normal
random vector ≤ ¿

 a
Wishart random matrix

d.f.
b

-1

 ¢multivariate normal
random vector ≤ T2

= ¢ 1
n1

+

1
n2
≤-1>2

 1 X1 - X2 - 1M1 - M222
œ

 Spooled
-1  ¢ 1

n1
+

1
n2
≤-1>2

 1 X1 - X2 - 1M1 - M222

Wn1 + n2 - 21�2.
1n2 - 12S21n1 - 12S11n2 - 12S2

1n1 - 12S1X2 jX1 j

1n1 - 12S1 is distributed as Wn1 - 11�2 and 1n2 - 12S2 as Wn2 - 11�2

-1>n2.
Á

= cn1 + n2
cn1 + 1 = cn1 + 2cn1

= 1>n1c1 = c2 =
Á

Np¢M1 - M2, ¢ 1
n1

+

1
n2
≤  �≤

X1 - X2 =

1
n1

 X1 1 +

1
n1

 X1 2 +
Á

+

1
n1

 X1 n1
-

1
n2

 X2 1 -

1
n2

 X2 2 -
Á

-

1
n2

 X2 n2

c2
=

1n1 + n2 - 22p

1n1 + n2 - p - 12
 Fp, n1 + n2 - p - 11a2

P B1 X1 - X2 - 1M1 - M222
œ

 B ¢ 1
n1

+

1
n2
≤  SpooledR-1

 1 X1 - X2 - 1M1 - M222 … c2R = 1 - a

1n1 + n2 - 22p

1n1 + n2 - p - 12
 Fp, n1 + n2 - p - 1

T2
= 7 X1 - X2 - 1M1 - M228œ B ¢ 1

n1
+

1
n2
≤  SpooledR-1

 7 X1 - X2 - 1M1 - M228
Np1M2 , �2,n2X2 1 , X2 2 , Á , X2 n2

Np1M1 , �2n1X1 1 , X1 2 , Á , X1 n1

T2
c2
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We are primarily interested in confidence regions for From (6-24), we
conclude that all within squared statistical distance of constitute
the confidence region.This region is an ellipsoid centered at the observed difference

and whose axes are determined by the eigenvalues and eigenvectors of
(or ).

Example 6.3 (Constructing a confidence region for the difference of two mean vectors)
Fifty bars of soap are manufactured in each of two ways. Two characteristics,

and are measured. The summary statistics for bars
produced by methods 1 and 2 are

Obtain a 95% confidence region for 
We first note that and are approximately equal, so that it is reasonable to

pool them. Hence, from (6-21),

Also,

so the confidence ellipse is centered at The eigenvalues and eigenvectors
of are obtained from the equation

so Consequently, and and the
corresponding eigenvectors, and determined from

are

By Result 6.2,

since The confidence ellipse extends1li C¢ 1
n1

+

1
n2
≤  c2

= 1li 1.25

F2, 971.052 = 3.1.

¢ 1
n1

+

1
n2
≤  c2

= a
1

50
+

1
50
b  
1982122

1972
 F2, 971.052 = .25

e1 = B .290
.957
R and e2 = B .957

- .290
R

Spooled  ei = li ei ,  i = 1, 2

e2 ,e1

l2 = 1.697,l1 = 5.303l = 17 ; 149 - 36 2>2.

0 = ƒ Spooled - lI ƒ = `
2 - l 1

1 5 - l
` = l2

- 7l + 9

Spooled

7-1.9, .28¿.
x–1 - x–2 = B -1.9

.2
R

Spooled =

49
98

 S1 +

49
98

 S2 = B2 1
1 5

R
S2S1

M1 - M2 .

 x–2 = B10.2
3.9
R  ,   S2 = B2 1

1 4
R

 x–1 = B8.3
4.1
R  ,   S1 = B2 1

1 6
R

X2 = mildness,X1 = lather

Spooled
-1

 Spooled

x–1 - x–2

x–1 - x–2c2M1 - M2

M1 - M2 .
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units along the eigenvector or 1.15 units in the direction and .65 units in the 
direction. The 95% confidence ellipse is shown in Figure 6.1. Clearly,
is not in the ellipse, and we conclude that the two methods of manufacturing soap
produce different results. It appears as if the two processes produce bars of soap
with about the same mildness but those from the second process have more
lather �

Simultaneous Confidence Intervals

It is possible to derive simultaneous confidence intervals for the components of the
vector These confidence intervals are developed from a consideration of
all possible linear combinations of the differences in the mean vectors. It is assumed
that the parent multivariate populations are normal with a common covariance 

Result 6.3. Let – With
probability 

will cover for all a. In particular will be covered by

Proof. Consider univariate linear combinations of the observations

and

given by ± and 
± These linear combinations have sample means and covariances 

and respectively, where and are the mean
and covariance statistics for the two original samples. (See Result 3.5.) When both
parent populations have the same covariance matrix, and s2, a

2
= a¿  S2 as1, a

2
= a¿  S1 a

S2X2 ,S1 ,X1 ,a¿  S2 a,a¿  X2 ,a¿  S1 aa¿  X1 ,
Á

+ ap X2 j p .
a¿  X2 j = a1 X2 j 1 + a2 X2 j 2

Á
+ ap X1 j pa¿  X1 j = a1 X1 j 1 + a2 X1 j 2

X21 , X22 , Á , X2 n2
X1 1 , X1 2 , Á , X1 n1

1  X1 i -   X2 i2 ; c C¢ 1
n1

+

1
n2
≤  si i, pooled  for i = 1, 2, Á , p

m1 i - m2 ia¿1M1 - M22

a¿1 X1 - X22 ; c Ca¿ ¢ 1
n1

+

1
n2
≤  Spooled a

1 - a.
p - 128Fp, n1 + n2 - p - 11a2.c2

= 71n1 + n2 - 22p>1n1 + n2

�.

M1 - M2 .

1X12.
1X22,

M1 - M2 = 0
e2e1ei ,

2.0

1.0

�1.0

�1.0 1.0

µ12 µ 22�

µ11 µ 21�

�2.0

Figure 6.1 95% confidence ellipse
for M1 - M2 .
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are both estimators of the common population variance of the linear combi-
nations and Pooling these estimators, we obtain

(6-25)

To test on the basis of the and we can form
the square of the univariate two-sample t-statistic

(6-26)

According to the maximization lemma with and
in (2-50),

for all Thus,

where is selected according to Result 6.2. �

Remark. For testing the linear combination with
coefficient vector quantifies the largest population difference.
That is, if rejects then will have a nonzero mean. Frequently, we
try to interpret the components of this linear combination for both subject matter
and statistical importance.

Example 6.4 (Calculating simultaneous confidence intervals for the differences in
mean components) Samples of sizes and were taken of Wisconsin
homeowners with and without air conditioning, respectively. (Data courtesy of Sta-
tistical Laboratory, University of Wisconsin.) Two measurements of electrical usage
(in kilowatt hours) were considered.The first is a measure of total on-peak consump-
tion during July, and the second is a measure of total off-peak consumption

during July. The resulting summary statistics are
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Chapter 6 Comparisons of Several Multivariate Means

(The off-peak consumption is higher than the on-peak consumption because there
are more off-peak hours in a month.)

Let us find 95% simultaneous confidence intervals for the differences in the
mean components.

Although there appears to be somewhat of a discrepancy in the sample vari-
ances, for illustrative purposes we proceed to a calculation of the pooled sample co-
variance matrix. Here

and

With = the 95% simultaneous confidence inter-
vals for the population differences are

or
(on-peak)

or
(off-peak)

We conclude that there is a difference in electrical consumption between those with
air-conditioning and those without. This difference is evident in both on-peak and
off-peak consumption.

The 95% confidence ellipse for is determined from the eigenvalue-
eigenvector pairs and 

Since

and

we obtain the 95% confidence ellipse for sketched in Figure 6.2 on page 291.
Because the confidence ellipse for the difference in means does not cover 
the -statistic will reject at the 5% level.H0  : M1 - M2 = 0T2
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Comparing Mean Vectors from Two Populations

The coefficient vector for the linear combination most responsible for rejection
is proportional to (See Exercise 6.7.) �

The Bonferroni simultaneous confidence intervals for the p popu-
lation mean differences are

where is the upper th percentile of a t-distribution with
d.f.

The Two-Sample Situation When 

When we are unable to find a “distance” measure like whose distribu-
tion does not depend on the unknowns and Bartlett’s test [3] is used to test
the equality of and in terms of generalized variances. Unfortunately, the con-
clusions can be seriously misleading when the populations are nonnormal. Nonnor-
mality and unequal covariances cannot be separated with Bartlett’s test. (See also
Section 6.6.) A method of testing the equality of two covariance matrices that is less
sensitive to the assumption of multivariate normality has been proposed by Tiku
and Balakrishnan [23]. However, more practical experience is needed with this test
before we can recommend it unconditionally.

We suggest, without much factual support, that any discrepancy of the order
or vice versa, is probably serious. This is true in the univariate case.

The size of the discrepancies that are critical in the multivariate situation probably
depends, to a large extent, on the number of variables p.

A transformation may improve things when the marginal variances are quite
different. However, for and large, we can avoid the complexities due to
unequal covariance matrices.
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Chapter 6 Comparisons of Several Multivariate Means

Result 6.4. Let the sample sizes be such that and are large.Then, an
approximate confidence ellipsoid for is given by all 
satisfying

where is the upper th percentile of a chi-square distribution with p d.f.
Also, simultaneous confidence intervals for all linear combinations

are provided by

Proof. From (6-22) and (3-9),

and

By the central limit theorem, is nearly If 
and were known, the square of the statistical distance from to 
would be

This squared distance has an approximate -distribution, by Result 4.7.When and
are large, with high probability, will be close to and will be close to 

Consequently, the approximation holds with and in place of and 
respectively.

The results concerning the simultaneous confidence intervals follow from 
Result 5 A.1. �

Remark. If then so

With equal sample sizes, the large sample procedure is essentially the same as the
procedure based on the pooled covariance matrix. (See Result 6.2.) In one dimen-
sion, it is well known that the effect of unequal variances is least when and
greatest when is much less than or vice versa.n2n1
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Comparing Mean Vectors from Two Populations

Example 6.5 (Large sample procedures for inferences about the difference in means)
We shall analyze the electrical-consumption data discussed in Example 6.4 using the
large sample approach. We first calculate

The 95% simultaneous confidence intervals for the linear combinations

and

are (see Result 6.4)

Notice that these intervals differ negligibly from the intervals in Example 6.4, where
the pooling procedure was employed.The -statistic for testing is

For the critical value is and, since =

= 5.99, we reject 
The most critical linear combination leading to the rejection of has coeffi-

cient vector

The difference in off-peak electrical consumption between those with air condi-
tioning and those without contributes more than the corresponding difference in
on-peak consumption to the rejection of  �H0  : M1 - M2 = 0.
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Chapter 6 Comparisons of Several Multivariate Means

A statistic similar to that is less sensitive to outlying observations for small
and moderately sized samples has been developed by Tiku and Singh [24]. However,
if the sample size is moderate to large, Hotelling’s is remarkably unaffected by
slight departures from normality and/or the presence of a few outliers.

An Approximation to the Distribution of for Normal
Populations When Sample Sizes Are Not Large

One can test when the population covariance matrices are un-
equal even if the two sample sizes are not large, provided the two populations are
multivariate normal. This situation is often called the multivariate Behrens-Fisher
problem. The result requires that both sample sizes and are greater than p, the
number of variables.The approach depends on an approximation to the distribution
of the statistic

(6-27)

which is identical to the large sample statistic in Result 6.4. However, instead of
using the chi-square approximation to obtain the critical value for testing the
recommended approximation for smaller samples (see [15] and [19]) is given by

(6-28)

where the degrees of freedom v are estimated from the sample covariance matrices
using the relation

(6-29)

where This approximation reduces to the usual Welch
solution to the Behrens-Fisher problem in the univariate case.

With moderate sample sizes and two normal populations, the approximate level
a test for equality of means rejects if

where the degrees of freedom v are given by (6-29). This procedure is consistent
with the large samples procedure in Result 6.4 except that the critical value is

replaced by the larger constant 

Similarly, the approximate confidence region is given by all
such that

(6-30)
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For normal populations, the approximation to the distribution of given by 
(6-28) and (6-29) usually gives reasonable results.

Example 6.6 (The approximate distribution when ) Although the sample
sizes are rather large for the electrical consumption data in Example 6.4, we use
these data and the calculations in Example 6.5 to illustrate the computations leading
to the approximate distribution of when the population covariance matrices are
unequal.

We first calculate

and using a result from Example 6.5,
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Then

Using (6-29), the estimated degrees of freedom v is

and the critical value is

From Example 6.5, the observed value of the test statistic is so the
hypothesis is rejected at the 5% level. This is the same conclusion
reached with the large sample procedure described in Example 6.5. �

As was the case in Example 6.6, the distribution can be defined with
noninteger degrees of freedom. A slightly more conservative approach is to use the
integer part of v.

6.4 Comparing Several Multivariate Population Means 
(One-Way MANOVA)

Often, more than two populations need to be compared. Random samples, collected
from each of g populations, are arranged as

(6-31)

MANOVA is used first to investigate whether the population mean vectors are the
same and, if not, which mean components differ significantly.
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1. is a random sample of size from a population with mean 
The random samples from different populations are independent./ = 1, 2, Á , g.

M
/
,n

/
X

/ 1 , X
/ 2 , Á , X

/ n
/

,

Population g: Xg 1 , Xg 2 , Á , Xg ng

o      o

Population 2: X2 1 , X2 2 , Á , X2 n2

Population 1: X1 1 , X1 2 , Á , X1 n1

Fp, v - p + 1

H0 : M1 - M2 = 0
T2

= 15.66

vp

v - p + 1
 Fp, v - p + 1(.05) =

77.6 * 2
77.6 - 2 + 1

 F2,77.6 - 2 + 1(.05) =

155.2
76.6

 3.12 = 6.32

a = .05

v =

2 + 22

.0678 + .0095
= 77.6

=

1
55
E(.055 + .131) + (.224 + .354)2F = .0095

1
n2

 e tr c a
1
n2

 S2a
1
n1

 S1 +

1
n2

 S2b
-1

b
2

d + a tr c
1
n2

 S2a
1
n1

 S1 +

1
n2

 S2b
-1

d b
2

f

=

1
45

 E(.608 + .423) + (.776 + .646)2F = .0678

1
n1

 e tr c a
1
n1

 S1a
1
n1

 S1 +

1
n2

 S2b
-1

b
2

d + a tr c
1
n1

 S1a
1
n1

 S1 +

1
n2

 S2b
-1

d b
2

f

296



Comparing Several Multivariate Population Means (One-way MANOVA)

2. All populations have a common covariance matrix 

3. Each population is multivariate normal.

Condition 3 can be relaxed by appealing to the central limit theorem (Result 4.13)
when the sample sizes are large.

A review of the univariate analysis of variance (ANOVA) will facilitate our
discussion of the multivariate assumptions and solution methods.

A Summary of Univariate ANOVA

In the univariate situation, the assumptions are that is a random
sample from an population, and that the random samples
are independent.Although the null hypothesis of equality of means could be formu-
lated as it is customary to regard as the sum of an overall
mean component, such as and a component due to the specific population. For
instance, we can write or where 

Populations usually correspond to different sets of experimental conditions, and
therefore, it is convenient to investigate the deviations associated with the th
population (treatment).

The reparameterization

= ±

(6-32)

leads to a restatement of the hypothesis of equality of means. The null hypothesis
becomes

The response distributed as can be expressed in the suggestive
form

± ±

(6-33)

where the are independent random variables. To define uniquely
the model parameters and their least squares estimates, it is customary to impose the 

constraint 

Motivated by the decomposition in (6-33), the analysis of variance is based
upon an analogous decomposition of the observations,

= ± ±
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(6-34)
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Example 6.7 (The sum of squares decomposition for univariate ANOVA) Consider
the following independent samples.

Since, for example, and =

we find that

Repeating this operation for each observation, we obtain the arrays

= ± ±

observation = mean ± treatment effect ± residual

The question of equality of means is answered by assessing whether the 
contribution of the treatment array is large relative to the residuals. (Our esti-

mates of always satisfy Under each is an 

estimate of zero.) If the treatment contribution is large, should be rejected. The
size of an array is quantified by stringing the rows of the array out into a vector and
calculating its squared length. This quantity is called the sum of squares (SS). For
the observations, we construct the vector Its squared
length is

Similarly,

and the residual sum of squares is

The sums of squares satisfy the same decomposition, (6-34), as the observations.
Consequently,

or The breakup into sums of squares apportions variability in
the combined samples into mean, treatment, and residual (error) components. An
analysis of variance proceeds by comparing the relative sizes of and If 
is true, variances computed from and should be approximately equal. �SSresSStr
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The sum of squares decomposition illustrated numerically in Example 6.7 is so
basic that the algebraic equivalent will now be developed.

Subtracting from both sides of (6-34) and squaring gives

We can sum both sides over j, note that and obtain

Next, summing both sides over we get

(6-35)

or

= ± ±

= ± ± (6-36)

In the course of establishing (6-36), we have verified that the arrays represent-
ing the mean, treatment effects, and residuals are orthogonal. That is, these arrays,
considered as vectors, are perpendicular whatever the observation vector

Consequently, we could obtain by
subtraction, without having to calculate the individual residuals, because =

– However, this is false economy because plots of the residu-
als provide checks on the assumptions of the model.

The vector representations of the arrays involved in the decomposition (6-34)
also have geometric interpretations that provide the degrees of freedom. For an ar-
bitrary set of observations, let The ob-
servation vector y can lie anywhere in dimensions; the
mean vector must lie along the equiangular line of 1, and the treat-
ment effect vector

= 1x–1 - x–2 u1 + 1x–2 - x–2 u2 +
Á

+ 1x–g - x–2 ug
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Á
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x– 1 = 7x– , Á , x–8œ n = n1 + n2 +
Á

+ ng

xg ng
8 = y¿.x2 1 , Á , x2 n2

 , Á ,7x1 1 , Á , x1 n1
,

SStr .SSobs - SSmean

SSres

SSresx2 1 , Á , x2 n2
 , Á , xgng

8.y¿ = 7x1 1 , Á , x1 n1
,

1SSres21SStr21SSmean21SSobs2

a
g

/ = 1
 a

n
/

j = 1
 1x

/ j - x–
/
2

2
a
g

/ = 1
 n

/
1x–

/
- x–221n1 + n2 +

Á
+ ng2x

–2
a
g

/ = 1
 a

n
/

j = 1
 x

/ j
2

 ¢ SScor

total 1corrected2 SS
≤ = ¢ SStr

between 1samples2 SS
≤ + ¢ SSres

within 1samples2 SS
≤ a

g

/ = 1
 a

n
/

j = 1
 1x

/ j - x–22 = a
g

/ = 1
 n

/
1x–

/
- x–22 + a

g

/ = 1
 a

n
/

j = 1
 1x

/ j - x–
/
2

2

/

a

n
/

j = 1
 1x

/ j - x–22 = n
/

 1x–
/

- x–22 + a

n
/

j = 1
 1x

/ j - x–
/
2

2

a

n
/

j = 1
 1x

/ j - x–
/
2 = 0,

1x
/ j - x–22 = 1x–

/
- x–22 + 1x

/ j - x–
/
2

2
+ 21x–

/
- x–21x

/ j - x–
/
2

x–
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Chapter 6 Comparisons of Several Multivariate Means

lies in the hyperplane of linear combinations of the g vectors Since
± the mean vector also lies in this hyperplane, and it is

always perpendicular to the treatment vector. (See Exercise 6.10.) Thus, the mean
vector has the freedom to lie anywhere along the one-dimensional equiangular line,
and the treatment vector has the freedom to lie anywhere in the other di-
mensions. The residual vector, – ± is
perpendicular to both the mean vector and the treatment effect vector and has the
freedom to lie anywhere in the subspace of dimension 
that is perpendicular to their hyperplane.

To summarize, we attribute 1 d.f. to d.f. to and n-g =

± d.f. to The total number of degrees of freedom is
Alternatively, by appealing to the univariate distribution

theory, we find that these are the degrees of freedom for the chi-square distributions
associated with the corresponding sums of squares.

The calculations of the sums of squares and the associated degrees of freedom
are conveniently summarized by an ANOVA table.

n = n1 + n2 +
Á

+ ng .
SSres .Á

+ ng2 - g1n1 + n2

SStr ,SSmean , g - 1

n - 1g - 12 - 1 = n - g

1x–g - x–2ug871x–1 - x–2u1 +
ÁeN = y - 1x– 12

g - 1

Á
+ ug ,1 = u1 + u2

u1 , u2 , Á , ug .

The usual F-test rejects at level if

where is the upper th percentile of the F-distribution with
and degrees of freedom. This is equivalent to rejecting for 

large values of or for large values of The statistic
appropriate for a multivariate generalization rejects for small values of the
reciprocal

(6-37)
1

1 + SStr >SSres
=

SSres

SSres + SStr

H0

1 + SStr >SSres .SStr >SSres

H0©n
/

- gg - 1
1100a2Fg - 1, ©   n

/
- g1a2

F =

SStr >1g - 12

SSresnaa
g

/ = 1
n

/
- gb

7 Fg - 1, ©   n
/

- g1a2

aH0 : t1 = t2 =
Á

= tg = 0

ANOVA Table for Comparing Univariate Population Means

Source Degrees of
of variation Sum of squares (SS) freedom (d.f.)

Treatments

Residual
(error)

Total (corrected
for the mean) a

g

/ = 1
 n

/
- 1SScor = a

g

/ = 1
 a

n
/

j = 1
 1x

/ j - x–22

a
g

/ = 1
 n

/
- gSSres = a

g

/ = 1
 a

n
/

j = 1
 1x

/ j - x–
/
2

2

g - 1SStr = a
g

/ = 1
 n

/
 1x–

/
- x–22
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Comparing Several Multivariate Population Means (One-way MANOVA)

Example 6.8 (A univariate ANOVA table and F-test for treatment effects) Using the
information in Example 6.7, we have the following ANOVA table:

Consequently,

Since we reject (no treatment
effect) at the 1% level of significance. �

Multivariate Analysis of Variance (MANOVA)

Paralleling the univariate reparameterization, we specify the MANOVA model:

H0  : t1 = t2 = t3 = 0F = 19.5 7 F2, 51.012 = 13.27,

F =

SStr  >1g - 12

SSres  >1�n
/

- g2
=

78>2

10>5
= 19.5

Source
of variation Sum of squares Degrees of freedom

Treatments

Residual

Total (corrected) a
g

/ = 1
 n

/
- 1 = 7 SScor = 88

a
g

/ = 1
 n

/
- g = 13 + 2 + 32 - 3 = 5 SSres = 10

g - 1 = 3 - 1 = 2 SStr = 78

According to the model in (6-38), each component of the observation vector sat-
isfies the univariate model (6-33). The errors for the components of are corre-
lated, but the covariance matrix is the same for all populations.

A vector of observations may be decomposed as suggested by the model. Thus,

= ± ±

(observation)
(6-39)

The decomposition in (6-39) leads to the multivariate analog of the univariate
sum of squares breakup in (6-35). First we note that the product

1x
/ j - x–21x

/ j - x–2œ

¢residual
eN

/ j
≤£estimated

treatment
effect Tn

/

≥¢overall sample
mean Mn

≤ 1x
/ j - x–

/
21x–

/
- x–2x–x

/ j

�
X

/ j

X
/ j

MANOVA Model For Comparing g Population Mean Vectors

(6-38)

where the are independent variables. Here the parameter vector 
is an overall mean (level), and represents the th treatment effect with 

a
g

/ = 1
 n

/
 T

/
= 0.

/T
/

MNp10, �2e
/ j

X
/ j = M + T

/
+ e

/ j , j = 1, 2, Á , n
/
 and / = 1, 2, Á , g
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Chapter 6 Comparisons of Several Multivariate Means

can be written as

The sum over j of the middle two expressions is the zero matrix, because 

Hence, summing the cross product over and j yields

= ±

(6-40)

The within sum of squares and cross products matrix can be expressed as

(6-41)

where is the sample covariance matrix for the th sample. This matrix is a gener-
alization of the matrix encountered in the two-sample case. It
plays a dominant role in testing for the presence of treatment effects.

Analogous to the univariate result, the hypothesis of no treatment effects,

is tested by considering the relative sizes of the treatment and residual sums of
squares and cross products. Equivalently, we may consider the relative sizes of the
residual and total (corrected) sum of squares and cross products. Formally, we sum-
marize the calculations leading to the test statistic in a MANOVA table.

H0  : T1 = T2 =
Á

= Tg = 0

1n1 + n2 - 22 Spooled

/S
/

 = 1n1 - 12 S1 + 1n2 - 12 S2 +
Á

+ 1ng - 12 Sg

 W = a
g

/=1
 a

n
/

j=1
 1x

/ j - x–
/
2 1x

/ j - x–
/
2

œ

£residual 1Within2 sum
of squares and cross

products
≥£treatment 1Between2

sum of squares and
cross products

≥£total 1corrected2 sum
of squares and cross

products
≥

a
g

/ = 1
 a

n
/

j = 1
 1x

/ j - x–
/
2 1x

/ j - x–
/
2

œ

a
g

/ = 1
 n

/
1x–

/
- x–2 1x–

/
- x–2œa

g

/ = 1
 a

n
/

j = 1
1x

/ j - x–2 1x
/ j - x–2œ

/a

n
/

j = 1
 1x

/ j - x–
/
2 = 0.

+ 1x–
/

- x–2 1x
/ j - x–

/
2

œ

+ 1x–
/

- x–2 1x–
/

- x–2œ
 = 1x

/ j - x–
/
2 1x

/ j - x–
/
2

œ

+ 1x
/ j - x–

/
2 1x–

/
- x–2œ

 1x
/ j - x–2 1x

/ j - x–2œ = 71x
/ j - x–

/
2 + 1x–

/
- x–28 71x

/ j - x–
/
2 + 1x–

/
- x–28œ

MANOVA Table for Comparing Population Mean Vectors

Source Matrix of sum of squares and Degrees of
of variation cross products (SSP) freedom (d.f.)

Treatment

Residual (Error)

Total (corrected
for the mean) a

g

/ = 1
 n

/
- 1B + W = a

g

/ = 1
 a

n
/

j = 1
 1x

/ j - x–2 1x
/ j - x–2œ

a
g

/ = 1
 n

/
- gW = a

g

/ = 1
 a

n
/

j = 1
 1x

/ j - x–
/
2 1x

/ j - x–
/
2

œ

g - 1B = a
g

/ = 1
 n

/
1x–

/
- x–2 1x–

/
- x–2œ
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Comparing Several Multivariate Population Means (One-way MANOVA)

This table is exactly the same form, component by component, as the ANOVA table,
except that squares of scalars are replaced by their vector counterparts. For exam-
ple, becomes The degrees of freedom correspond to
the univariate geometry and also to some multivariate distribution theory involving
Wishart densities. (See [1].)

One test of involves generalized variances. We re-
ject if the ratio of generalized variances

(6-42)

is too small. The quantity proposed originally by Wilks
(see [25]), corresponds to the equivalent form (6-37) of the F-test of no treat-
ment effects in the univariate case. Wilks’ lambda has the virtue of being convenient
and related to the likelihood ratio criterion.2 The exact distribution of can be
derived for the special cases listed in Table 6.3. For other cases and large sample
sizes, a modification of due to Bartlett (see [4]) can be used to test H0 .¶*

¶*

H0  :
¶* = ƒ W ƒ> ƒ B + W ƒ ,

¶* =

ƒ W ƒ

ƒ B + W ƒ

=

` a
g

/ = 1
 a

n
/

j = 1
 1x

/ j - x–
/
2 1x

/ j - x–
/
2

œ

`

` a
g

/ = 1
 a

n
/

j = 1
 1x

/ j - x–2 1x
/ j - x–2œ `

H0

H0  : T1 = T2 =
Á

= Tg = 0

1x–
/

- x–2 1x–
/

- x–2œ.1x–
/

- x–22

2Wilks’ lambda can also be expressed as a function of the eigenvalues of of as

where the rank of B. Other statistics for checking the equality of several multivari-
ate means, such as Pillai’s statistic, the Lawley–Hotelling statistic, and Roy’s largest root statistic can also
be written as particular functions of the eigenvalues of For large samples, all of these statistics are,
essentially equivalent. (See the additional discussion on page 336.)

W-1
 B.

s = min 1p, g - 12,

¶* = q
s

i = 1
 ¢ 1

1 + ln i

 ≤ W-1Bln1 , ln2 , Á , lns

Table 6.3 Distribution of Wilks’ Lambda,

No. of No. of
variables groups Sampling distribution for multivariate normal data

¢©n
/

- p - 2
p

≤ ¢1 - 2¶*2¶*
≤ ' F2p, 21©   n

/
- p - 22g = 3p Ú 1

¢©n
/

- p - 1
p

≤ ¢1 - ¶*
¶*

≤ ' Fp, ©   n
/
- p - 1g = 2p Ú 1

¢©n
/

- g - 1

g - 1
≤ ¢1 - 2¶*2¶*

≤ ' F21g - 12, 21©   n
/
- g - 12g Ú 2p = 2

¢©n
/

- g

g - 1
≤ ¢1 - ¶*

¶*
≤ ' Fg - 1, ©   n

/
- gg Ú 2p = 1

¶* = ƒ W ƒ > ƒ B + W ƒ
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Bartlett (see [4]) has shown that if is true and is large,

(6-43)

has approximately a chi-square distribution with d.f. Consequently, for
large, we reject at significance level if

(6-44)

where is the upper th percentile of a chi-square distribution with
d.f.

Example 6.9 (A MANOVA table and Wilks’ lambda for testing the equality of three
mean vectors) Suppose an additional variable is observed along with the variable
introduced in Example 6.7. The sample sizes are and 
Arranging the observation pairs in rows, we obtain

We have already expressed the observations on the first variable as the sum of an
overall mean, treatment effect, and residual in our discussion of univariate
ANOVA. We found that

= ± ±

(observation) (mean) (residual)

and

Repeating this operation for the observations on the second variable, we have

= ± ±

(observation) (mean) (residual)¢treatment
effect ≤

£ -1 -2 3
2 -2  

0 1 -1
≥£ -1 -1 -1

-3 -3  

3 3 3
≥£5 5 5

5 5  

5 5 5
≥£3 2 7

4 0  

8 9 7
≥

 Total SS 1corrected2 = SSobs - SSmean = 216 - 128 = 88

 216 = 128 + 78 + 10

 SSobs = SSmean + SStr + SSres

¢ treatment
effect ≤

£ 1 -2 1
-1 1  

1 -1 0
≥£ 4 4 4

-3 -3  

-2 -2 -2
≥£4 4 4

4 4  

4 4 4
≥£9 6 9

0 2  

3 1 2
≥

¶ c
9
3
d c

6
2
d c

9
7
d

c
0
4
d c

2
0
d  

c
3
8
d c

1
9
d c

2
7
d

∂  
with x–1 = c

8
4
d  , x–2 = c

1
2
d  , x–3 = c

2
8
d  ,

and x– = c
4
5
d   

x
/ j

n3 = 3.n1 = 3, n2 = 2,

p1g - 12
1100a2xp1g - 12

2 1a2

- an - 1 -

1p + g2

2
b  ln a

ƒ W ƒ

ƒ B + W ƒ

b 7 xp1g - 12
2 1a2

aH0©n
/

= n
p1g - 12

- an - 1 -

1p + g2

2
b  ln ¶* = - an - 1 -

1p + g2

2
b  ln a

ƒ W ƒ

ƒ B + W ƒ

b

©n
/

= nH0

304



Comparing Several Multivariate Population Means (One-way MANOVA)

and

These two single-component analyses must be augmented with the sum of entry-
by-entry cross products in order to complete the entries in the MANOVA table.
Proceeding row by row in the arrays for the two variables, we obtain the cross
product contributions:

Mean:

Treatment:

Residual:

Total:

Thus, the MANOVA table takes the following form:

 = 149 - 160 = -11

 Total 1corrected2 cross product = total cross product - mean cross product

9132 + 6122 + 9172 + 0142 +
Á

+ 2172 = 149

11-12 + 1-22 1-22 + 1132 + 1-12 122 +
Á

+ 01-12 = 1

3142 1-12 + 21-32 1-32 + 31-22 132 = -12

4152 + 4152 +
Á

+ 4152 = 8142 152 = 160

 Total SS 1corrected2 = SSobs - SSmean = 272 - 200 = 72

 272 = 200 + 48 + 24

 SSobs = SSmean + SStr + SSres

Equation (6-40) is verified by noting that

Using (6-42), we get

¶* =

ƒ W ƒ

ƒ B + W ƒ

=

`
10 1
1 24

`

`
88 -11

-11 72
`

=

101242 - 1122

881722 - 1-1122
=

239
6215

= .0385

B 88 -11
-11 72

R = B 78 -12
-12 48

R + B10 1
1 24

R

Source Matrix of sum of squares
of variation and cross products Degrees of freedom

Treatment

Residual

Total (corrected) 7B 88 -11
-11 72

R
3 + 2 + 3 - 3 = 5B 10 1

1 24
R

3 - 1 = 2B 78 -12
-12 48

R
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Chapter 6 Comparisons of Several Multivariate Means

Since and Table 6.3 indicates that an exact test (assuming normal-
ity and equal group covariance matrices) of = (no treatment
effects) versus at least one is available. To carry out the test, we compare
the test statistic

with a percentage point of an F-distribution having and
d.f. Since we reject at the

level and conclude that treatment differences exist. �

When the number of variables, p, is large, the MANOVA table is usually not
constructed. Still, it is good practice to have the computer print the matrices B and
W so that especially large entries can be located. Also, the residual vectors

should be examined for normality and the presence of outliers using the techniques
discussed in Sections 4.6 and 4.7 of Chapter 4.

Example 6.10 (A multivariate analysis of Wisconsin nursing home data) The
Wisconsin Department of Health and Social Services reimburses nursing homes in
the state for the services provided. The department develops a set of formulas for
rates for each facility, based on factors such as level of care, mean wage rate, and
average wage rate in the state.

Nursing homes can be classified on the basis of ownership (private party,
nonprofit organization, and government) and certification (skilled nursing facility,
intermediate care facility, or a combination of the two).

One purpose of a recent study was to investigate the effects of ownership or
certification (or both) on costs. Four costs, computed on a per-patient-day basis and
measured in hours per patient day, were selected for analysis: of nursing
labor, of dietary labor, of plant operation and maintenance labor,
and of housekeeping and laundry labor. A total of observations
on each of the cost variables were initially separated according to ownership.
Summary statistics for each of the groups are given in the following table.g = 3

p = 4
n = 516X4 = cost

X3 = costX2 = cost
X1 = cost

eN
/ j = x

/ j - x–
/

a = .01
H08.19 7 F4, 81.012 = 7.01,n2 = 21©n

/
- g - 12 = 8

n1 = 21g - 12 = 4

¢1 - 2¶*2¶*
≤  
1©n

/
- g - 12

1g - 12
= ¢1 - 1.03851.0385

≤ a8 - 3 - 1
3 - 1

b = 8.19

T
O

Z 0H1 :
T3 = 0H0  : T1 = T2

g = 3,p = 2

Number of
Group observations Sample mean vectors

a
3

/ = 1
 n

/
= 516

n3 = 107/ = 3 1government2

x–1 = D2.066
.480
.082
.360

T  ; x–2 = D2.167
.596
.124
.418

T  ; x–3 = D2.273
.521
.125
.383

Tn2 = 138/ = 2 1nonprofit2

n1 = 271/ = 1 1private2
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Since the ’s seem to be reasonably compatible,3 they were pooled [see (6-41)]
to obtain

Also,

and

To test (no ownership effects or, equivalently, no difference in av-
erage costs among the three types of owners—private, nonprofit, and government),
we can use the result in Table 6.3 for 

Computer-based calculations give

¶* =

ƒ W ƒ

ƒ B + W ƒ

= .7714

g = 3.

H0  : T1 = T2 = T3

B = a
3

/ = 1
 n

/
1x–

/
- x–2 1x–

/
- x–2œ = D3.475    

1.111 1.225   

.821 .453 .235  

.584 .610 .230 .304

T

x– =

n1 x–1 + n2 x–2 + n3 x–3

n1 + n2 + n3
= D2.136

.519

.102

.380

T

 = D182.962    

4.408 8.200   

1.695 .633 1.484  

9.581 2.428 .394 6.538

T
 W = 1n1 - 12 S1 + 1n2 - 12 S2 + 1n3 - 12 S3

S
/

3However, a normal-theory test of would reject at any reasonable signifi-
cance level because of the large sample sizes (see Example 6.12).

H0H0  : �1 = �2 = �3

Sample covariance matrices

Source: Data courtesy of State of Wisconsin Department of Health and Social Services.

S3 = D .261    

.030 .017   

.003 - .000 .004  

.018 .006 .001 .013

T
S2 = D .561    

.011 .025   

.001 .004 .005  

.037 .007 .002 .019

T  ;S1 = D .291    

- .001 .011   

.002 .000 .001  

.010 .003 .000 .010

T  ;
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and

Let so that Since 17.67 7

we reject at the 1% level and conclude that average costs differ, depending on
type of ownership.

It is informative to compare the results based on this “exact” test with those
obtained using the large-sample procedure summarized in (6-43) and (6-44). For the
present example, is large, and can be tested at the level
by comparing

with = Since we reject 
at the 1% level. This result is consistent with the result based on the foregoing 
F-statistic. �

6.5 Simultaneous Confidence Intervals for Treatment Effects
When the hypothesis of equal treatment effects is rejected, those effects that led to
the rejection of the hypothesis are of interest. For pairwise comparisons, the Bon-
ferroni approach (see Section 5.4) can be used to construct simultaneous confidence
intervals for the components of the differences (or ). These inter-
vals are shorter than those obtained for all contrasts, and they require critical values
only for the univariate t-statistic.

Let be the ith component of Since is estimated by 

(6-45)

and = is the difference between two independent sample means.
The two-sample t-based confidence interval is valid with an appropriately
modified Notice that

where is the ith diagonal element of As suggested by (6-41),
is estimated by dividing the corresponding element of W by its degrees of freedom.
That is,

where is the ith diagonal element of W and n = n1 +
p

+ ng .wi i

Var 1  Xk i -   X
/ i2 = ¢ 1

nk
+

1
n

/

≤  
wi i

n - g

Var 1  Xk i -   X / i2�.si i

Var 1tnk i - tn
/ i2 = Var 1  Xk i -   X /i2 = ¢ 1

nk
+

1
n

/

≤  si i

a.

x–k i - x–
/ itnk i - tn

/ i

tnk i = x–k i - x–i

Tnk = x–k - x–TkTk .tk i

Mk - M
/

Tk - T
/

H0132.76 7 x8
21.012 = 20.09,x8

21.012 = 20.09.xp1g - 12
2 1.012

-1n - 1 - 1p + g2>22 ln a
ƒ W ƒ

ƒ B + W ƒ

b = -511.5 ln 1.77142 = 132.76

a = .01H0©n
/

= n = 516

H02.51,
�F8, 10201.012x8

21.012>8 = 2.51.�F2142, 2151021.012a = .01,

¢©n
/

- p - 2
p

≤ ¢1 - 2¶*2¶*
≤ = a

516 - 4 - 2
4

b ¢1 - 1.77141.7714
≤ = 17.67

̂
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It remains to apportion the error rate over the numerous confidence state-
ments. Relation (5-28) still applies. There are p variables and pairwise
differences, so each two-sample t-interval will employ the critical value 
where

(6-46)

is the number of simultaneous confidence statements.

Result 6.5. Let For the model in (6-38), with confidence at least 

for all components and all differences Here is the
ith diagonal element of W.

We shall illustrate the construction of simultaneous interval estimates for the
pairwise differences in treatment means using the nursing-home data introduced in
Example 6.10.

Example 6.11 (Simultaneous intervals for treatment differences—nursing homes)
We saw in Example 6.10 that average costs for nursing homes differ, depending on
the type of ownership. We can use Result 6.5 to estimate the magnitudes of the dif-
ferences.A comparison of the variable costs of plant operation and maintenance
labor, between privately owned nursing homes and government-owned nursing
homes can be made by estimating Using (6-39) and the information in
Example 6.10, we have

Consequently,

and so thatC¢ 1
n1

+

1
n3
≤  

w3 3

n - g
= A a 1

271
+

1
107
b  

1.484
516 - 3

= .00614

n = 271 + 138 + 107 = 516,

tn1 3 - tn3 3 = - .020 - .023 = - .043

 W = D182.962    

4.408 8.200   

1.695 .633 1.484  

9.581 2.428 .394 6.538

T
 Tn1 = 1x–1 - x–  2 = D - .070

- .039
- .020
- .020

T  ,  Tn3 = 1x–3 - x–  2 = D .137
.002
.023
.003

T
t1 3 - t3 3 .

X3 ,
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Chapter 6 Comparisons of Several Multivariate Means

Since and for 95% simultaneous confidence statements we require
that (See Appendix, Table 1.) The 95% simultaneous confi-
dence statement is

We conclude that the average maintenance and labor cost for government-owned
nursing homes is higher by .025 to .061 hour per patient day than for privately
owned nursing homes. With the same 95% confidence, we can say that

and

Thus, a difference in this cost exists between private and nonprofit nursing homes,
but no difference is observed between nonprofit and government nursing homes. �

6.6 Testing for Equality of Covariance Matrices
One of the assumptions made when comparing two or more multivariate mean vec-
tors is that the covariance matrices of the potentially different populations are the
same. (This assumption will appear again in Chapter 11 when we discuss discrimina-
tion and classification.) Before pooling the variation across samples to form a
pooled covariance matrix when comparing mean vectors, it can be worthwhile to
test the equality of the population covariance matrices. One commonly employed
test for equal covariance matrices is Box’s M-test ([8], [9]).

With g populations, the null hypothesis is

(6-47)

where is the covariance matrix for the th population, and is
the presumed common covariance matrix. The alternative hypothesis is that at least
two of the covariance matrices are not equal.

Assuming multivariate normal populations, a likelihood ratio statistic for test-
ing (6–47) is given by (see [1])

(6-48)

Here is the sample size for the th group, is the th group sample covariance
matrix and is the pooled sample covariance matrix given by

(6-49)Spooled =

1

a
/

(n
/

- 1)
 E(n1 - 1)S1 + (n2 - 1)S2 +

Á
+ (ng - 1)SgF

Spooled

/S
/

/n
/

¶ = q
/

a
ƒ  S

/
 ƒ

ƒ  Spooled ƒ

b
(n

/
- 1)/2

�/ = 1, 2, . . . , g,/�
/

H0 : �1 = �2 =
Á

= �g = �

t2 3 - t3 3 belongs to the interval 1- .021, .0192

t1 3 - t2 3 belongs to the interval 1- .058, - .0262

 = - .043 ; .018,  or 1- .061, - .0252

 = - .043 ; 2.871.006142

t1 3 - t3 3 belongs to tn1 3 - tn3 3 ; t5131.002082 C¢ 1
n1

+

1
n3
≤  

w3 3

n - g

t5131.05>413222 � 2.87.
g = 3,p = 4

310



Testing for Equality of Covariance Matrices

Box’s test is based on his approximation to the sampling distribution of 
(see Result 5.2). Setting (Box’s M statistic) gives

(6-50)

If the null hypothesis is true, the individual sample covariance matrices are not
expected to differ too much and, consequently, do not differ too much from the
pooled covariance matrix. In this case, the ratio of the determinants in (6-48) will all
be close to 1, will be near 1 and Box’s M statistic will be small. If the null hypoth-
esis is false, the sample covariance matrices can differ more and the differences in
their determinants will be more pronounced. In this case will be small and M will
be relatively large. To illustrate, note that the determinant of the pooled covariance
matrix, will lie somewhere near the “middle” of the determinants of
the individual group covariance matrices. As the latter quantities become more
disparate, the product of the ratios in (6-44) will get closer to 0. In fact, as the 
increase in spread, reduces the product proportionally more than

increases it, where and are the minimum and maximum
determinant values, respectively.

ƒ  S(g) ƒƒ  S(1) ƒƒ  S(g) ƒ / ƒ  Spooled ƒ

ƒ  S(1) ƒ / ƒ  Spooled ƒ

ƒ  S/
 ƒ ’s

ƒ  S/
 ƒ ’sƒ  Spooled ƒ ,

¶

¶

M = ca
/

(n
/

- 1) d ln ƒ  Spooled ƒ - a
/

7(n
/

- 1)ln ƒ  S/
 ƒ 8-2 ln ¶ = M

-2 ln ¶x2

Box’s approximation works well if each exceeds 20 and if p and g do not
exceed 5. In situations where these conditions do not hold, Box ([7], [8]) has provided
a more precise F approximation to the sampling distribution of M.

Example 6.12 (Testing equality of covariance matrices—nursing homes) We intro-
duced the Wisconsin nursing home data in Example 6.10. In that example the
sample covariance matrices for cost variables associated with groups 
of nursing homes are displayed. Assuming multivariate normal data, we test the
hypothesis : �1 = �2 = �3 = �.H0

g = 3p = 4

n
/

x2

Box’s Test for Equality of Covariance Matrices

Set

(6-51)

where p is the number of variables and g is the number of groups. Then

(6-52)

has an approximate distribution with

(6-53)

degrees of freedom. At significance level , reject if .C 7 x2
p(p + 1)(g - 1)/2(a)H0a
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1
2
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1
2
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Chapter 6 Comparisons of Several Multivariate Means

Using the information in Example 6.10, we have , ,
and , , , and

Taking the natural logarithms of the determinants gives 
ln , ln , ln and ln .
We calculate

and . Referring C to a table with 
degrees of freedom, it is clear that is rejected at any reasonable level of sig-

nificance. We conclude that the covariance matrices of the cost variables associated
with the three populations of nursing homes are not the same. �

Box’s M-test is routinely calculated in many statistical computer packages that
do MANOVA and other procedures requiring equal covariance matrices. It is
known that the M-test is sensitive to some forms of non-normality. More broadly, in
the presence of non-normality, normal theory tests on covariances are influenced by
the kurtosis of the parent populations (see [16]). However, with reasonably large
samples, the MANOVA tests of means or treatment effects are rather robust to
nonnormality. Thus the M-test may reject in some non-normal cases where it is
not damaging to the MANOVA tests. Moreover, with equal sample sizes, some
differences in covariance matrices have little effect on the MANOVA tests. To
summarize, we may decide to continue with the usual MANOVA tests even though
the M-test leads to rejection of .

6.7 Two-Way Multivariate Analysis of Variance
Following our approach to the one-way MANOVA, we shall briefly review the
analysis for a univariate two-way fixed-effects model and then simply generalize to
the multivariate case by analogy.

Univariate Two-Way Fixed-Effects Model with Interaction
We assume that measurements are recorded at various levels of two factors. In some
cases, these experimental conditions represent levels of a single treatment arranged
within several blocks.The particular experimental design employed will not concern
us in this book. (See [10] and [17] for discussions of experimental design.) We shall,
however, assume that observations at different combinations of experimental condi-
tions are independent of one another.

Let the two sets of experimental conditions be the levels of, for instance, factor
1 and factor 2, respectively.4 Suppose there are g levels of factor 1 and b levels of fac-
tor 2, and that n independent observations can be observed at each of the gb combi-

H0

H0

H020=

v = 4(4 + 1)(3 - 1)/2x2C = (1 - .0133)289.3 = 285.5

 = 289.3

 M = 7270 + 137 + 1068(-15.564) - 7270(-17.397) + 137(-13.926) + 106(-15.741)8 u = c
1

270
+

1
137

+

1
106

-

1
270 + 137 + 106

d c
2(42) + 3(4) - 1

6(4 + 1)(3 - 1)
d = .0133

ƒ  Spooled ƒ = -15.564ƒ  S3 ƒ = -15.741ƒ  S2 ƒ = -13.926ƒ  S1 ƒ = -17.397
ƒ  Spooled ƒ = 17.398 * 10-8.

ƒ  S3 ƒ = 14.579 * 10-8
ƒ  S2 ƒ = 89.539 * 10-8

ƒ  S1 ƒ = 2.783 * 10-8n3 = 107
n2 = 138n1 = 271

4The use of the term “factor” to indicate an experimental condition is convenient. The factors dis-
cussed here should not be confused with the unobservable factors considered in Chapter 9 in the context
of factor analysis.
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Two-Way Multivariate Analysis of Variance

nations of levels. Denoting the rth observation at level of factor 1 and level k of
factor 2 by we specify the univariate two-way model as

(6-54)

where = = = and the are independent 

random variables. Here represents an overall level, represents the
fixed effect of factor 1, represents the fixed effect of factor 2, and is the inter-
action between factor 1 and factor 2.The expected response at the th level of factor
1 and the kth level of factor 2 is thus

= m ± ± ±

= ± ± ±

(6-55)

The presence of interaction, implies that the factor effects are not additive
and complicates the interpretation of the results. Figures 6.3(a) and (b) show
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Figure 6.3 Curves for expected
responses (a) with interaction and
(b) without interaction.
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Chapter 6 Comparisons of Several Multivariate Means

expected responses as a function of the factor levels with and without interaction,
respectively. The absense of interaction means for all and k.

In a manner analogous to (6-55), each observation can be decomposed as

(6-56)

where is the overall average, is the average for the th level of factor 1, is
the average for the kth level of factor 2, and is the average for the th level of
factor 1 and the kth level of factor 2. Squaring and summing the deviations

gives

(6-57)

or

The corresponding degrees of freedom associated with the sums of squares in the
breakup in (6-57) are

(6-58)

The ANOVA table takes the following form:
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ANOVA Table for Comparing Effects of Two Factors and Their Interaction

Source Degrees of
of variation Sum of squares (SS) freedom (d.f.)

Factor 1

Factor 2

Interaction

Residual (Error)

Total (corrected) gbn - 1SScor = a
g

/ = 1
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Two-Way Multivariate Analysis of Variance

The F-ratios of the mean squares, and
to the mean square, can be used to test for

the effects of factor 1, factor 2, and factor 1–factor 2 interaction, respectively. (See
[11] for a discussion of univariate two-way analysis of variance.)

Multivariate Two-Way Fixed-Effects Model with Interaction

Proceeding by analogy, we specify the two-way fixed-effects model for a vector
response consisting of p components [see (6-54)]

(6-59)

where = = = = The vectors are all of order 

and the are independent random vectors. Thus, the responses consist
of p measurements replicated n times at each of the possible combinations of levels
of factors 1 and 2.

Following (6-56), we can decompose the observation vectors as

(6-60)

where is the overall average of the observation vectors, is the average of the
observation vectors at the th level of factor 1, is the average of the observation
vectors at the kth level of factor 2, and is the average of the observation vectors
at the th level of factor 1 and the kth level of factor 2.

Straightforward generalizations of (6-57) and (6-58) give the breakups of the
sum of squares and cross products and degrees of freedom:

(6-61)

(6-62)
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Chapter 6 Comparisons of Several Multivariate Means

The MANOVA table is the following:

A test (the likelihood ratio test)5 of

(6-63)

versus

is conducted by rejecting for small values of the ratio

(6-64)

For large samples, Wilks’ lambda, can be referred to a chi-square percentile.
Using Bartlett’s multiplier (see [6]) to improve the chi-square approximation, we
reject = at the level if

(6-65)

where is given by (6-64) and is the upper (100 )th percentile of a
chi-square distribution with d.f.

Ordinarily, the test for interaction is carried out before the tests for main factor ef-
fects. If interaction effects exist, the factor effects do not have a clear interpretation.
From a practical standpoint, it is not advisable to proceed with the additional multi-
variate tests. Instead, p univariate two-way analyses of variance (one for each variable)
are often conducted to see whether the interaction appears in some responses but not

1g - 121b - 12p
ax1g - 121b - 12p

2 1a2¶*
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/ k Z 0

H0  : G1 1 = G12 =
Á

= Gg b = 0  1no interaction effects2

5The likelihood test procedures require that so that will be positive definite
(with probability 1).

SSPresp … gb1n - 12,

MANOVA Table for Comparing Factors and Their Interaction

Degrees of
Source of Matrix of sum of squares freedom
variation and cross products (SSP) (d.f.)
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Two-Way Multivariate Analysis of Variance

others. Those responses without interaction may be interpreted in terms of additive
factor 1 and 2 effects, provided that the latter effects exist. In any event, interaction
plots similar to Figure 6.3, but with treatment sample means replacing expected values,
best clarify the relative magnitudes of the main and interaction effects.

In the multivariate model, we test for factor 1 and factor 2 main effects as
follows. First, consider the hypotheses = = and at least
one These hypotheses specify no factor 1 effects and some factor 1 effects,
respectively. Let

(6-66)

so that small values of are consistent with Using Bartlett’s correction, the
likelihood ratio test is as follows:

Reject = = (no factor 1 effects) at level if

(6-67)

where is given by (6-66) and is the upper (100 )th percentile of a 
chi-square distribution with d.f.

In a similar manner, factor 2 effects are tested by considering =

= and at least one Small values of

(6-68)

are consistent with Once again, for large samples and using Bartlett’s correction:
Reject = = (no factor 2 effects) at level if

(6-69)

where is given by (6-68) and is the upper (100 )th percentile of a 
chi-square distribution with degrees of freedom.

Simultaneous confidence intervals for contrasts in the model parameters 
can provide insights into the nature of the factor effects. Results comparable to
Result 6.5 are available for the two-way model. When interaction effects are
negligible, we may concentrate on contrasts in the factor 1 and factor 2 main
effects. The Bonferroni approach applies to the components of the differences

of the factor 1 effects and the components of of the factor 2
effects, respectively.

The simultaneous confidence intervals for are

(6-70)
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Similarly, the percent simultaneous confidence intervals for 
are

(6-71)

where and are as just defined and is the ith component of 

Comment. We have considered the multivariate two-way model with replica-
tions. That is, the model allows for n replications of the responses at each combina-
tion of factor levels. This enables us to examine the “interaction” of the factors. If
only one observation vector is available at each combination of factor levels, the
two-way model does not allow for the possibility of a general interaction term 
The corresponding MANOVA table includes only factor 1, factor 2, and residual
sources of variation as components of the total variation. (See Exercise 6.13.)

Example 6.13 (A two-way multivariate analysis of variance of plastic film data) The
optimum conditions for extruding plastic film have been examined using a tech-
nique called Evolutionary Operation. (See [9].) In the course of the study that was
done, three responses— resistance, and —were
measured at two levels of the factors, rate of extrusion and amount of an additive.
The measurements were repeated times at each combination of the factor
levels. The data are displayed in Table 6.4.

n = 5
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Table 6.4 Plastic Film Data

resistance, and 

Factor 2: Amount of additive

Low (1.0%) High (1.5%)

[6.5 9.5 4.4] [6.9 9.1 5.7]
[6.2 9.9 6.4] [7.2 10.0 2.0]

Low ( )% [5.8 9.6 3.0] [6.9 9.9 3.9]
[6.5 9.6 4.1] [6.1 9.5 1.9]

Factor 1: Change [6.5 9.2 0.8] [6.3 9.4 5.7]

in rate of extrusion

[6.7 9.1 2.8] [7.1 9.2 8.4]
[6.6 9.3 4.1] [7.0 8.8 5.2]

High (10%) [7.2 8.3 3.8] [7.2 9.7 6.9]
[7.1 8.4 1.6] [7.5 10.1 2.7]
[6.8 8.5 3.4] [7.6 9.2 1.9]

x3x2x1x3x2x1

-10

x3x2x1x3x2x1

x3 = opacityx2 = gloss,x1 = tear

The matrices of the appropriate sum of squares and cross products were calcu-
lated (see the SAS statistical software output in Panel 6.16), leading to the following
MANOVA table:

6Additional SAS programs for MANOVA and other procedures discussed in this chapter are
available in [13].
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title ‘MANOVA’;
data film;
infile ‘T6-4.dat’;
input x1 x2 x3 factor1 factor2;
proc glm data = film; PROGRAM COMMANDS
class factor1 factor2;
model x1 x2 x3 = factor1 factor2 factor1*factor2 >ss3;
manova h = factor1 factor2 factor1*factor2 >printe;
means factor1 factor2;

General Linear Models Procedure
Class Level Information

Class Levels Values OUTPUT
FACTOR1 2 0   1
FACTOR2 2 0   1
Number of observations in data set = 20

Dependent Variable: X1

Source DF Sum of Squares Mean Square F Value Pr > F
Model 3 2.50150000 0.83383333 7.56 0.0023
Error 16 1.76400000 0.11025000
Corrected Total 19 4.26550000

R-Square C.V. Root MSE X1 Mean
0.586449 4.893724 0.332039 6.78500000

Source DF Type III SS Mean Square F Value Pr > F

FACTOR1 1 1.74050000 1.74050000 15.79 0.0011
FACTOR2 1 0.76050000 0.76050000 6.90 0.0183
FACTOR1*FACTOR2 1 0.00050000 0.00050000 0.00 0.9471

PANEL 6.1 SAS ANALYSIS FOR EXAMPLE 6.13 USING PROC GLM

¯
˚

˚
˚

˚
˚

˘
˚

˚
˚

˚
˚

˙

(continues on next page)

Source of variation SSP d.f.

Factor 1: 1

Factor 2: 1

Interaction 1

Residual 16

Total (corrected) 19C4.2655 - .7855 - .2395
 5.0855 1.9095
  74.2055

S
C1.7640 .0200 -3.0700

 2.6280 - .5520
  64.9240

S
C .0005 .0165 .0445

 .5445 1.4685
  3.9605

S
C .7605 .6825 1.9305

 .6125 1.7325
  4.9005

Samount of
additive

C1.7405 -1.5045 .8555
 1.3005 - .7395
  .4205

Schange in rate
of extrusion
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Chapter 6 Comparisons of Several Multivariate Means

PANEL 6.1 (continued)

Dependent Variable: X2

Source DF Sum of Squares Mean Square F Value Pr > F
Model 3 2.45750000 0.81916667 4.99 0.0125
Error 16 2.62800000 0.16425000
Corrected Total 19 5.08550000

R-Square C.V. Root MSE X2 Mean
0.483237 4.350807 0.405278 9.31500000

Source DF Type III SS Mean Square F Value Pr > F

FACTOR1 1 1.30050000 1.30050000 7.92 0.0125
FACTOR2 1 0.61250000 0.61250000 3.73 0.0714
FACTOR1*FACTOR2 1 0.54450000 0.54450000 3.32 0.0874

Dependent Variable: X3

Source DF Sum of Squares Mean Square F Value Pr > F
Model 3 9.28150000 3.09383333 0.76 0.5315
Error 16 64.92400000 4.05775000
Corrected Total 19 74.20550000

R-Square C.V. Root MSE X3 Mean
0.125078 51.19151 2.014386 3.93500000

Source DF Type III SS Mean Square F Value Pr > F

FACTOR 1 0.42050000 0.42050000 0.10 0.7517
FACTOR2 1 4.90050000 4.90050000 1.21 0.2881
FACTOR1*FACTOR2 1 3.96050000 3.96050000 0.98 0.3379

E = Error SS&CP Matrix

X1 X2 X3

X1 1.764 0.02 –3.07
X2 0.02 2.628 –0.552
X3 –3.07 –0.552 64.924

Manova Test Criteria and Exact F Statistics for

the Hypothesis of no Overall FACTOR1 Effect

H = Type III SS&CP Matrix for FACTOR1 E = Error SS&CP Matrix
S = 1 M = 0.5 N = 6

Statistic Value F Num DF Den DF Pr > F
Wilks’ Lambda 0.38185838 7.5543 3 14 0.0030

Pillai’s Trace 0.61814162 7.5543 3 14 0.0030
Hotelling–Lawley Trace 1.61877188 7.5543 3 14 0.0030
Roy’s Greatest Root 1.61877188 7.5543 3 14 0.0030

(continues on next page)
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Two-Way Multivariate Analysis of Variance

Manova Test Criteria and Exact F Statistics for

the Hypothesis of no Overall FACTOR2 Effect

H = Type III SS&CP Matrix for FACTOR2 E = Error SS&CP Matrix
S = 1 M = 0.5 N = 6

Statistic Value F Num DF Den DF Pr > F
Wilks’ Lambda 0.52303490 4.2556 3 14 0.0247

Pillai’s Trace 0.47696510 4.2556 3 14 0.0247
Hotelling–Lawley Trace 0.91191832 4.2556 3 14 0.0247
Roy’s Greatest Root 0.91191832 4.2556 3 14 0.0247

Manova Test Criteria and Exact F Statistics for

the Hypothesis of no Overall FACTOR1*FACTOR2 Effect

H = Type III SS&CP Matrix for FACTOR1*FACTOR2 E = Error SS&CP Matrix
S = 1 M = 0.5 N = 6

Statistic Value F Num DF Den DF Pr > F
Wilks’ Lambda 0.77710576 1.3385 3 14 0.3018

Pillai’s Trace 0.22289424 1.3385 3 14 0.3018
Hotelling–Lawley Trace 0.28682614 1.3385 3 14 0.3018
Roy’s Greatest Root 0.28682614 1.3385 3 14 0.3018

Level of – – – – – – – – – X1 – – – – – – – – – – – – – – – – – – X2 – – – – – – – – 
FACTOR1 N Mean SD Mean SD
0 10 6.49000000 0.42018514 9.57000000 0.29832868
1 10 7.08000000 0.32249031 9.06000000 0.57580861

Level of – – – – – – – – – X3 – – – – – – – – – 
FACTOR1 N Mean SD
0 10 3.79000000 1.85379491
1 10 4.08000000 2.18214981

Level of – – – – – – – – – X1 – – – – – – – – – – – – – – – – – – X2 – – – – – – – –  
FACTOR2 N Mean SD Mean SD
0 10 6.59000000 0.40674863 9.14000000 0.56015871
1 10 6.98000000 0.47328638 9.49000000 0.42804465

Level of – – – – – – – – – X3 – – – – – – – – – 
FACTOR2 N Mean SD
0 10 3.44000000 1.55077042
1 10 4.43000000 2.30123155

PANEL 6.1 (continued)

To test for interaction, we compute

¶* =

ƒ SSPres ƒ

ƒ SSPint + SSPres ƒ

=

275.7098
354.7906

= .7771
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Chapter 6 Comparisons of Several Multivariate Means

For 

has an exact F-distribution with = – and =

d.f. (See [1].) For our example.

and Since = = we do not reject the
hypothesis = = (no interaction effects).

Note that the approximate chi-square statistic for this test is –
from (6-65). Since we would

reach the same conclusion as provided by the exact F-test.
To test for factor 1 and factor 2 effects (see page 317), we calculate

and

For both and 

and

have F-distributions with degrees of freedom = =

- p+1 and = = respec-
tively. (See [1].) In our case,

and

n1 = ƒ 1 - 3 ƒ + 1 = 3  n2 = 116 - 3 + 12 = 14

 F2 = a
1 - .5230

.5230
b 
116 - 3 + 12>2

1 ƒ 1 - 3 ƒ + 12>2
= 4.26

 F1 = a
1 - .3819

.3819
b 
116 - 3 + 12>2

1 ƒ 1 - 3 ƒ + 12>2
= 7.55

g b1n - 12 - p + 1,n2ƒ 1b - 12 - p ƒ + 1,n1g b1n - 12
n2ƒ 1g - 12 - p ƒ + 1,n1

 F2 = ¢1 - ¶2
…

¶2
… ≤  

1g b1n - 12 - p + 12>2

1 ƒ 1b - 12 - p ƒ + 12>2

 F1 = ¢1 - ¶1
…

¶1
… ≤  

1g b1n - 12 - p + 12>2

1 ƒ 1g - 12 - p ƒ + 12>2

b - 1 = 1,g - 1 = 1

 ¶2
…

=

ƒ SSPres ƒ

ƒ SSPfac 2 + SSPres ƒ

=

275.7098
527.1347

= .5230

 ¶1
…

=

ƒ SSPres ƒ

ƒ SSPfac 1 + SSPres ƒ

=

275.7098
722.0212

= .3819

x3
21.052 = 7.81,ln1.77712 = 3.66,13 + 1 - 11122>24

-32122142
G2 2 = 0G1 2 = G2 1H0  : G1 1

3.34,1.34 6 F3, 141.052FF3, 141.052 = 3.34.

 n2 = 12122 142 - 3 + 12 = 14

 n1 = 1 ƒ 1112 - 3 ƒ + 12 = 3

 F = a
1 - .7771

.7771
b 
12122 142 - 3 + 12>2

1 ƒ 1112 - 3 ƒ + 12>2
= 1.34

gb1n - 12 - p + 1
n2p ƒ + 1ƒ 1g - 121b - 12n1

F = ¢1 - ¶*
¶*

≤  
1g b1n - 12 - p + 12>2

1 ƒ 1g - 12 1b - 12 - p ƒ + 12>2

1g - 121b - 12 = 1,
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Profile Analysis

From before, We have = and
therefore, we reject = (no factor 1 effects) at the 5% level. Similarly,

= and we reject = (no factor 2 effects)
at the 5% level.We conclude that both the change in rate of extrusion and the amount
of additive affect the responses, and they do so in an additive manner.

The nature of the effects of factors 1 and 2 on the responses is explored in Exer-
cise 6.15. In that exercise, simultaneous confidence intervals for contrasts in the
components of and are considered. �

6.8 Profile Analysis
Profile analysis pertains to situations in which a battery of p treatments (tests, ques-
tions, and so forth) are administered to two or more groups of subjects.All responses
must be expressed in similar units. Further, it is assumed that the responses for the
different groups are independent of one another. Ordinarily, we might pose the
question, are the population mean vectors the same? In profile analysis, the question
of equality of mean vectors is divided into several specific possibilities.

Consider the population means = representing the average
responses to four treatments for the first group. A plot of these means, connected by
straight lines, is shown in Figure 6.4.This broken-line graph is the profile for population 1.

Profiles can be constructed for each population (group). We shall concentrate
on two groups. Let = and = be the
mean responses to p treatments for populations 1 and 2, respectively.The hypothesis

implies that the treatments have the same (average) effect on the two
populations. In terms of the population profiles, we can formulate the question of
equality in a stepwise fashion.

1. Are the profiles parallel?
Equivalently: Is = acceptable?

2. Assuming that the profiles are parallel, are the profiles coincident? 7

Equivalently: Is = acceptable?i = 1, 2, Á , p,m2 i ,H0 2  : m1 i

i = 2, 3, Á , p,m2 i - m2 i - 1 ,H0 1  : m1 i - m1 i - 1

H0  : M1 = M2

7m2 1 , m2 2 , Á , m2 p8M2
œ7m1 1 , m1 2 , Á , m1 p8M1

œ

7m1 1 , m1 2 , m1 3 , m1 48M1
œ

BkT
/

B2 = 0H0  : B14.26 7 F3, 141.052 = 3.34,F2

T2 = 0H0  : T1

7.55 7 F3, 141.052 = 3.34,F1F3, 141.052 = 3.34.

µ14

µ12

µ11

µ13

Variable

1 2 3 4

Mean 
response

Figure 6.4 The population profile
p = 4.

7The question, “Assuming that the profiles are parallel, are the profiles linear?” is considered in
Exercise 6.12. The null hypothesis of parallel linear profiles can be written 
– = – Although this hypothesis may be
of interest in a particular situation, in practice the question of whether two parallel profiles are the same
(coincident), whatever their nature, is usually of greater interest.

i = 3, Á , p.1m1 i - 2 + m2 i - 22,1m1 i - 1 + m2 i - 121m1 i - 1 + m2 i - 12
H0 : 1m1 i + m2 i2

323



Chapter 6 Comparisons of Several Multivariate Means

3. Assuming that the profiles are coincident, are the profiles level? That is, are all
the means equal to the same constant?
Equivalently: Is = = = acceptable?

The null hypothesis in stage 1 can be written

where C is the contrast matrix

(6-72)

For independent samples of sizes and from the two populations, the null
hypothesis can be tested by constructing the transformed observations

and

These have sample mean vectors and respectively, and pooled covariance
matrix 

Since the two sets of transformed observations have and
distributions, respectively, an application of Result 6.2 provides a

test for parallel profiles.
Np - 11CM2 , C�C¿2

Np - 11CM1 , C�C¿2
CSpooled C¿.

C x–2 ,C x–1

C x2 j ,  j = 1, 2, Á , n2

C x1 j ,  j = 1, 2, Á , n1

n2n1

C
11p - 12* p2

= D -1 1 0 0 Á 0 0
0 -1 1 0 Á 0 0
o o o o ∞ o o

0 0 0 0 Á
-1 1

T
H0 1 : CM1 = CM2

m2 2 =
Á

= m2 pm2 1m1 2 =
Á

= m1 pH0 3  : m1 1

When the profiles are parallel, the first is either above the second (
for all i), or vice versa. Under this condition, the profiles will be coincident only if
the total heights ± = and ± =

are equal. Therefore, the null hypothesis at stage 2 can be written in the equivalent
form

We can then test with the usual two-sample t-statistic based on the univariate
observations and j = 1, 2, Á , n2 .1¿  x2 j ,j = 1, 2, Á , n1 ,1¿  x1 j ,

H0 2

H0 2  : 1¿  M1 = 1¿  M2

1¿  M2m2 2 +
Á

+ m2 pm2 11¿  M1m1 2 +
Á

+ m1 pm1 1

m1 i 7 m2 i ,

Test for Parallel Profiles for Two Normal Populations

Reject (parallel profiles) at level if

(6-73)

where

c2
=

1n1 + n2 - 221p - 12

n1 + n2 - p
 Fp - 1, n1 + n2 - p1a2

T2
= 1x–1 - x–22

œ

 C¿B ¢ 1
n1

+

1
n2
≤CSpooled C¿R-1

 C1x–1 - x–22 7 c2

aH0 1  : CM1 = CM2
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Profile Analysis

For coincident profiles, and are all observa-
tions from the same normal population? The next step is to see whether all variables
have the same mean, so that the common profile is level.

When and are tenable, the common mean vector is estimated, using
all observations, by

If the common profile is level, then = and the null hypothesis at
stage 3 can be written as

where C is given by (6-72). Consequently, we have the following test.

H0 3  : CM = 0

m2 =
Á

= mp ,m1

x– =

1
n1 + n2

 ¢an1

j = 1
 x1 j + a

n2

j = 1
 x2 j≤ =

n1

1n1 + n22
 x–1 +

n2

1n1 + n22
 x–2

n1 + n2

MH0 2H0 1

x2 2 , Á , x2 n2
x2 1 ,x1 2 , Á , x1 n1

x1 1 ,

Example 6.14 (A profile analysis of love and marriage data) As part of a larger study
of love and marriage, E. Hatfield, a sociologist, surveyed adults with respect to their
marriage “contributions” and “outcomes” and their levels of “passionate” and
“companionate” love. Recently married males and females were asked to respond
to the following questions, using the 8-point scale in the figure below.

Test for Level Profiles, Given That Profiles Are Coincident
For two normal populations: Reject (profiles level) at level if

(6-75)

where S is the sample covariance matrix based on all observations and

c2
=

1n1 + n2 - 121p - 12

1n1 + n2 - p + 12
 Fp - 1, n1 + n2 - p + 11a2

n1 + n2

1n1 + n22 x– ¿  C¿7CSC¿8-1
 C  x– 7 c2

aH0 3  : CM = 0

Test for Coincident Profiles, Given That Profiles Are Parallel
For two normal populations, reject = (profiles coincident) at
level if

(6-74)
 = £ 1¿1x–1 - x–22C¢ 1
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1
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≥2
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Chapter 6 Comparisons of Several Multivariate Means

1. All things considered, how would you describe your contributions to the
marriage?

2. All things considered, how would you describe your outcomes from the
marriage?

Subjects were also asked to respond to the following questions, using the
5-point scale shown.

3. What is the level of passionate love that you feel for your partner?
4. What is the level of companionate love that you feel for your partner?

1 2 3 4 5

None
at all

Very
little Some

A great 
deal

Tremendous
amount

Let
=an 8-point scale response to Question 1

=an 8-point scale response to Question 2

=a 5-point scale response to Question 3

=a 5-point scale response to Question 4

and the two populations be defined as

The population means are the average responses to the questions for the
populations of males and females. Assuming a common covariance matrix it is of
interest to see whether the profiles of males and females are the same.

A sample of males and females gave the sample mean vectors

and pooled covariance matrix

The sample mean vectors are plotted as sample profiles in Figure 6.5 on page 327.
Since the sample sizes are reasonably large, we shall use the normal theory

methodology, even though the data, which are integers, are clearly nonnormal. To
test for parallelism we compute1H0 1  : CM1 = CM22,

Spooled = D .606 .262 .066 .161
.262 .637 .173 .143
.066 .173 .810 .029
.161 .143 .029 .306

T

x–2 = D6.633
7.000
4.000
4.533

T
1females2

x–1 = D6.833
7.033
3.967
4.700

T
1males2

 

,

n2 = 30n1 = 30

�,
p = 4

 Population 2 = married women

 Population 1 = married men

x4

x3

x2

x1
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Profile Analysis

and

Thus,

Moreover, with > =

= Since we conclude that the hypothesis of parallel profiles 
for men and women is tenable. Given the plot in Figure 6.5, this finding is not
surprising.

Assuming that the profiles are parallel, we can test for coincident profiles. To
test = (profiles coincident), we need

Sum of elements in Spooled = 1¿  Spooled 1 = 4.207

Sum of elements in 1x–1 - x–22 = 1¿1x–1 - x–22 = .367

1¿M2H0 2  : 1¿M1

T2
= 1.005 6 8.7,8.7.

3.1112.82130 + 30 - 428F3, 561.052c2
= 7130 + 30 - 22 14 - 12a = .05,

 = 151.0672 = 1.005

 T2
= 7- .167, - .066, .2008 A 1

30 +
1
30 B

-1
 C .719 - .268 - .125

- .268 1.101 - .751
- .125 - .751 1.058

S-1

 C - .167
- .066

.200
S

C 1x–1 - x–22 = C -1 1 0 0
0 -1 1 0
0 0 -1 1

S D .200
.033

- .033
.167

T = C - .167
- .066

.200
S

 = C .719 - .268 - .125
- .268 1.101 - .751
- .125 - .751 1.058

S
 CSpooled C¿ = C -1 1 0 0

0 -1 1 0
0 0 -1 1

S  Spooled D -1 0 0
1 -1 0
0 1 -1
0 0 1

T

6

4

2

1 2 3 4

 X

 X  X

 X

Sample mean
response x�i

Variable

 X

Key:

Males

Females

 X

Figure 6.5 Sample profiles
for marriage–love responses.
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Chapter 6 Comparisons of Several Multivariate Means

Using (6-74), we obtain

With and = we cannot reject
the hypothesis that the profiles are coincident. That is, the responses of men and
women to the four questions posed appear to be the same.

We could now test for level profiles; however, it does not make sense to carry
out this test for our example, since Questions 1 and 2 were measured on a scale of
1–8, while Questions 3 and 4 were measured on a scale of 1–5.The incompatibility of
these scales makes the test for level profiles meaningless and illustrates the need for
similar measurements in order to carry out a complete profile analysis. �

When the sample sizes are small, a profile analysis will depend on the normality
assumption. This assumption can be checked, using methods discussed in Chapter 4,
with the original observations or the contrast observations 

The analysis of profiles for several populations proceeds in much the same
fashion as that for two populations. In fact, the general measures of comparison are
analogous to those just discussed. (See [13], [18].)

6.9 Repeated Measures Designs and Growth Curves
As we said earlier, the term “repeated measures” refers to situations where the same
characteristic is observed, at different times or locations, on the same subject.

(a) The observations on a subject may correspond to different treatments as in
Example 6.2 where the time between heartbeats was measured under the 
treatment combinations applied to each dog. The treatments need to be com-
pared when the responses on the same subject are correlated.

(b) A single treatment may be applied to each subject and a single characteristic
observed over a period of time. For instance, we could measure the weight of a
puppy at birth and then once a month. It is the curve traced by a typical dog that
must be modeled. In this context, we refer to the curve as a growth curve.

When some subjects receive one treatment and others another treatment,
the growth curves for the treatments need to be compared.

To illustrate the growth curve model introduced by Potthoff and Roy [21], we
consider calcium measurements of the dominant ulna bone in older women. Besides
an initial reading, Table 6.5 gives readings after one year, two years, and three years
for the control group. Readings obtained by photon absorptiometry from the same
subject are correlated but those from different subjects should be independent. The
model assumes that the same covariance matrix holds for each subject. Unlike
univariate approaches, this model does not require the four measurements to have
equal variances. A profile, constructed from the four sample means 
summarizes the growth which here is a loss of calcium over time. Can the growth
pattern be adequately represented by a polynomial in time?

1x–1 , x–2 , x–3 , x–42,

�

2 * 2

C x
/ j .x

/ j

.501 6 F1, 581.052 = 4.0,T
 

2F1, 581.052 = 4.0,a = .05,

T2
= ¢ .3672 A 1

30 +
1
30 B4.027

≤2

= .501
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Repeated Measures Designs and Growth Curves

When the p measurements on all subjects are taken at times the
Potthoff–Roy model for quadratic growth becomes

where the ith mean is the quadratic expression evaluated at 
Usually groups need to be compared. Table 6.6 gives the calcium measurements

for a second set of women, the treatment group, that received special help with diet
and a regular exercise program.

When a study involves several treatment groups, an extra subscript is needed as
in the one-way MANOVA model. Let be the vectors of
measurements on the subjects in group for 

Assumptions. All of the are independent and have the same covariance
matrix Under the quadratic growth model, the mean vectors are

E7X
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/ 1 t1 + b
/ 2 t1

2

b
/ 0 + b

/ 1 t2 + b
/ 2 t2

2

o

b
/ 0 + b

/ 1 tp + b
/ 2 tp

2

T = D1 t1 t1
2

1 t2 t2
2

o o o

1 tp tp
2

T C b/ 0

b
/ 1

b
/ 2

S = BB
/

�.
X

/ j

/ = 1, Á , g./,n
/

n
/

X
/ 2 , Á , X

/ n
/

X
/ 1 ,

ti .mi

E7X8 = E DX1

X2

o

Xp

T = D b0 + b1 t1 + b2 t1
2
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o
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2

T
t1 , t2 , Á , tp ,

Table 6.5 Calcium Measurements on the Dominant Ulna; Control Group

Subject Initial 1 year 2 year 3 year

1 87.3 86.9 86.7 75.5
2 59.0 60.2 60.0 53.6
3 76.7 76.5 75.7 69.5
4 70.6 76.1 72.1 65.3
5 54.9 55.1 57.2 49.0
6 78.2 75.3 69.1 67.6
7 73.7 70.8 71.8 74.6
8 61.8 68.7 68.2 57.4
9 85.3 84.4 79.2 67.0

10 82.3 86.9 79.4 77.4
11 68.6 65.4 72.3 60.8
12 67.8 69.2 66.3 57.9
13 66.2 67.0 67.0 56.2
14 81.0 82.3 86.8 73.9
15 72.3 74.6 75.3 66.1

Mean 72.38 73.29 72.47 64.79

Source: Data courtesy of Everett Smith.
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where

(6-76)

If a qth-order polynomial is fit to the growth data, then

(6-77)

Under the assumption of multivariate normality, the maximum likelihood
estimators of the are

(6-78)

where
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Á
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Table 6.6 Calcium Measurements on the Dominant Ulna; Treatment
Group

Subject Initial 1 year 2 year 3 year

1 83.8 85.5 86.2 81.2
2 65.3 66.9 67.0 60.6
3 81.2 79.5 84.5 75.2
4 75.4 76.7 74.3 66.7
5 55.3 58.3 59.1 54.2
6 70.3 72.3 70.6 68.6
7 76.5 79.9 80.4 71.6
8 66.0 70.9 70.3 64.1
9 76.7 79.0 76.9 70.3

10 77.2 74.0 77.8 67.9
11 67.3 70.7 68.9 65.9
12 50.3 51.4 53.6 48.0
13 57.7 57.0 57.5 51.5
14 74.3 77.7 72.6 68.0
15 74.0 74.7 74.5 65.7
16 57.3 56.0 64.7 53.0

Mean 69.29 70.66 71.18 64.53

Source: Data courtesy of Everett Smith.
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with is the pooled estimator of the common covariance matrix The 

estimated covariances of the maximum likelihood estimators are

(6-79)

where >

Also, and are independent, for so their covariance is 0.
We can formally test that a qth-order polynomial is adequate. The model is fit

without restrictions, the error sum of squares and cross products matrix is just the
within groups W that has degrees of freedom. Under a qth-order polynomi-
al, the error sum of squares and cross products

(6-80)

has degrees of freedom. The likelihood ratio test of the null
hypothesis that the q-order polynomial is adequate can be based on Wilks’ lambda

(6-81)

Under the polynomial growth model, there are terms instead of the p means
for each of the groups. Thus there are fewer parameters. For large
sample sizes, the null hypothesis that the polynomial is adequate is rejected if

(6-82)

Example 6.15 (Fitting a quadratic growth curve to calcium loss) Refer to the data in
Tables 6.5 and 6.6. Fit the model for quadratic growth.

A computer calculation gives

so the estimated growth curves are

where

and, by (6-79), the standard errors given below the parameter estimates were
obtained by dividing the diagonal elements by and taking the square root.n

/
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Chapter 6 Comparisons of Several Multivariate Means

Examination of the estimates and the standard errors reveals that the terms
are needed. Loss of calcium is predicted after 3 years for both groups. Further, there
does not seem to be any substantial difference between the two groups.

Wilks’ lambda for testing the null hypothesis that the quadratic growth model is
adequate becomes

Since, with 

we fail to reject the adequacy of the quadratic fit at Since the p-value is less
than .05 there is, however, some evidence that the quadratic does not fit well.

We could, without restricting to quadratic growth, test for parallel and coinci-
dent calcium loss using profile analysis. �

The Potthoff and Roy growth curve model holds for more general designs than
one-way MANOVA. However, the are no longer given by (6-78) and the expres-
sion for its covariance matrix becomes more complicated than (6-79). We refer the
reader to [14] for more examples and further tests.

There are many other modifications to the model treated here.They include the
following:

(a) Dropping the restriction to polynomial growth. Use nonlinear parametric
models or even nonparametric splines.

(b) Restricting the covariance matrix to a special form such as equally correlated
responses on the same individual.

(c) Observing more than one response variable, over time, on the same individual.
This results in a multivariate version of the growth curve model.

6.10 Perspectives and a Strategy for Analyzing 
Multivariate Models

We emphasize that, with several characteristics, it is important to control the overall
probability of making any incorrect decision. This is particularly important when
testing for the equality of two or more treatments as the examples in this chapter

Bn
/

a = .01.

= 7.86 6 x14 - 2 - 122
2 1.012 = 9.21

- aN -

1
2

 1p - q + g2b  ln ¶* = - a31 -

1
2

 14 - 2 + 22b  ln .7627

a = .01,

= .7627

4  D2726.282 2660.749 2369.308 2335.912
2660.749 2756.009 2343.514 2327.961
2369.308 2343.514 2301.714 2098.544
2335.912 2327.961 2098.544 2277.452

T  4
4  D2781.017 2698.589 2363.228 2362.253

2698.589 2832.430 2331.235 2381.160
2363.228 2331.235 2303.687 2089.996
2362.253 2381.160 2089.996 2314.485

T  4¶* =

ƒ W ƒ

ƒ W2 ƒ

=

t2
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indicate.A single multivariate test, with its associated single p-value, is preferable to
performing a large number of univariate tests. The outcome tells us whether or not
it is worthwhile to look closer on a variable by variable and group by group analysis.

A single multivariate test is recommended over, say, p univariate tests because,
as the next example demonstrates, univariate tests ignore important information
and can give misleading results.

Example 6.16 (Comparing multivariate and univariate tests for the differences in
means) Suppose we collect measurements on two variables and for ten
randomly selected experimental units from each of two groups. The hypothetical
data are noted here and displayed as scatter plots and marginal dot diagrams in
Figure 6.6 on page 334.

X2X1

Group

5.0 3.0 1
4.5 3.2 1
6.0 3.5 1
6.0 4.6 1
6.2 5.6 1
6.9 5.2 1
6.8 6.0 1
5.3 5.5 1
6.6 7.3 1
7.3 6.5 1
4.6 4.9 2
4.9 5.9 2
4.0 4.1 2
3.8 5.4 2
6.2 6.1 2
5.0 7.0 2
5.3 4.7 2
7.1 6.6 2
5.8 7.8 2
6.8 8.0 2

x2x1

It is clear from the horizontal marginal dot diagram that there is considerable
overlap in the values for the two groups. Similarly, the vertical marginal dot dia-
gram shows there is considerable overlap in the values for the two groups. The
scatter plots suggest that there is fairly strong positive correlation between the two
variables for each group, and that, although there is some overlap, the group 1
measurements are generally to the southeast of the group 2 measurements.

Let = be the population mean vector for the first group, and let
= be the population mean vector for the second group. Using the 

observations, a univariate analysis of variance gives with and
degrees of freedom. Consequently, we cannot reject = at any

reasonable significance level Using the observations, a uni-
variate analysis of variance gives with and degrees of free-
dom. Again, we cannot reject = at any reasonable significance level.m2 2H0  : m1 2

n2 = 18n1 = 1F = 2.68
x21F1, 181.102 = 3.012.

m2 1H0  : m1 1n2 = 18
n1 = 1F = 2.46

x17m2 1 , m2 28Mœ

2

7m1 1 , m1 28Mœ

1

x2

x1
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Chapter 6 Comparisons of Several Multivariate Means

The univariate tests suggest there is no difference between the component means
for the two groups, and hence we cannot discredit =

On the other hand, if we use Hotelling’s to test for the equality of the mean
vectors, we find 

= = = = 12.94 

and we reject = at the 1% level. The multivariate test takes into account
the positive correlation between the two measurements for each group—informa-
tion that is unfortunately ignored by the univariate tests.This -test is equivalent to
the MANOVA test (6-42). ■

Example 6.17 (Data on lizards that require a bivariate test to establish a difference in
means) A zoologist collected lizards in the southwestern United States. Among
other variables, he measured mass (in grams) and the snout-vent length (in millime-
ters). Because the tails sometimes break off in the wild, the snout-vent length is a
more representative measure of length. The data for the lizards from two genera,
Cnemidophorus (C) and Sceloporus (S), collected in 1997 and 1999 are given in
Table 6.7. Notice that there are measurements for C lizards and 
measurements for S lizards.

After taking natural logarithms, the summary statistics are

S:  n2 = 40  x–2 = B2.368
4.308

R   S2 = B0.50684 0.14539
0.14539 0.04255

R
C:  n1 = 20  x–1 = B2.240

4.394
R   S1 = B0.35305 0.09417

0.09417 0.02595
R

n2 = 40n1 = 20

T2

M2H0  : M1

2.118 * 6.11
1182122

17
 F2, 171.01217.29 7 c2T2

T2
M2 .M1

4 5 6 7

8

7

6

5

4

3 x1

x1

x2x2

2
1

Figure 6.6 Scatter plots and marginal dot diagrams for the data from two groups.
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Perspectives and a Strategy for Analyzing Multivariate Models

A plot of mass (Mass) versus snout-vent length (SVL), after taking natural logarithms,
is shown in Figure 6.7. The large sample individual 95% confidence intervals for the
difference in ln(Mass) means and the difference in ln(SVL) means both cover 0.

 ln1SVL2:  m1 2 - m2 2 :  1-0.011, 0.1832
 ln1Mass2:  m1 1 - m2 1 :  1-0.476, 0.2202

Table 6.7 Lizard Data for Two Genera

C S S
Mass SVL Mass SVL Mass SVL

7.513 74.0 13.911 77.0 14.666 80.0
5.032 69.5 5.236 62.0 4.790 62.0
5.867 72.0 37.331 108.0 5.020 61.5

11.088 80.0 41.781 115.0 5.220 62.0
2.419 56.0 31.995 106.0 5.690 64.0

13.610 94.0 3.962 56.0 6.763 63.0
18.247 95.5 4.367 60.5 9.977 71.0
16.832 99.5 3.048 52.0 8.831 69.5
15.910 97.0 4.838 60.0 9.493 67.5
17.035 90.5 6.525 64.0 7.811 66.0
16.526 91.0 22.610 96.0 6.685 64.5
4.530 67.0 13.342 79.5 11.980 79.0
7.230 75.0 4.109 55.5 16.520 84.0
5.200 69.5 12.369 75.0 13.630 81.0

13.450 91.5 7.120 64.5 13.700 82.5
14.080 91.0 21.077 87.5 10.350 74.0
14.665 90.0 42.989 109.0 7.900 68.5
6.092 73.0 27.201 96.0 9.103 70.0
5.264 69.5 38.901 111.0 13.216 77.5

16.902 94.0 19.747 84.5 9.787 70.0

SVL=snout-vent length.
Source: Data courtesy of Kevin E. Bonine.

C
S

2

1

4

3

ln
(M

as
s)

4.3 4.84.74.64.54.43.9 4.0 4.1 4.2

ln(SVL)

Figure 6.7 Scatter plot of ln(Mass) versus ln(SVL) for the lizard data in Table 6.7.
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Chapter 6 Comparisons of Several Multivariate Means

The corresponding univariate Student’s t-test statistics for testing for no difference
in the individual means have p-values of .46 and .08, respectively. Clearly, from a
univariate perspective, we cannot detect a difference in mass means or a difference
in snout-vent length means for the two genera of lizards.

However, consistent with the scatter diagram in Figure 6.7, a bivariate analysis
strongly supports a difference in size between the two groups of lizards. Using Result
6.4 (also see Example 6.5), the -statistic has an approximate distribution.
For this example, with a p-value less than .0001.A multivariate method is
essential in this case. �

Examples 6.16 and 6.17 demonstrate the efficacy of a multivariate test relative
to its univariate counterparts. We encountered exactly this situation with the efflu-
ent data in Example 6.1.

In the context of random samples from several populations (recall the one-way
MANOVA in Section 6.4), multivariate tests are based on the matrices

Throughout this chapter, we have used

which is equivalent to the likelihood ratio test. Three other multivariate test statis-
tics are regularly included in the output of statistical packages.

Lawley–Hotelling trace

Pillai trace

Roy’s largest root=maximum eigenvalue of 

All four of these tests appear to be nearly equivalent for extremely large sam-
ples. For moderate sample sizes, all comparisons are based on what is necessarily a
limited number of cases studied by simulation. From the simulations reported to
date, the first three tests have similar power, while the last, Roy’s test, behaves dif-
ferently. Its power is best only when there is a single nonzero eigenvalue and, at the
same time, the power is large. This may approximate situations where a large
difference exists in just one characteristic and it is between one group and all of the
others. There is also some suggestion that Pillai’s trace is slightly more robust
against nonnormality. However, we suggest trying transformations on the original
data when the residuals are nonnormal.

All four statistics apply in the two-way setting and in even more complicated
MANOVA. More discussion is given in terms of the multivariate regression model
in Chapter 7.

When, and only when, the multivariate tests signals a difference, or departure
from the null hypothesis, do we probe deeper. We recommend calculating the
Bonferonni intervals for all pairs of groups and all characteristics. The simultaneous
confidence statements determined from the shadows of the confidence ellipse are,
typically, too large.The one-at-a-time intervals may be suggestive of differences that

W 1B + W2-1
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Exercises

merit further study but, with the current data, cannot be taken as conclusive evi-
dence for the existence of differences. We summarize the procedure developed in
this chapter for comparing treatments. The first step is to check the data for outliers
using visual displays and other calculations.

We must issue one caution concerning the proposed strategy. It may be the case
that differences would appear in only one of the many characteristics and, further,
the differences hold for only a few treatment combinations. Then, these few active
differences may become lost among all the inactive ones.That is, the overall test may
not show significance whereas a univariate test restricted to the specific active vari-
able would detect the difference. The best preventative is a good experimental
design. To design an effective experiment when one specific variable is expected to
produce differences, do not include too many other variables that are not expected
to show differences among the treatments.

Exercises

6.1. Construct and sketch a joint 95% confidence region for the mean difference vector 
using the effluent data and results in Example 6.1. Note that the point falls
outside the 95% contour. Is this result consistent with the test of considered
in Example 6.1? Explain.

6.2. Using the information in Example 6.1. construct the 95% Bonferroni simultaneous in-
tervals for the components of the mean difference vector Compare the lengths of
these intervals with those of the simultaneous intervals constructed in the example.

6.3. The data corresponding to sample 8 in Table 6.1 seem unusually large. Remove sample 8.
Construct a joint 95% confidence region for the mean difference vector and the 95%
Bonferroni simultaneous intervals for the components of the mean difference vector.
Are the results consistent with a test of Discuss. Does the “outlier” make a
difference in the analysis of these data?

H0  : D = 0?

D

D .

H0  : D = 0
D = 0

D

A Strategy for the Multivariate Comparison of Treatments

1. Try to identify outliers. Check the data group by group for outliers. Also
check the collection of residual vectors from any fitted model for outliers.
Be aware of any outliers so calculations can be performed with and without
them.

2. Perform a multivariate test of hypothesis. Our choice is the likelihood ratio
test, which is equivalent to Wilks’ lambda test.

3. Calculate the Bonferroni simultaneous confidence intervals. If the multi-
variate test reveals a difference, then proceed to calculate the Bonferroni
confidence intervals for all pairs of groups or treatments, and all character-
istics. If no differences are significant, try looking at Bonferroni intervals for
the larger set of responses that includes the differences and sums of pairs of
responses.

337



Chapter 6 Comparisons of Several Multivariate Means

6.4. Refer to Example 6.1.

(a) Redo the analysis in Example 6.1 after transforming the pairs of observations to
ln(BOD) and ln(SS).

(b) Construct the 95% Bonferroni simultaneous intervals for the components of the
mean vector of transformed variables.

(c) Discuss any possible violation of the assumption of a bivariate normal distribution
for the difference vectors of transformed observations.

6.5. A researcher considered three indices measuring the severity of heart attacks. The
values of these indices for heart-attack patients arriving at a hospital emergency
room produced the summary statistics

(a) All three indices are evaluated for each patient.Test for the equality of mean indices
using (6-16) with 

(b) Judge the differences in pairs of mean indices using 95% simultaneous confidence
intervals. [See (6-18).]

6.6. Use the data for treatments 2 and 3 in Exercise 6.8.

(a) Calculate 

(b) Test employing a two-sample approach with 

(c) Construct 99% simultaneous confidence intervals for the differences 

6.7. Using the summary statistics for the electricity-demand data given in Example 6.4, com-
pute and test the hypothesis = assuming that Set 
Also, determine the linear combination of mean components most responsible for the
rejection of 

6.8. Observations on two responses are collected for three treatments. The obser-

vation vectors are

(a) Break up the observations into mean, treatment, and residual components, as in
(6-39). Construct the corresponding arrays for each variable. (See Example 6.9.)

(b) Using the information in Part a, construct the one-way MANOVA table.

(c) Evaluate Wilks’ lambda, and use Table 6.3 to test for treatment effects. Set
Repeat the test using the chi-square approximation with Bartlett’s correc-

tion. [See (6-43).] Compare the conclusions.
a = .01.

¶*,

 Treatment 3: B2
3
R  ,  B5

1
R  ,  B3

1
R  ,  B2

3
R

 Treatment 2: B3
3
R  ,  B1

6
R  ,  B2

3
R

 Treatment 1: B6
7
R  ,  B5

9
R  ,  B8

6
R  ,  B4

9
R  ,  B7

9
R

Bx1

x2
R

H0 .

a = .05.�1 = �2 .0,H0  : M1 - M2T2

i = 1, 2.
m2 i - m3 i ,

a = .01.H0  : M2 - M3 = 0
Spooled .

a = .05.

x– = C 46.1
57.3
50.4
S and S = C 101.3 63.0 71.0

63.0 80.2 55.6
71.0 55.6 97.4

S
n = 40

D
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Exercises

6.9. Using the contrast matrix C in (6-13), verify the relationships and
in (6-14).

6.10. Consider the univariate one-way decomposition of the observation given by (6-34).
Show that the mean vector is always perpendicular to the treatment effect vector

± where

6.11. A likelihood argument provides additional support for pooling the two independent
sample covariance matrices to estimate a common covariance matrix in the case of two
normal populations. Give the likelihood function, for two independent
samples of sizes and from and populations, respectively. Show

that this likelihood is maximized by the choices and

Hint: Use (4-16) and the maximization Result 4.10.

6.12. (Test for linear profiles, given that the profiles are parallel.) Let =

and = be the mean responses to p treat-
ments for populations 1 and 2, respectively. Assume that the profiles given by the two
mean vectors are parallel.

(a) Show that the hypothesis that the profiles are linear can be written as –
= – or as 

= where the matrix

(b) Following an argument similar to the one leading to (6-73), we reject
= at level if

where

c2
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Chapter 6 Comparisons of Several Multivariate Means

Let = = and

Test for linear profiles, assuming that the profiles are parallel. Use 

6.13. (Two-way MANOVA without replications.) Consider the observations on two
responses, and displayed in the form of the following two-way table (note that
there is a single observation vector at each combination of factor levels):

x2 ,x1

a = .05.

Spooled = D .61 .26 .07 .16
.26 .64 .17 .14
.07 .17 .81 .03
.16 .14 .03 .31

T
74.3, 4.9, 5.3, 5.18,x– œ

276.4, 6.8, 7.3, 7.08,x– œ

1n2 = 30,n1 = 30,

Factor 2
Level Level Level Level

1 2 3 4

Level 1

Factor 1 Level 2

Level 3 B -4
-6
RB 3

-3
RB -4

-5
RB -3

2
R

B -4
3
RB4

3
RB -3

2
RB3

8
R

B2
6
RB 8

12
RB4

6
RB6

8
R

With no replications, the two-way MANOVA model is

where the are independent random vectors.

(a) Decompose the observations for each of the two variables as

similar to the arrays in Example 6.9. For each response, this decomposition will result
in several matrices. Here is the overall average, is the average for the th
level of factor 1, and is the average for the kth level of factor 2.

(b) Regard the rows of the matrices in Part a as strung out in a single “long” vector, and
compute the sums of squares

and sums of cross products

Consequently, obtain the matrices and with degrees
of freedom and respectively.

(c) Summarize the calculations in Part b in a MANOVA table.

1g - 12 1b - 12,b - 1,g - 1,gb - 1,
SSPresSSPfac 2 ,SSPfac 1 ,SSPcor ,

SCPtot = SCPmean + SCPfac 1 + SCPfac 2 + SCPres

SStot = SSmean + SSfac 1 + SSfac 2 + SSres

x–  
#k

/x–
/ #x–3 * 4

x
/ k = x– + 1x–

/ # - x–2 + 1x– #  k - x–2 + 1x
/ k - x–

/ # - x– #  k + x–2

Np10, �2e
/ k

X
/ k = M + T

/
+ Bk + e

/ k   ;  a
g

/ = 1
 T

/
= a

b

k = 1
 Bk = 0
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Hint: This MANOVA table is consistent with the two-way MANOVA table for com-
paring factors and their interactions where Note that, with in the
general two-way MANOVA table is a zero matrix with zero degrees of freedom. The
matrix of interaction sum of squares and cross products now becomes the residual sum
of squares and cross products matrix.

(d) Given the summary in Part c, test for factor 1 and factor 2 main effects at the 
level.

Hint: Use the results in (6-67) and (6-69) with replaced by 

Note: The tests require that so that will be positive defi-
nite (with probability 1).

6.14. A replicate of the experiment in Exercise 6.13 yields the following data:

SSPresp … 1g - 12 1b - 12

1g - 12 1b - 12.gb1n - 12

a = .05

SSPresn = 1,n = 1.

Factor 2
Level Level Level Level

1 2 3 4

Level 1

Factor 1 Level 2

Level 3 B -6
6
RB -11

1
RB -2

7
RB 3

-2
R B2

7
RB 0

15
RB 5

12
RB1

6
R B 16

-4
RB8

2
RB6

2
RB14

8
R

(a) Use these data to decompose each of the two measurements in the observation
vector as

where is the overall average, is the average for the th level of factor 1, and 
is the average for the kth level of factor 2. Form the corresponding arrays for each of
the two responses.

(b) Combine the preceding data with the data in Exercise 6.13 and carry out the neces-
sary calculations to complete the general two-way MANOVA table.

(c) Given the results in Part b, test for interactions, and if the interactions do not 
exist, test for factor 1 and factor 2 main effects. Use the likelihood ratio test with

(d) If main effects, but no interactions, exist, examine the nature of the main effects by
constructing Bonferroni simultaneous 95% confidence intervals for differences of
the components of the factor effect parameters.

6.15. Refer to Example 6.13.

(a) Carry out approximate chi-square (likelihood ratio) tests for the factor 1 and factor 2
effects. Set Compare these results with the results for the exact F-tests given
in the example. Explain any differences.

(b) Using (6-70), construct simultaneous 95% confidence intervals for differences in the
factor 1 effect parameters for pairs of the three responses. Interpret these intervals.
Repeat these calculations for factor 2 effect parameters.

a = .05.

a = .05.

x–  
#k/x–

/ #x–

x
/ k = x– + 1x–

/ # - x–2 + 1x– #  k - x–2 + 1x
/ k - x–

/ # - x– #  k + x–2
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Chapter 6 Comparisons of Several Multivariate Means

The following exercises may require the use of a computer.

6.16. Four measures of the response stiffness on each of 30 boards are listed in Table 4.3 (see
Example 4.14). The measures, on a given board, are repeated in the sense that they were
made one after another. Assuming that the measures of stiffness arise from four
treatments, test for the equality of treatments in a repeated measures design context. Set

Construct a 95% (simultaneous) confidence interval for a contrast in the 
mean levels representing a comparison of the dynamic measurements with the static
measurements.

6.17. The data in Table 6.8 were collected to test two psychological models of numerical
cognition. Does the processing of numbers depend on the way the numbers are pre-
sented (words, Arabic digits)? Thirty-two subjects were required to make a series of

a = .05.

Table 6.8 Number Parity Data (Median Times in Milliseconds)

WordDiff WordSame ArabicDiff ArabicSame

869.0 860.5 691.0 601.0
995.0 875.0 678.0 659.0

1056.0 930.5 833.0 826.0
1126.0 954.0 888.0 728.0
1044.0 909.0 865.0 839.0
925.0 856.5 1059.5 797.0

1172.5 896.5 926.0 766.0
1408.5 1311.0 854.0 986.0
1028.0 887.0 915.0 735.0
1011.0 863.0 761.0 657.0
726.0 674.0 663.0 583.0
982.0 894.0 831.0 640.0

1225.0 1179.0 1037.0 905.5
731.0 662.0 662.5 624.0
975.5 872.5 814.0 735.0

1130.5 811.0 843.0 657.0
945.0 909.0 867.5 754.0
747.0 752.5 777.0 687.5
656.5 659.5 572.0 539.0
919.0 833.0 752.0 611.0
751.0 744.0 683.0 553.0
774.0 735.0 671.0 612.0
941.0 931.0 901.5 700.0
751.0 785.0 789.0 735.0
767.0 737.5 724.0 639.0
813.5 750.5 711.0 625.0

1289.5 1140.0 904.5 784.5
1096.5 1009.0 1076.0 983.0
1083.0 958.0 918.0 746.5
1114.0 1046.0 1081.0 796.0
708.0 669.0 657.0 572.5

1201.0 925.0 1004.5 673.5

Source: Data courtesy of J. Carr.

1x421x321x221x12
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quick numerical judgments about two numbers presented as either two number 
words (“two,” “four”) or two single Arabic digits (“2,” “4”). The subjects were asked 
to respond “same” if the two numbers had the same numerical parity (both even or
both odd) and “different” if the two numbers had a different parity (one even, one
odd). Half of the subjects were assigned a block of Arabic digit trials, followed by a
block of number word trials, and half of the subjects received the blocks of trials 
in the reverse order. Within each block, the order of “same” and “different” parity
trials was randomized for each subject. For each of the four combinations of parity and
format, the median reaction times for correct responses were recorded for each
subject. Here

=median reaction time for word format–different parity combination

=median reaction time for word format–same parity combination

=median reaction time for Arabic format–different parity combination

=median reaction time for Arabic format–same parity combination

(a) Test for treatment effects using a repeated measures design. Set 

(b) Construct 95% (simultaneous) confidence intervals for the contrasts representing
the number format effect, the parity type effect and the interaction effect. Interpret
the resulting intervals.

(c) The absence of interaction supports the M model of numerical cognition, while the
presence of interaction supports the C and C model of numerical cognition. Which
model is supported in this experiment?

(d) For each subject, construct three difference scores corresponding to the number for-
mat contrast, the parity type contrast, and the interaction contrast. Is a multivariate
normal distribution a reasonable population model for these data? Explain.

6.18. Jolicoeur and Mosimann [12] studied the relationship of size and shape for painted tur-
tles. Table 6.9 contains their measurements on the carapaces of 24 female and 24 male
turtles.

(a) Test for equality of the two population mean vectors using 

(b) If the hypothesis in Part a is rejected, find the linear combination of mean compo-
nents most responsible for rejecting 

(c) Find simultaneous confidence intervals for the component mean differences.
Compare with the Bonferroni intervals.

Hint: You may wish to consider logarithmic transformations of the observations.

6.19. In the first phase of a study of the cost of transporting milk from farms to dairy plants, a
survey was taken of firms engaged in milk transportation. Cost data on 

and all measured on a per-mile basis, are presented in 
Table 6.10 on page 345 for gasoline and diesel trucks.

(a) Test for differences in the mean cost vectors. Set 

(b) If the hypothesis of equal cost vectors is rejected in Part a, find the linear combina-
tion of mean components most responsible for the rejection.

(c) Construct 99% simultaneous confidence intervals for the pairs of mean components.
Which costs, if any, appear to be quite different?

(d) Comment on the validity of the assumptions used in your analysis. Note in particular
that observations 9 and 21 for gasoline trucks have been identified as multivariate
outliers. (See Exercise 5.22 and [2].) Repeat Part a with these observations deleted.
Comment on the results.

a = .01.

n2 = 23n1 = 36
X3 = capital,X2 = repair,

X1 = fuel,

H0 .

a = .05.

a = .05.

X4

X3

X2

X1
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6.20. The tail lengths in millimeters and wing lengths in millimeters for 45 male
hook-billed kites are given in Table 6.11 on page 346. Similar measurements for female
hook-billed kites were given in Table 5.12.

(a) Plot the male hook-billed kite data as a scatter diagram, and (visually) check for out-
liers. (Note, in particular, observation 31 with )

(b) Test for equality of mean vectors for the populations of male and female hook-
billed kites. Set If = is rejected, find the linear combina-
tion most responsible for the rejection of (You may want to eliminate any
outliers found in Part a for the male hook-billed kite data before conducting this
test. Alternatively, you may want to interpret for observation 31 as a mis-
print and conduct the test with for this observation. Does it make any
difference in this case how observation 31 for the male hook-billed kite data is
treated?)

(c) Determine the 95% confidence region for and 95% simultaneous confi-
dence intervals for the components of 

(d) Are male or female birds generally larger?

M1 - M2 .
M1 - M2

x1 = 184
x1 = 284

H0 .
0H0  : M1 - M2a = .05.

x1 = 284.

1x221x12

Chapter 6 Comparisons of Several Multivariate Means

Table 6.9 Carapace Measurements (in Millimeters) for
Painted Turtles

Female Male

Length Width Height Length Width Height

98 81 38 93 74 37
103 84 38 94 78 35
103 86 42 96 80 35
105 86 42 101 84 39
109 88 44 102 85 38
123 92 50 103 81 37
123 95 46 104 83 39
133 99 51 106 83 39
133 102 51 107 82 38
133 102 51 112 89 40
134 100 48 113 88 40
136 102 49 114 86 40
138 98 51 116 90 43
138 99 51 117 90 41
141 105 53 117 91 41
147 108 57 119 93 41
149 107 55 120 89 40
153 107 56 120 93 44
155 115 63 121 95 42
155 117 60 125 93 45
158 115 62 127 96 45
159 118 63 128 95 45
162 124 61 131 95 46
177 132 67 135 106 47

1x321x221x121x321x221x12
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Table 6.10 Milk Transportation-Cost Data

Gasoline trucks Diesel trucks

16.44 12.43 11.23 8.50 12.26 9.11
7.19 2.70 3.92 7.42 5.13 17.15
9.92 1.35 9.75 10.28 3.32 11.23
4.24 5.78 7.78 10.16 14.72 5.99

11.20 5.05 10.67 12.79 4.17 29.28
14.25 5.78 9.88 9.60 12.72 11.00
13.50 10.98 10.60 6.47 8.89 19.00
13.32 14.27 9.45 11.35 9.95 14.53
29.11 15.09 3.28 9.15 2.94 13.68
12.68 7.61 10.23 9.70 5.06 20.84
7.51 5.80 8.13 9.77 17.86 35.18
9.90 3.63 9.13 11.61 11.75 17.00

10.25 5.07 10.17 9.09 13.25 20.66
11.11 6.15 7.61 8.53 10.14 17.45
12.17 14.26 14.39 8.29 6.22 16.38
10.24 2.59 6.09 15.90 12.90 19.09
10.18 6.05 12.14 11.94 5.69 14.77
8.88 2.70 12.23 9.54 16.77 22.66

12.34 7.73 11.68 10.43 17.65 10.66
8.51 14.02 12.01 10.87 21.52 28.47

26.16 17.44 16.89 7.13 13.22 19.44
12.95 8.24 7.18 11.88 12.18 21.20
16.93 13.37 17.59 12.03 9.22 23.09
14.70 10.78 14.58
10.32 5.16 17.00
8.98 4.49 4.26
9.70 11.59 6.83

12.72 8.63 5.59
9.49 2.16 6.23
8.22 7.95 6.72

13.70 11.22 4.91
8.21 9.85 8.17

15.86 11.42 13.06
9.18 9.18 9.49

12.49 4.67 11.94
17.32 6.86 4.44

Source: Data courtesy of M. Keaton.

x3x2x1x3x2x1

6.21. Using Moody’s bond ratings, samples of 20 Aa (middle-high quality) corporate bonds
and 20 Baa (top-medium quality) corporate bonds were selected. For each of the corre-
sponding companies, the ratios

=current ratio (a measure of short-term liquidity)

=long-term interest rate (a measure of interest coverage)

=debt-to-equity ratio (a measure of financial risk or leverage)

=rate of return on equity (a measure of profitability)X4

X3

X2

X1
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were recorded. The summary statistics are as follows:

and

(a) Does pooling appear reasonable here? Comment on the pooling procedure in this
case.

(b) Are the financial characteristics of firms with Aa bonds different from those with
Baa bonds? Using the pooled covariance matrix, test for the equality of mean
vectors. Set a = .05.

Spooled = D .701 .083 - .012 - .481
.083 21.949 - .494 9.388

- .012 - .494 .027 .004
- .481 9.388 .004 34.354

T

S2 = D .944 - .089 .002 - .719
- .089 16.432 - .400 19.044

.002 - .400 .024 - .094
- .719 19.044 - .094 61.854

T
Baa bond companies: n2 = 20, x–2

œ

= 72.404, 7.155, .524, 12.8408,
S1 = D .459 .254 - .026 - .244

.254 27.465 - .589 - .267
- .026 - .589 .030 .102
- .244 - .267 .102 6.854

T
Aa bond companies: n1 = 20, x–1

œ

= 72.287, 12.600, .347, 14.8308, and

Table 6.11 Male Hook-Billed Kite Data

(Tail (Wing (Tail (Wing (Tail (Wing
length) length) length) length) length) length)

180 278 185 282 284 277
186 277 195 285 176 281
206 308 183 276 185 287
184 290 202 308 191 295
177 273 177 254 177 267
177 284 177 268 197 310
176 267 170 260 199 299
200 281 186 274 190 273
191 287 177 272 180 278
193 271 178 266 189 280
212 302 192 281 194 290
181 254 204 276 186 287
195 297 191 290 191 286
187 281 178 265 187 288
190 284 177 275 186 275

Source: Data courtesy of S. Temple.

x2x1x2x1x2x1
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(c) Calculate the linear combinations of mean components most responsible for rejecting
= in Part b.

(d) Bond rating companies are interested in a company’s ability to satisfy its outstanding
debt obligations as they mature. Does it appear as if one or more of the foregoing
financial ratios might be useful in helping to classify a bond as “high” or “medium”
quality? Explain.

(e) Repeat part (b) assuming normal populations with unequal covariance matices (see
(6-27), (6-28) and (6-29)). Does your conclusion change?

6.22. Researchers interested in assessing pulmonary function in nonpathological populations
asked subjects to run on a treadmill until exhaustion. Samples of air were collected at
definite intervals and the gas contents analyzed. The results on 4 measures of oxygen
consumption for 25 males and 25 females are given in Table 6.12 on page 348. The
variables were

(a) Look for gender differences by testing for equality of group means. Use If
you reject – find the linear combination most responsible.

(b) Construct the 95% simultaneous confidence intervals for each 
Compare with the corresponding Bonferroni intervals.

(c) The data in Table 6.12 were collected from graduate-student volunteers, and thus
they do not represent a random sample. Comment on the possible implications of
this information.

6.23. Construct a one-way MANOVA using the width measurements from the iris data in
Table 11.5. Construct 95% simultaneous confidence intervals for differences in mean
components for the two responses for each pair of populations. Comment on the validity
of the assumption that =

6.24. Researchers have suggested that a change in skull size over time is evidence of the inter-
breeding of a resident population with immigrant populations. Four measurements were
made of male Egyptian skulls for three different time periods: period 1 is 4000 B.C., period 2
is 3300 B.C., and period 3 is 1850 B.C. The data are shown in Table 6.13 on page 349 (see the
skull data on the website www.prenhall.com/statistics).The measured variables are

Construct a one-way MANOVA of the Egyptian skull data. Use Construct 95%
simultaneous confidence intervals to determine which mean components differ among
the populations represented by the three time periods. Are the usual MANOVA as-
sumptions realistic for these data? Explain.

6.25. Construct a one-way MANOVA of the crude-oil data listed in Table 11.7 on page 662.
Construct 95% simultaneous confidence intervals to determine which mean compo-
nents differ among the populations. (You may want to consider transformations of the
data to make them more closely conform to the usual MANOVA assumptions.)

a = .05.

 X4 = nasal height of skull 1mm2

 X3 = basialveolar length of skull 1mm2

 X2 = basibregmatic height of skull 1mm2

 X1 = maximum breadth of skull 1mm2

�2 = �3 .�1

i = 1, 2, 3, 4.m1 i - m2 i ,

M2 = 0,H0  : M1

a = .05.

 X4 = maximum volume O2 1mL>kg>min2

 X3 = maximum volume O2 1L>min2

 X2 = resting volume O2 1mL>kg>min2

 X1 = resting volume O2 1L>min2

0H0  : M1 - M2
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6.26. A project was designed to investigate how consumers in Green Bay, Wisconsin, would
react to an electrical time-of-use pricing scheme. The cost of electricity during peak
periods for some customers was set at eight times the cost of electricity during 
off-peak hours. Hourly consumption (in kilowatt-hours) was measured on a hot summer
day in July and compared, for both the test group and the control group, with baseline
consumption measured on a similar day before the experimental rates began. The
responses,

log1current consumption2 - log1baseline consumption2

Table 6.13 Egyptian Skull Data

MaxBreath BasHeight BasLength NasHeight Time
Period

131 138 89 49 1
125 131 92 48 1
131 132 99 50 1
119 132 96 44 1
136 143 100 54 1
138 137 89 56 1
139 130 108 48 1
125 136 93 48 1
131 134 102 51 1
134 134 99 51 1

124 138 101 48 2
133 134 97 48 2
138 134 98 45 2
148 129 104 51 2
126 124 95 45 2
135 136 98 52 2
132 145 100 54 2
133 130 102 48 2
131 134 96 50 2
133 125 94 46 2

132 130 91 52 3
133 131 100 50 3
138 137 94 51 3
130 127 99 45 3
136 133 91 49 3
134 123 95 52 3
136 137 101 54 3
133 131 96 49 3
138 133 100 55 3
138 133 91 46 3

Source: Data courtesy of J. Jackson.

ooooo

ooooo

1x421x321x221x12
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for the hours ending 9 A.M. 11 A.M. (a peak hour), 1 P.M., and 3 P.M. (a peak hour) produced
the following summary statistics:

Perform a profile analysis. Does time-of-use pricing seem to make a difference in
electrical consumption? What is the nature of this difference, if any? Comment. (Use a
significance level of for any statistical tests.)

6.27. As part of the study of love and marriage in Example 6.14, a sample of husbands and
wives were asked to respond to these questions:

1. What is the level of passionate love you feel for your partner?

2. What is the level of passionate love that your partner feels for you?

3. What is the level of companionate love that you feel for your partner?

4. What is the level of companionate love that your partner feels for you?

The responses were recorded on the following 5-point scale.

a = .05

Test group:

Control group:
and

Source: Data courtesy of Statistical Laboratory, University of Wisconsin.

Spooled = D .804 .355 .228 .232
.355 .722 .233 .199
.228 .233 .592 .239
.232 .199 .239 .479

T
n2 = 58, x–2

œ

= 7.151, .180, .256, .2578n1 = 28, x–1
œ

= 7.153, - .231, - .322, - .3398

1 2 3 4 5

None
at all

Very
little Some

A great 
deal

Tremendous
amount

Thirty husbands and 30 wives gave the responses in Table 6.14, where 5-point-
scale response to Question 1, 5-point-scale response to Question 2,
5-point-scale response to Question 3, and 5-point-scale response to Question 4.

(a) Plot the mean vectors for husbands and wives as sample profiles.

(b) Is the husband rating wife profile parallel to the wife rating husband profile? Test
for parallel profiles with If the profiles appear to be parallel, test for coin-
cident profiles at the same level of significance. Finally, if the profiles are coinci-
dent, test for level profiles with What conclusion(s) can be drawn from this
analysis?

6.28. Two species of biting flies (genus Leptoconops) are so similar morphologically, that for
many years they were thought to be the same. Biological differences such as sex ratios of
emerging flies and biting habits were found to exist. Do the taxonomic data listed in part
in Table 6.15 on page 352 and on the website www.prenhall.com/statistics indicate any
difference in the two species L. carteri and L. torrens? Test for the equality of the two pop-
ulation mean vectors using If the hypotheses of equal mean vectors is rejected,
determine the mean components (or linear combinations of mean components) most
responsible for rejecting Justify your use of normal-theory methods for these data.

6.29. Using the data on bone mineral content in Table 1.8, investigate equality between the
dominant and nondominant bones.

H0 .

a = .05.

a = .05.

a = .05.

X4 = a
X3 = aX2 = a

X1 = a
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(a) Test using 

(b) Construct 95% simultaneous confidence intervals for the mean differences.

(c) Construct the Bonferroni 95% simultaneous intervals, and compare these with the
intervals in Part b.

6.30. Table 6.16 on page 353 contains the bone mineral contents, for the first 24 subjects in 
Table 1.8, 1 year after their participation in an experimental program. Compare the data
from both tables to determine whether there has been bone loss.

(a) Test using 

(b) Construct 95% simultaneous confidence intervals for the mean differences.

(c) Construct the Bonferroni 95% simultaneous intervals, and compare these with the
intervals in Part b.

a = .05.

a = .05.

Table 6.14 Spouse Data

Husband rating wife Wife rating husband

2 3 5 5 4 4 5 5
5 5 4 4 4 5 5 5
4 5 5 5 4 4 5 5
4 3 4 4 4 5 5 5
3 3 5 5 4 4 5 5
3 3 4 5 3 3 4 4
3 4 4 4 4 3 5 4
4 4 5 5 3 4 5 5
4 5 5 5 4 4 5 4
4 4 3 3 3 4 4 4
4 4 5 5 4 5 5 5
5 5 4 4 5 5 5 5
4 4 4 4 4 4 5 5
4 3 5 5 4 4 4 4
4 4 5 5 4 4 5 5
3 3 4 5 3 4 4 4
4 5 4 4 5 5 5 5
5 5 5 5 4 5 4 4
5 5 4 4 3 4 4 4
4 4 4 4 5 3 4 4
4 4 4 4 5 3 4 4
4 4 4 4 4 5 4 4
3 4 5 5 2 5 5 5
5 3 5 5 3 4 5 5
5 5 3 3 4 3 5 5
3 3 4 4 4 4 4 4
4 4 4 4 4 4 5 5
3 3 5 5 3 4 4 4
4 4 3 3 4 4 5 4
4 4 5 5 4 4 5 5

Source: Data courtesy of E. Hatfield.

x4x3x2x1x4x3x2x1
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Table 6.15 Biting-Fly Data

85 41 31 13 25 9 8
87 38 32 14 22 13 13
94 44 36 15 27 8 9
92 43 32 17 28 9 9
96 43 35 14 26 10 10
91 44 36 12 24 9 9
90 42 36 16 26 9 9
92 43 36 17 26 9 9
91 41 36 14 23 9 9
87 38 35 11 24 9 10

L. torrens
106 47 38 15 26 10 10
105 46 34 14 31 10 11
103 44 34 15 23 10 10
100 41 35 14 24 10 10
109 44 36 13 27 11 10
104 45 36 15 30 10 10
95 40 35 14 23 9 10

104 44 34 15 29 9 10
90 40 37 12 22 9 10

104 46 37 14 30 10 10

86 19 37 11 25 9 9
94 40 38 14 31 6 7

103 48 39 14 33 10 10
82 41 35 12 25 9 8

103 43 42 15 32 9 9
101 43 40 15 25 9 9
103 45 44 14 29 11 11
100 43 40 18 31 11 10
99 41 42 15 31 10 10

100 44 43 16 34 10 10
L. carteri

99 42 38 14 33 9 9
110 45 41 17 36 9 10
99 44 35 16 31 10 10

103 43 38 14 32 10 10
95 46 36 15 31 8 8

101 47 38 14 37 11 11
103 47 40 15 32 11 11
99 43 37 14 23 11 10

105 50 40 16 33 12 11
99 47 39 14 34 7 7

Source: Data courtesy of William Atchley.

ooooooo

ooooooo

£ Length of
antennal

segment 13
≥£ Length of

antennal
segment 12

≥£Fourth
palp

length
≥£Third

palp
width

≥£ Third
palp

length
≥¢Wing

width
≤¢Wing

length
≤ x7x6x5x4x3x2x1
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6.31. Peanuts are an important crop in parts of the southern United States. In an effort to de-
velop improved plants, crop scientists routinely compare varieties with respect to sever-
al variables. The data for one two-factor experiment are given in Table 6.17 on page 354.
Three varieties (5, 6, and 8) were grown at two geographical locations (1, 2) and, in this
case, the three variables representing yield and the two important grade–grain charac-
teristics were measured. The three variables are

=Yield (plot weight)

=Sound mature kernels (weight in grams—maximum of 250 grams)

=Seed size (weight, in grams, of 100 seeds)

There were two replications of the experiment.

(a) Perform a two-factor MANOVA using the data in Table 6.17. Test for a location
effect, a variety effect, and a location–variety interaction. Use 

(b) Analyze the residuals from Part a. Do the usual MANOVA assumptions appear to
be satisfied? Discuss.

(c) Using the results in Part a, can we conclude that the location and>or variety effects
are additive? If not, does the interaction effect show up for some variables, but not
for others? Check by running three separate univariate two-factor ANOVAs.

a = .05.

X3

X2

X1

Table 6.16 Mineral Content in Bones (After 1 Year)

Subject Dominant Dominant Dominant
number radius Radius humerus Humerus ulna Ulna

1 1.027 1.051 2.268 2.246 .869 .964
2 .857 .817 1.718 1.710 .602 .689
3 .875 .880 1.953 1.756 .765 .738
4 .873 .698 1.668 1.443 .761 .698
5 .811 .813 1.643 1.661 .551 .619
6 .640 .734 1.396 1.378 .753 .515
7 .947 .865 1.851 1.686 .708 .787
8 .886 .806 1.742 1.815 .687 .715
9 .991 .923 1.931 1.776 .844 .656

10 .977 .925 1.933 2.106 .869 .789
11 .825 .826 1.609 1.651 .654 .726
12 .851 .765 2.352 1.980 .692 .526
13 .770 .730 1.470 1.420 .670 .580
14 .912 .875 1.846 1.809 .823 .773
15 .905 .826 1.842 1.579 .746 .729
16 .756 .727 1.747 1.860 .656 .506
17 .765 .764 1.923 1.941 .693 .740
18 .932 .914 2.190 1.997 .883 .785
19 .843 .782 1.242 1.228 .577 .627
20 .879 .906 2.164 1.999 .802 .769
21 .673 .537 1.573 1.330 .540 .498
22 .949 .900 2.130 2.159 .804 .779
23 .463 .637 1.041 1.265 .570 .634
24 .776 .743 1.442 1.411 .585 .640

Source: Data courtesy of Everett Smith.
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Chapter 6 Comparisons of Several Multivariate Means

(d) Larger numbers correspond to better yield and grade–grain characteristics. Using lo-
cation 2, can we conclude that one variety is better than the other two for each char-
acteristic? Discuss your answer, using 95% Bonferroni simultaneous intervals for
pairs of varieties.

6.32. In one experiment involving remote sensing, the spectral reflectance of three species of
1-year-old seedlings was measured at various wavelengths during the growing season.
The seedlings were grown with two different levels of nutrient: the optimal level,
coded and a suboptimal level, coded The species of seedlings used were sitka
spruce (SS), Japanese larch (JL), and lodgepole pine (LP). Two of the variables mea-
sured were

=percent spectral reflectance at wavelength 560 nm (green)

=percent spectral reflectance at wavelength 720 nm (near infrared)

The cell means (CM) for Julian day 235 for each combination of species and nutrient
level are as follows. These averages are based on four replications.

X2

X1

- .+ ,

Table 6.17 Peanut Data

Factor 1 Factor 2
Location Variety Yield SdMatKer SeedSize

1 5 195.3 153.1 51.4
1 5 194.3 167.7 53.7
2 5 189.7 139.5 55.5
2 5 180.4 121.1 44.4
1 6 203.0 156.8 49.8
1 6 195.9 166.0 45.8
2 6 202.7 166.1 60.4
2 6 197.6 161.8 54.1
1 8 193.5 164.5 57.8
1 8 187.0 165.1 58.6
2 8 201.5 166.8 65.0
2 8 200.0 173.8 67.2

Source: Data courtesy of Yolanda Lopez.

x3x2x1

(a) Treating the cell means as individual observations, perform a two-way MANOVA to
test for a species effect and a nutrient effect. Use 

(b) Construct a two-way ANOVA for the 560CM observations and another two-way
ANOVA for the 720CM observations. Are these results consistent with the
MANOVA results in Part a? If not, can you explain any differences?

a = .05.

560CM 720CM Species Nutrient

10.35 25.93 SS
13.41 38.63 JL
7.78 25.15 LP

10.40 24.25 SS
17.78 41.45 JL
10.40 29.20 LP -

-

-

+

+

+
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6.33. Refer to Exercise 6.32. The data in Table 6.18 are measurements on the variables

=percent spectral reflectance at wavelength 560 nm (green)
=percent spectral reflectance at wavelength 720 nm (near infrared)

for three species (sitka spruce [SS], Japanese larch [JL], and lodgepole pine [LP]) of
1-year-old seedlings taken at three different times (Julian day 150 [1], Julian day 235 [2],
and Julian day 320 [3]) during the growing season. The seedlings were all grown with the
optimal level of nutrient.
(a) Perform a two-factor MANOVA using the data in Table 6.18. Test for a species

effect, a time effect and species–time interaction. Use a = .05.

X2

X1

Table 6.18 Spectral Reflectance Data

560 nm 720 nm Species Time Replication

9.33 19.14 SS 1 1
8.74 19.55 SS 1 2
9.31 19.24 SS 1 3
8.27 16.37 SS 1 4

10.22 25.00 SS 2 1
10.13 25.32 SS 2 2
10.42 27.12 SS 2 3
10.62 26.28 SS 2 4
15.25 38.89 SS 3 1
16.22 36.67 SS 3 2
17.24 40.74 SS 3 3
12.77 67.50 SS 3 4
12.07 33.03 JL 1 1
11.03 32.37 JL 1 2
12.48 31.31 JL 1 3
12.12 33.33 JL 1 4
15.38 40.00 JL 2 1
14.21 40.48 JL 2 2
9.69 33.90 JL 2 3

14.35 40.15 JL 2 4
38.71 77.14 JL 3 1
44.74 78.57 JL 3 2
36.67 71.43 JL 3 3
37.21 45.00 JL 3 4
8.73 23.27 LP 1 1
7.94 20.87 LP 1 2
8.37 22.16 LP 1 3
7.86 21.78 LP 1 4
8.45 26.32 LP 2 1
6.79 22.73 LP 2 2
8.34 26.67 LP 2 3
7.54 24.87 LP 2 4

14.04 44.44 LP 3 1
13.51 37.93 LP 3 2
13.33 37.93 LP 3 3
12.77 60.87 LP 3 4

Source: Data courtesy of Mairtin Mac Siurtain.
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(b) Do you think the usual MANOVA assumptions are satisfied for the these data? Dis-
cuss with reference to a residual analysis, and the possibility of correlated observa-
tions over time.

(c) Foresters are particularly interested in the interaction of species and time. Does in-
teraction show up for one variable but not for the other? Check by running a uni-
variate two-factor ANOVA for each of the two responses.

(d) Can you think of another method of analyzing these data (or a different experimen-
tal design) that would allow for a potential time trend in the spectral reflectance
numbers?

6.34. Refer to Example 6.15.

(a) Plot the profiles, the components of versus time and those of versus time, on
the same graph. Comment on the comparison.

(b) Test that linear growth is adequate. Take 

6.35. Refer to Example 6.15 but treat all 31 subjects as a single group. The maximum likeli-
hood estimate of the is

where S is the sample covariance matrix.
The estimated covariances of the maximum likelihood estimators are

Fit a quadratic growth curve to this single group and comment on the fit.

6.36. Refer to Example 6.4. Given the summary information on electrical usage in this exam-
ple, use Box’s M-test to test the hypothesis Here is the covari-
ance matrix for the two measures of usage for the population of Wisconsin homeowners
with air conditioning, and is the electrical usage covariance matrix for the population
of Wisconsin homeowners without air conditioning. Set 

6.37. Table 6.9 page 344 contains the carapace measurements for 24 female and 24 male tur-
tles. Use Box’s M-test to test where is the population covariance
matrix for carapace measurements for female turtles, and is the population covari-
ance matrix for carapace measurements for male turtles. Set 

6.38. Table 11.7 page 662 contains the values of three trace elements and two measures of hy-
drocarbons for crude oil samples taken from three groups (zones) of sandstone. Use
Box’s M-test to test equality of population covariance matrices for the three sandstone
groups. Set Here there are variables and you may wish to consider trans-
formations of the measurements on these variables to make them more nearly normal.

6.39. Anacondas are some of the largest snakes in the world. Jesus Ravis and his fellow re-
searchers capture a snake and measure its (i) snout vent length (cm) or the length from
the snout of the snake to its vent where it evacuates waste and (ii) weight (kilograms).A
sample of these measurements in shown in Table 6.19.

(a) Test for equality of means between males and females using Apply the
large sample statistic.

(b) Is it reasonable to pool variances in this case? Explain.

(c) Find the 95% Boneferroni confidence intervals for the mean differences between
males and females on both length and weight.

a = .05.

p = 5a = .05.

a = .05.
�2

�1H0 : �1 = �2 = �.

a = .05.
�2

�1H0 : �1 = �2 = �.

Cov 1Bn 2 =

1n - 12 1n - 22

1n - 1 - p + q2 1n - p + q2n
 1B ¿  S-1

 B2-1

Bn = 1B ¿  S-1
 B2-1

 B ¿  S-1
 x–

1q + 12 * 1 B

a = .01.

x–2x–1

̂
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6.40. Compare the male national track records in Table 8.6 with the female national track
records in Table 1.9 using the results for the 100m, 200m, 400m, 800m and 1500m races.
Treat the data as a random sample of size 64 of the twelve record values.

(a) Test for equality of means between males and females using Explain why it
may be appropriate to analyze differences.

(b) Find the 95% Bonferroni confidence intervals for the mean differences between
male and females on all of the races.

6.41. When cell phone relay towers are not working properly, wireless providers can lose great
amounts of money so it is important to be able to fix problems expeditiously. A first step
toward understanding the problems involved is to collect data from a designed experi-
ment involving three factors. A problem was initially classified as low or high severity,
simple or complex, and the engineer assigned was rated as relatively new (novice) or
expert (guru).

a = .05.

Table 6.19 Anaconda Data

Snout vent Snout vent
Length Weight Gender length Weight Gender

271.0 18.50 F 176.7 3.00 M
477.0 82.50 F 259.5 9.75 M
306.3 23.40 F 258.0 10.07 M
365.3 33.50 F 229.8 7.50 M
466.0 69.00 F 233.0 6.25 M
440.7 54.00 F 237.5 9.85 M
315.0 24.97 F 268.3 10.00 M
417.5 56.75 F 222.5 9.00 M
307.3 23.15 F 186.5 3.75 M
319.0 29.51 F 238.8 9.75 M
303.9 19.98 F 257.6 9.75 M
331.7 24.00 F 172.0 3.00 M
435.0 70.37 F 244.7 10.00 M
261.3 15.50 F 224.7 7.25 M
384.8 63.00 F 231.7 9.25 M
360.3 39.00 F 235.9 7.50 M
441.4 53.00 F 236.5 5.75 M
246.7 15.75 F 247.4 7.75 M
365.3 44.00 F 223.0 5.75 M
336.8 30.00 F 223.7 5.75 M
326.7 34.00 F 212.5 7.65 M
312.0 25.00 F 223.2 7.75 M
226.7 9.25 F 225.0 5.84 M
347.4 30.00 F 228.0 7.53 M
280.2 15.25 F 215.6 5.75 M
290.7 21.50 F 221.0 6.45 M
438.6 57.00 F 236.7 6.49 M
377.1 61.50 F 235.3 6.00 M

Source: Data Courtesy of Jesus Ravis.
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Chapter 6 Comparisons of Several Multivariate Means

Two times were observed. The time to assess the problem and plan an attack and 
the time to implement the solution were each measured in hours. The data are given in 
Table 6.20.

Perform a MANOVA including appropriate confidence intervals for important effects.

Table 6.20 Fixing Breakdowns

Problem Problem Engineer Problem Problem Total
Severity Complexity Experience Assessment Implementation Resolution
Level Level Level Time Time Time

Low Simple Novice 3.0 6.3 9.3
Low Simple Novice 2.3 5.3 7.6
Low Simple Guru 1.7 2.1 3.8
Low Simple Guru 1.2 1.6 2.8
Low Complex Novice 6.7 12.6 19.3
Low Complex Novice 7.1 12.8 19.9
Low Complex Guru 5.6 8.8 14.4
Low Complex Guru 4.5 9.2 13.7
High Simple Novice 4.5 9.5 14.0
High Simple Novice 4.7 10.7 15.4
High Simple Guru 3.1 6.3 9.4
High Simple Guru 3.0 5.6 8.6
High Complex Novice 7.9 15.6 23.5
High Complex Novice 6.9 14.9 21.8
High Complex Guru 5.0 10.4 15.4
High Complex Guru 5.3 10.4 15.7

Source: Data courtesy of Dan Porter.
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MULTIVARIATE LINEAR
REGRESSION MODELS

7.1 Introduction
Regression analysis is the statistical methodology for predicting values of one or
more response (dependent) variables from a collection of predictor (independent)
variable values. It can also be used for assessing the effects of the predictor variables
on the responses. Unfortunately, the name regression, culled from the title of the
first paper on the subject by F. Galton [15], in no way reflects either the importance
or breadth of application of this methodology.

In this chapter, we first discuss the multiple regression model for the predic-
tion of a single response. This model is then generalized to handle the prediction
of several dependent variables. Our treatment must be somewhat terse, as a vast
literature exists on the subject. (If you are interested in pursuing regression
analysis, see the following books, in ascending order of difficulty: Abraham and
Ledolter [1], Bowerman and O’Connell [6], Neter, Wasserman, Kutner, and
Nachtsheim [20], Draper and Smith [13], Cook and Weisberg [11], Seber [23],
and Goldberger [16].) Our abbreviated treatment highlights the regression
assumptions and their consequences, alternative formulations of the regression
model, and the general applicability of regression techniques to seemingly dif-
ferent situations.

7.2 The Classical Linear Regression Model
Let be r predictor variables thought to be related to a response variable
Y. For example, with we might have

Y = current market value of home

r = 4,
z1 , z2 , Á , zr

C h a p t e r

7

360



The Classical Linear Regression Model

and

The classical linear regression model states that Y is composed of a mean, which de-
pends in a continuous manner on the ’s, and a random error which accounts for
measurement error and the effects of other variables not explicitly considered in the
model. The values of the predictor variables recorded from the experiment or set by
the investigator are treated as fixed. The error (and hence the response) is viewed 
as a random variable whose behavior is characterized by a set of distributional
assumptions.

Specifically, the linear regression model with a single response takes the form

The term “linear” refers to the fact that the mean is a linear function of the un-
known parameters The predictor variables may or may not enter the
model as first-order terms.

With n independent observations on Y and the associated values of the com-
plete model becomes

(7-1)

where the error terms are assumed to have the following properties:

1.

2. (constant); and (7-2)

3.

In matrix notation, (7-1) becomes

or

and the specifications in (7-2) become

1. and

2. Cov 1E2 = E1EE¿2 = s2
 I.

E1E2 = 0 ;

Y
1n * 12

= Z
1n *1r + 122

  B
11r + 12* 12

+ E
1n * 12

DY1

Y2

o

Yn

T = D1 z1 1 z1 2
Á z1 r

1 z2 1 z2 2
Á z2 r

o o o ∞ o

1 zn 1 zn 2
Á zn r

T   Db0

b1

o

br

T + De1

e2

o

en

T
Cov 1ej , ek2 = 0, j Z k.

Var 1ej2 = s2

E1ej2 = 0;

 Yn =  b0 + b1 zn 1 + b2 zn 2 +
Á

+ br  zn r + en

 o  o

 Y2 =  b0 + b1 z2 1 + b2 z2 2 +
Á

+ br  z2 r + e2

 Y1 =  b0 + b1 z1 1 + b2 z1 2 +
Á

+ br  z1 r + e1

zi ,

b0 , b1 , Á , br .

 7Response8 = 7mean 1depending on z1 , z2 , Á , zr28 + 7error8 Y = b0 + b1 z1 +
Á

+ br  zr + e

e,zi

 z4 = quality of construction 1price per square foot2

 z3 = appraised value last year

 z2 = location 1indicator for zone of city2

 z1 = square feet of living area

361



Chapter 7 Multivariate Linear Regression Models

Note that a one in the first column of the design matrix Z is the multiplier of the
constant term It is customary to introduce the artificial variable so that

Each column of Z consists of the n values of the corresponding predictor variable,
while the jth row of Z contains the values for all predictor variables on the jth trial.

b0 + b1 zj 1 +
Á

+ br zj r = b0 zj 0 + b1 zj 1 +
Á

+ br zj r

zj 0 = 1,b0 .

0 1 2 3 4
y 1 4 3 8 9
z1

Before the responses are observed, the errors =

are random, and we can write

where

Y = DY1

Y2

o

Y5

T  , Z = D1 z1 1

1 z2 1

o o

1 z5 1

T  , B = Bb0

b1
R  , E = De1

e2

o

e5

T
Y = ZB + E

7e1 , e2 , Á , e58 E¿Y¿ = 7Y1 , Y2 , Á , Y58

Classical Linear Regression Model

(7-3)

where and are unknown parameters and the design matrix Z has jth row7zj 0 , zj 1 , Á , zj r 8.s2B

 E1E2 = 0
1n * 12

 and Cov 1E2 = s2
 

 I
1n * n2

 ,

 Y
1n * 12

= Z
1n *1r + 122 

 B
11r + 12* 12

+ E
1n * 12

,

Although the error-term assumptions in (7-2) are very modest, we shall later need
to add the assumption of joint normality for making confidence statements and
testing hypotheses.

We now provide some examples of the linear regression model.

Example 7.1 (Fitting a straight-line regression model) Determine the linear regression
model for fitting a straight line

to the data

Mean response = E1Y2 = b0 + b1 z1
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The Classical Linear Regression Model

The data for this model are contained in the observed response vector y and the
design matrix Z, where

Note that we can handle a quadratic expression for the mean response by intro-
ducing the term with The linear regression model for the jth trial in
this latter case is

or
�

Example 7.2 (The design matrix for one-way ANOVA as a regression model)
Determine the design matrix if the linear regression model is applied to the one-way
ANOVA situation in Example 6.6.

We create so-called dummy variables to handle the three population means:
and We set

and Then

where we arrange the observations from the three populations in sequence.Thus, we
obtain the observed response vector and design matrix

�

Z
18 * 42

= H
1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1
1 0 0 1

XY
18 * 12

= H  

9
6
9
0
2
3
1
2

 X  ;

Yj = b0 + b1 zj 1 + b2  zj 2 + b3  zj 3 + ej , j = 1, 2, Á , 8

b3 = t3 .b2 = t2 ,b1 = t1 ,b0 = m,

 z3 = c 1 if the observation is
 from population 3
0 otherwise

 z1 = c 1 if the observation is
 from population 1
0 otherwise

 z2 = c 1 if the observation is
 from population 2
0 otherwise

m3 = m + t3 .m2 = m + t2 ,m1 = m + t1 ,

Yj = b0 + b1 zj 1 + b2 zj 1
2

+ ej

Yj = b0 + b1 zj 1 + b2 zj 2 + ej

z2 = z1
2 .b2 z2 ,

y = E  

1
4
3
8
9

 U  , Z = E1 0
1 1
1 2
1 3
1 4

U

The construction of dummy variables, as in Example 7.2, allows the whole of
analysis of variance to be treated within the multiple linear regression framework.
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7.3 Least Squares Estimation
One of the objectives of regression analysis is to develop an equation that will allow
the investigator to predict the response for given values of the predictor variables.
Thus, it is necessary to “fit” the model in (7-3) to the observed corresponding to
the known values That is, we must determine the values for the
regression coefficients and the error variance consistent with the available data.

Let b be trial values for Consider the difference 
between the observed response and the value that would
be expected if b were the “true” parameter vector. Typically, the differences

will not be zero, because the response fluctuates (in a
manner characterized by the error term assumptions) about its expected value. The
method of least squares selects b so as to minimize the sum of the squares of the
differences:

(7-4)

The coefficients b chosen by the least squares criterion are called least squares esti-
mates of the regression parameters They will henceforth be denoted by to em-
phasize their role as estimates of 

The coefficients are consistent with the data in the sense that they produce 
estimated (fitted) mean responses, the sum of whose
squares of the differences from the observed is as small as possible.The deviations

(7-5)

are called residuals. The vector of residuals contains the information
about the remaining unknown parameter (See Result 7.2.)

Result 7.1. Let Z have full rank 1 The least squares estimate of in
(7-3) is given by

Let denote the fitted values of y, where is called
“hat” matrix. Then the residuals

satisfy and Also, the

 = y¿7I - Z 1Z¿  Z2-1
 Z¿8 y = y¿  y - y¿  ZBn

 residual sum of squares = a
n

j = 1
 1yj - bn 0 - bn 1 zj 1 -

Á
- bn r zj r2

2
= En ¿  En

yN ¿  En = 0.Z¿  En = 0

En = y - yN = 7I - Z 1Z¿  Z2-1
 Z¿8 y = 1I - H2 y

H = Z 1Z¿  Z2-1
 Z¿yN = ZBn = Hy

Bn = 1Z¿  Z2-1
 Z¿  y

Br + 1 … n.

s2 .
En = y - ZBn

enj = yj - bn 0 - bn 1 zj 1 -
Á

- bn r zj r ,  j = 1, 2, Á , n

yj

bn 0 + bn 1 zj 1 +
Á

+ bn r zj r ,
Bn

B.
BnB.

 = 1y - Zb2¿1y - Zb2

 S1b2 = a
n

j = 1
 1yj - b0 - b1 zj 1 -

Á
- br zj r2

2

yj - b0 - b1 zj 1 -
Á

- br  zj r

b0 + b1 zj 1 +
Á

+ br zj ryj

yj - b0 - b1 zj 1 -
Á

- br zj rB.
s2B

1, zj 1 , Á , zj r .
yj

1If Z is not full rank, is replaced by a generalized inverse of (See 
Exercise 7.6.)

Z¿  Z.1Z¿  Z2- ,1Z¿  Z2-1
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Least Squares Estimation

Proof. Let as asserted. Then = =

The matrix satisfies

1. = (symmetric);

2.

(7-6)

(idempotent);

3. =

Consequently, = = so =

Additionally, = =

= To verify the expression for we write

so

since = The first term in does not depend on b and the
second is the squared length of Because Z has full rank,
if so the minimum sum of squares is unique and occurs for =

Note that exists since has rank (If is not
of full rank, for some but then or which con-
tradicts Z having full rank ) �

Result 7.1 shows how the least squares estimates and the residuals can be
obtained from the design matrix Z and responses y by simple matrix operations.

Example 7.3 (Calculating the least squares estimates, the residuals, and the residual
sum of squares) Calculate the least square estimates the residuals and the
residual sum of squares for a straight-line model

fit to the data

Yj = b0 + b1 zj 1 + ej

En ,Bn ,

EnBn

r + 1.
Za = 0,a¿  Z¿  Za = 0a Z 0,Z¿  Za = 0

Z¿  Zr + 1 … n.Z¿  Z1Z¿  Z2-1
1Z¿  Z2-1

 Z¿  y.
b = BnBn Z b,

Z 1Bn - b2 Z 0Z 1Bn - b2.
S1b2En ¿Z = 0¿.1y - ZBn 2¿  Z

 = 1y - ZBn 2¿1y - ZBn 2 + 1Bn - b2¿  Z¿  Z 1Bn - b2

 + 21y - ZBn 2¿  Z 1Bn - b2

 = 1y - ZBn 2¿1y - ZBn 2 + 1Bn - b2¿  Z¿  Z 1Bn - b2

 S1b2 = 1y - Zb2¿1y - Zb2

y - Zb = y - ZBn + ZBn - Zb = y - ZBn + Z 1Bn - b2

Bn ,y¿  y - y¿  ZBn .
y¿7I - Z 1Z¿  Z2-1

 Z¿8 yy¿7I - Z 1Z¿  Z2-1
 Z¿8 7I - Z 1Z¿  Z2-1

 Z¿8 yEn ¿  En

Bn ¿  Z¿  En = 0.yN ¿  EnZ¿7I - Z 1Z¿  Z2-1
 Z¿8 y = 0,Z¿1y - yN2Z¿  En

Z¿ - Z¿ = 0.Z¿7I - Z 1Z¿  Z2-1
 Z¿8= 7I - Z 1Z¿  Z2-1

 Z¿8= I - 2Z 1Z¿  Z2-1
 Z¿ + Z 1Z¿  Z2-1

 Z¿  Z 1Z¿  Z2-1
 Z¿

7I - Z 1Z¿  Z2-1
 Z¿8 7I - Z 1Z¿  Z2-1

 Z¿87I - Z 1Z¿  Z2-1
 Z¿87I - Z 1Z¿  Z2-1

 Z¿8œ 7I - Z 1Z¿  Z2-1
 Z¿87I - Z 1Z¿  Z2-1

 Z¿8 y.
y - ZBnEn = y - yNBn = 1Z¿  Z2-1

 Z¿  y

0 1 2 3 4
y 1 4 3 8 9
z1
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We have 

y

B25
70
RB .6 - .2

- .2 .1
RB 5 10

10 30
RE1

4
3
8
9

UB1 1 1 1 1
0 1 2 3 4

R
Z¿  y1Z¿  Z2-1Z¿  ZZ¿

Consequently,

and the fitted equation is

The vector of fitted (predicted) values is

so

The residual sum of squares is

�

Sum-of-Squares Decomposition

According to Result 7.1, so the total response sum of squares 
satisfies

(7-7)y¿  y = 1yN + y - yN2œ1yN + y - yN2 = 1yN + En2
œ

1yN + En2 = yN ¿  yN + En ¿  En

y¿y = a
n

j = 1
yj

2yN ¿En = 0,

En ¿  En = 70 1 -2 1 08  E 0
1

-2
1
0

U = 02
+ 12

+ 1-222 + 12
+ 02

= 6

 En = y - yN = E1
4
3
8
9

U - E1
3
5
7
9

U = E 0
1

-2
1
0

U
 yN = ZBn = E1 0

1 1
1 2
1 3
1 4

U   B1
2
R = E1

3
5
7
9

U
yn = 1 + 2z

Bn = Bbn 0

bn 1
R = 1Z¿  Z2-1

 Z¿  y = B .6 - .2
- .2 .1

R   B25
70
R = B1

2
R
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Least Squares Estimation

Since the first column of Z is 1, the condition includes the requirement 

= = or Subtracting from both 

sides of the decomposition in (7-7), we obtain the basic decomposition of the sum of
squares about the mean:

or

(7-8)

The preceding sum of squares decomposition suggests that the quality of the models
fit can be measured by the coefficient of determination

(7-9)

The quantity gives the proportion of the total variation in the ’s “explained”
by, or attributable to, the predictor variables Here (or the multiple
correlation coefficient ) equals 1 if the fitted equation passes through all
the data points, so that for all j. At the other extreme, is 0 if and

= In this case, the predictor variables have no
influence on the response.

Geometry of Least Squares

A geometrical interpretation of the least squares technique highlights the nature of
the concept. According to the classical linear regression model,

Thus, is a linear combination of the columns of Z. As varies, spans the
model plane of all linear combinations. Usually, the observation vector y will not lie
in the model plane, because of the random error that is, y is not (exactly) a linear
combination of the columns of Z. Recall that

= ± ¢ error
vector≤£ vector

in model
plane

≥¢response
vector ≤

EZBY

E;

ZBBE1Y2

Mean response vector = E1Y2 = ZB = b0 D1
1
o

1

T + b1 Dz1 1

z2 1

o

zn 1

T +
Á

+ br Dz1 r

z2 r

o

zn r

T

z1 , z2 , Á , zr
Á

= bn r = 0.bn 1 = bn 2

bn 0 = y–R2enj = 0
R = +2R2

R2z1 , z2 , Á , zr .
yjR2

R2
= 1 -

a
n

j = 1
 enj

2

a
n

j = 1
 1yj - y–22

=

a
n

j = 1
 1ynj - y–22

a
n

j = 1
 1yj - y–22

 £ total sum
of squares

about mean
≥ =  £regression

sum of
squares

≥ + ¢residual 1error2
sum of squares ≤

 a
n

j = 1
 1yj - y–22 =  a

n

j = 1
 1ynj - y–22 + a

n

j = 1
 enj

2

+ En ¿  Enn(yn
–

)2y¿y - ny–2
= yN ¿  yn -

n(yn
–

)2ny–2
=yn

–
.y– =a

n

j = 1
 yj - a

n

j = 1
  ynj ,a

n

j = 1
 Enj0 = 1¿En

Z¿En = 0
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Once the observations become available, the least squares solution is derived
from the deviation vector

The squared length is the sum of squares As illustrated in
Figure 7.1, is as small as possible when b is selected such that Zb is the point in
the model plane closest to y. This point occurs at the tip of the perpendicular pro-
jection of y on the plane. That is, for the choice is the projection of
y on the plane consisting of all linear combinations of the columns of Z.The residual
vector is perpendicular to that plane.This geometry holds even when Z is
not of full rank.

When Z has full rank, the projection operation is expressed analytically as 
multiplication by the matrix To see this, we use the spectral decompo-
sition (2-16) to write

where are the eigenvalues of and are
the corresponding eigenvectors. If Z is of full rank,

Consider which is a linear combination of the columns of Z.Then 
= = if or 1 if That is, the 
vectors are mutually perpendicular and have unit length. Their linear combina-
tions span the space of all linear combinations of the columns of Z. Moreover,

Z 1Z¿  Z2-1
 Z¿ = a

r + 1

i = 1
 li

-1
 Zei eœ

i  Z¿ = a
r + 1

i = 1
 qi qœ

i

qi

r + 1i = k.i Z kli
-1>2

 lk
-1>2

 eœ

i  lk ek = 0li
-1>2

 lk
-1>2

 eœ

i  Z¿  Zek

qœ

i  qkqi = li
-1>2

 Zei ,

1Z¿  Z2-1
=

1
l1

 e1 eœ

1 +

1
l2

 e2 eœ

2 +
Á

+

1
lr + 1

 er + 1 eœ

r + 1

e1 , e2 , Á , er + 1Z¿  Zl1 Ú l2 Ú
Á

Ú lr + 1 7 0

Z¿  Z = l1 e1 eœ

1 + l2 e2 eœ

2 +
Á

+ lr + 1 er + 1 eœ

r + 1

Z 1Z¿  Z2-1
 Z¿.

En = y - yN

yN = ZBnb = Bn ,

S1b2
S1b2.1y - Zb2¿1y - Zb2

y - Zb = 1observation vector2 - 1vector in model plane2

1

2

3

y

� y �

col2(Z)

col1(Z) � 1

yε

0 col1(Z) �β 1col2(Z) � Z � yβ ββ

ˆ

ˆˆˆ ˆ

ˆ

Figure 7.1 Least squares as a
projection for n = 3, r = 1.
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Least Squares Estimation

According to Result 2A.2 and Definition 2A.12, the projection of y on a linear com-

bination of is = =

Thus, multiplication by projects a vector onto the space spanned by the
columns of Z.2

Similarly, is the matrix for the projection of y on the plane
perpendicular to the plane spanned by the columns of Z.

Sampling Properties of Classical Least Squares Estimators

The least squares estimator and the residuals have the sampling properties
detailed in the next result.

Result 7.2. Under the general linear regression model in (7-3), the least squares
estimator has

The residuals have the properties

Also, = so defining

we have

Moreover, and are uncorrelated.

Proof. (See webpage: www.prenhall.com/statistics) �

The least squares estimator possesses a minimum variance property that was
first established by Gauss. The following result concerns “best” estimators of linear
parametric functions of the form ± for any c.

Result 7.3 (Gauss’3 least squares theorem). Let where 
and Z has full rank For any c, the estimator

c¿  Bn = c0 bn 0 + c1 bn 1 +
Á

+ cr bn r

r + 1.Cov 1E2 = s2
  I,

E1E2 = 0,Y = ZB + E,

Á
+ cr brc¿  B = c0 b0 + c1 b1

Bn

EnBn

E1s22 = s2

s2
=

En ¿  En

n - 1r + 12
=

Y¿7I - Z 1Z¿  Z2-1
 Z¿8 Y

n - r - 1
=

Y¿7I - H8 Y
n - r - 1

1n - r - 12s2 ,E1En ¿  En2

E1En2 = 0 and Cov 1En2 = s27I - Z 1Z¿  Z2-1
 Z¿8 = s27I - H8En

E1Bn 2 = B and Cov 1Bn 2 = s21Z¿  Z2-1

Bn = 1Z¿  Z2-1
 Z¿  Y

EnBn

7I - Z 1Z¿  Z2-1
 Z¿8Z 1Z¿  Z2-1

 Z¿

Z 1Z¿  Z2-1
 Z¿  y = ZBn .aa

r + 1

i = 1
 qi qœ

ib  ya
r + 1

i = 1
 1qœ

i  y2 qi5q1 , q2 , Á , qr + 16

2If Z is not of full rank, we can use the generalized inverse = where 

= = as described in Exercise 7.6. Then 

= has rank and generates the unique projection of y on the space spanned by the linearly

independent columns of Z. This is true for any choice of the generalized inverse. (See [23].)

r1 + 1a

r1 + 1

i = 1
 qi qœ

i

Z 1Z¿  Z2-  Z¿
Á

= lr + 1 ,lr1 + 2l1 Ú l2 Ú
Á

Ú lr1 + 1 7 0

a

r1 + 1

i = 1
 li

-1
 ei eœ

i ,1Z¿  Z2-

3Much later, Markov proved a less general result, which misled many writers into attaching his
name to this theorem.
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of has the smallest possible variance among all linear estimators of the form

that are unbiased for 

Proof. For any fixed c, let be any unbiased estimator of Then
whatever the value of Also, by assumption, =

= Equating the two expected value expressions yields
or for all including the choice 

This implies that for any unbiased estimator.
Now, = = with Moreover, from

Result 7.2 so is an unbiased estimator of Thus, for any
a satisfying the unbiased requirement 

since = from the condition =

= Because is fixed and is positive
unless is minimized by the choice = =

�

This powerful result states that substitution of for leads to the best estima-
tor of for any c of interest. In statistical terminology, the estimator is called
the best (minimum-variance) linear unbiased estimator (BLUE) of 

7.4 Inferences About the Regression Model
We describe inferential procedures based on the classical linear regression model in
(7-3) with the additional (tentative) assumption that the errors have a normal dis-
tribution. Methods for checking the general adequacy of the model are considered
in Section 7.6.

Inferences Concerning the Regression Parameters

Before we can assess the importance of particular variables in the regression function

(7-10)

we must determine the sampling distributions of and the residual sum of squares,
To do so, we shall assume that the errors have a normal distribution.

Result 7.4. Let where Z has full rank and is distributed as
Then the maximum likelihood estimator of is the same as the least 

squares estimator Moreover,

Bn = 1Z¿  Z2-1
 Z¿  Y is distributed as Nr + 11B, s21Z¿  Z2-1

2

Bn .
BNn10, s2

 I2.
Er + 1Y = ZB + E,

EEn ¿  En .
Bn

E1Y2 = b0 + b1 z1 +
Á

+ br  zr

E

c¿  B.
c¿  Bnc¿  B

BBn

c¿  Bn .c¿1Z¿  Z2-1
 Z¿  Ya*¿  YVar 1a¿  Y2a = a*,

1a - a*2œ1a - a*2a*c¿ - c¿ = 0¿.a¿  Z - a*¿  Z
1a - a*2œ  Z1a - a*2œ  Z 1Z¿  Z2-1

 c = 01a - a*2œ  a*

 = s2
 31a - a*2œ1a - a*2 + a*¿a*4

 = s21a - a* + a*2œ1a - a* + a*2

 Var 1a¿  Y2 = Var 1a¿  ZB + a¿  E2 = Var 1a¿  E2 = a¿  Is2
 a

c¿ = a¿  Z,
c¿  B.c¿  Bn = a*¿  YE1Bn 2 = B,

a* = Z 1Z¿  Z2-1
 c.a*¿  Yc¿1Z¿  Z2-1

 Z¿  Yc¿  Bn
c¿ = a¿  Z

B = 1c¿ - a¿  Z2œ.B,1c¿ - a¿  Z2B = 0a¿  ZB = c¿  B

a¿  ZB.E1a¿  ZB + a¿  E2
E1a¿  Y2B.E1a¿  Y2 = c¿  B,

c¿  B.a¿  Y

c¿  B.

a¿  Y = a1 Y1 + a2 Y2 +
Á

+ an Yn

c¿  B
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Inferences About the Regression Model

and is distributed independently of the residuals Further,

where is the maximum likelihood estimator of 

Proof. (See webpage: www.prenhall.com/statistics) �

A confidence ellipsoid for is easily constructed. It is expressed in terms of the 

estimated covariance matrix where 

Result 7.5. Let where Z has full rank and is Then
a confidence region for is given by

where is the upper ( )th percentile of an F-distribution with 
and d.f.

Also, simultaneous confidence intervals for the are 
given by

where is the diagonal element of corresponding to 

Proof. Consider the symmetric square-root matrix [See (2-22).] Set
and note that 

and V is normally distributed, since it consists of linear combinations of the ’s.
Therefore, = =

is distributed as By Result 7.4 = is distributed as
independently of and, hence, independently of V. Consequently,

= has an distri-
bution, and the confidence ellipsoid for follows. Projecting this ellipsoid for

using Result 5A.1 with and =

yields where

is the diagonal element of corresponding to �

The confidence ellipsoid is centered at the maximum likelihood estimate 
and its orientation and size are determined by the eigenvalues and eigenvectors of

If an eigenvalue is nearly zero, the confidence ellipsoid will be very long in the
direction of the corresponding eigenvector.
Z¿  Z.

Bn ,

bn i .s21Z¿  Z2-1Var 1bn i2

ƒ bi - bn i ƒ … 21r + 12Fr + 1, n - r - 11a2 4Var 1bn i2 ,70, Á , 0, 1, 0, Á , 08 u¿c2
= 1r + 12Fr + 1, n - r - 11a2,A-1

= Z¿  Z>s2 ,1Bn - B2

B

Fr + 1, n - r - 17V¿  V>1r + 128>s27xr + 1
2 >1r + 128>7xn - r - 1

2 >1n - r - 128Bns2
 xn - r - 1

2 ,
En ¿  En1n - r - 12 s2s2

 xr + 1
2 .
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 1Z¿  Z21Bn - B21Bn - B2
œ

1Z¿  Z21>21Z¿  Z21>21Bn - B2V¿V
bn i

Cov 1V2 = 1Z¿  Z21>2 Cov 1Bn 2 1Z¿  Z21>2 = s21Z¿  Z21>21Z¿  Z2-1
1Z¿  Z21>2 = s2

 I

E1V2 = 0,V = 1Z¿  Z21>21Bn - B2

1Z¿  Z21>2 .

bn i .s21Z¿  Z2-1Var 1bn i2

bn i ; 4Var 1bn i2 21r + 12Fr + 1, n - r - 11a2 , i = 0, 1, Á , r
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n - r - 1

r + 1100aFr + 1, n - r - 11a2

1B-Bn 2
œ

 Z¿  Z 1B-Bn 2 … 1r + 12 s2Fr + 1, n - r - 11a2
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Nn10, s2

 I2.Er + 1Y = ZB + E,

s2
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Practitioners often ignore the “simultaneous” confidence property of the inter-
val estimates in Result 7.5. Instead, they replace with the one-
at-a-time t value and use the intervals

(7-11)

when searching for important predictor variables.

Example 7.4 (Fitting a regression model to real-estate data) The assessment data in
Table 7.1 were gathered from 20 homes in a Milwaukee, Wisconsin, neighborhood.
Fit the regression model

where dwelling size (in hundreds of square feet), value (in
thousands of dollars), and price (in thousands of dollars), to these data
using the method of least squares. A computer calculation yields

1Z¿  Z2-1
= C 5.1523   

.2544 .0512  

- .1463 - .0172 .0067
S

Y = selling
z2 = assessedz1 = total

Yj = b0 + b1 zj 1 + b2 zj 2 + ej

bn ; tn - r - 1a
a

2
b3Var 1bn i2

tn - r - 11a>22
1r + 12Fr + 1, n - r - 11a2

̂

Table 7.1 Real-Estate Data

Y
Total dwelling size Assessed value Selling price

($1000) ($1000)

15.31 57.3 74.8
15.20 63.8 74.0
16.25 65.4 72.9
14.33 57.0 70.0
14.57 63.8 74.9
17.33 63.2 76.0
14.48 60.2 72.0
14.91 57.7 73.5
15.25 56.4 74.5
13.89 55.6 73.5
15.18 62.6 71.5
14.44 63.4 71.0
14.87 60.2 78.9
18.63 67.2 86.5
15.20 57.1 68.0
25.76 89.6 102.0
19.05 68.6 84.0
15.37 60.1 69.0
18.06 66.3 88.0
16.35 65.8 76.0

1100 ft22

z2z1
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and

Thus, the fitted equation is

with The numbers in parentheses are the estimated standard deviations
of the least squares coefficients. Also, indicating that the data exhibit a
strong regression relationship. (See Panel 7.1, which contains the regression analysis
of these data using the SAS statistical software package.) If the residuals pass 
the diagnostic checks described in Section 7.6, the fitted equation could be used 
to predict the selling price of another house in the neighborhood from its size 

En

R2
= .834,

s = 3.473.

yn = 30.967
17.882

+ 2.634z  

 1
1.7852 

+ .045z  

 2
1.2852    

Bn = 1Z¿  Z2-1
 Z¿  y = C30.967

2.634
.045
S

title ‘Regression Analysis’;
data estate;
infile ‘T7-1.dat’;

PROGRAM COMMANDS
input z1 z2 y;
proc reg data = estate;
model y = z1 z2;

PANEL 7.1 SAS ANALYSIS FOR EXAMPLE 7.4 USING PROC REG.

¯̊
˚̆

˚̊
˙

Model: MODEL 1 OUTPUT
Dependent Variable:

Analysis of Variance

Sum of Mean
Source DF Squares Square F value Prob > F
Model 2 1032.87506 516.43753 42.828 0.0001
Error 17 204.99494 12.05853
C Total 19 1237.87000

Root MSE 3.47254 R-square 0.8344

Deep Mean 76.55000 Adj R-sq 0.8149
C.V. 4.53630

Parameter Estimates

Parameter Standard T for H0:
Variable DF Estimate Error Parameter = 0 Prob > |T|
INTERCEP 1 30.966566 7.88220844 3.929 0.0011
z1 1 2.634400 0.78559872 3.353 0.0038
z2 1 0.045184 0.28518271 0.158 0.8760
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and assessed value. We note that a 95% confidence interval for [see (7-14)] is 
given by

or

Since the confidence interval includes the variable might be dropped
from the regression model and the analysis repeated with the single predictor vari-
able Given dwelling size, assessed value seems to add little to the prediction of
selling price. �

Likelihood Ratio Tests for the Regression Parameters

Part of regression analysis is concerned with assessing the effects of particular pre-
dictor variables on the response variable. One null hypothesis of interest states that
certain of the ’s do not influence the response Y. These predictors will be labeled

The statement that do not influence Y translates
into the statistical hypothesis

(7-12)

where 
Setting

we can express the general linear model as

Under the null hypothesis The likelihood ratio test
of is based on the

(7-13)

where 

Result 7.6. Let Z have full rank and be distributed as The
likelihood ratio test of is equivalent to a test of based on the 
extra sum of squares in (7-13) and In
particular, the likelihood ratio test rejects if

where is the upper th percentile of an F-distribution with 
and d.f.n - r - 1

r - q1100a2Fr - q, n - r - 11a2

1SSres1Z12 - SSres1Z22>1r - q2
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,

B122
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= 7bq + 1 , bq + 2 , Á , br8.H0  : bq + 1 = bq + 2 =
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= br = 0 or H0  : B122 = 0

zq + 1 , zq + 2 , Á , zrzq + 1 , zq + 2 , Á , zr .
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z2b2 = 0,
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Proof. Given the data and the normal assumption, the likelihood associated with
the parameters and is

with the maximum occurring at and 
Under the restriction of the null hypothesis, and

where the maximum occurs at = Moreover,

Rejecting for small values of the likelihood ratio

is equivalent to rejecting for large values of or its scaled version,

The preceding F-ratio has an F-distribution with and d.f. (See [22]
or Result 7.11 with ) �

Comment. The likelihood ratio test is implemented as follows.To test whether
all coefficients in a subset are zero, fit the model with and without the terms corre-
sponding to these coefficients. The improvement in the residual sum of squares (the
extra sum of squares) is compared to the residual sum of squares for the full model
via the F-ratio. The same procedure applies even in analysis of variance situations
where Z is not of full rank.4

More generally, it is possible to formulate null hypotheses concerning lin-
ear combinations of of the form Let the matrix
C have full rank, let and consider

This null hypothesis reduces to the previous choice when C = S0 I
1r-q2*1r-q2

T .RQ

H0  : CB = 0

A0 = 0,
1r - q2 * 1r + 12H0  : CB = A0 .B

r - q

m = 1.
n - r - 1r - q

n1sn 1
2

- sn 22>1r - q2

nsn 2>1n - r - 12
=
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s2 = F

1sn 1
2
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4In situations where Z is not of full rank, rank replaces and rank replaces in 
Result 7.6.

q + 11Z12r + 11Z2
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Chapter 7 Multivariate Linear Regression Models

Under the full model, is distributed as We reject
at level if 0 does not lie in the confidence ellipsoid for

Equivalently, we reject if

(7-14)

where and is the upper 
th percentile of an F-distribution with and d.f. The test in

(7-14) is the likelihood ratio test, and the numerator in the F-ratio is the extra residual
sum of squares incurred by fitting the model, subject to the restriction that 
(See [23]).

The next example illustrates how unbalanced experimental designs are easily
handled by the general theory just described.

Example 7.5 (Testing the importance of additional predictors using the extra sum-of-
squares approach) Male and female patrons rated the service in three establish-
ments (locations) of a large restaurant chain. The service ratings were converted
into an index. Table 7.2 contains the data for customers. Each data point in
the table is categorized according to location (1, 2, or 3) and gender ( and

). This categorization has the format of a two-way table with unequal
numbers of observations per cell. For instance, the combination of location 1 and
male has 5 responses, while the combination of location 2 and female has 2 respons-
es. Introducing three dummy variables to account for location and two dummy vari-
ables to account for gender, we can develop a regression model linking the service
index Y to location, gender, and their “interaction” using the design matrix

female = 1
male = 0

n = 18

CB = 0.

n - r - 1r - q1100a2
Fr - q, n - r - 11a2s2

= 1y - ZBn 2œ1y - ZBn 2>1n - r - 12

1CBn 2œ1C1Z¿  Z2-1C¿2
-1
1CBn 2

s2 7 1r - q2Fr - q, n - r - 11a2

H0  : CB = 0CB.
10011 - a2%aH0  : CB = 0
Nr - q1CB, s2

 C 1Z¿  Z2-1
 C¿2.CBn

Table 7.2 Restaurant-Service Data

Location Gender Service 

1 0 15.2
1 0 21.2
1 0 27.3
1 0 21.2
1 0 21.2
1 1 36.4
1 1 92.4
2 0 27.3
2 0 15.2
2 0 9.1
2 0 18.2
2 0 50.0
2 1 44.0
2 1 63.6
3 0 15.2
3 0 30.3
3 1 36.4
3 1 40.9

1Y2
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Inferences About the Regression Model

constant location gender interaction

Z =

The coefficient vector can be set out as

where the ’s represent the effects of the locations on the determination of
service, the ’s represent the effects of gender on the service index, and the ’s
represent the location-gender interaction effects.

The design matrix Z is not of full rank. (For instance, column 1 equals the sum
of columns 2–4 or columns 5–6.) In fact, rank

For the complete model, results from a computer program give

and 
The model without the interaction terms has the design matrix consisting of

the first six columns of Z. We find that

with = To test = = =

(no location–gender interaction), we compute

 =

13419.1 - 2977.42>2

2977.4>12
= .89

 F =

1SSres1Z12 - SSres1Z22>16 - 42
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g3 2 = 0
g3 1g2 1 = g2 2H0 : g1 1 = g1 218 - 4 = 14.n - rank1Z12

SSres1Z12 = 3419.1

Z1

n - rank1Z2 = 18 - 6 = 12.

SSres1Z2 = 2977.4

1Z2 = 6.
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Chapter 7 Multivariate Linear Regression Models

The F-ratio may be compared with an appropriate percentage point of an
F-distribution with 2 and 12 d.f. This F-ratio is not significant for any reasonable sig-
nificance level Consequently, we conclude that the service index does not depend
upon any location–gender interaction, and these terms can be dropped from the
model.

Using the extra sum-of-squares approach, we may verify that there is no differ-
ence between locations (no location effect), but that gender is significant; that is,
males and females do not give the same ratings to service.

In analysis-of-variance situations where the cell counts are unequal, the varia-
tion in the response attributable to different predictor variables and their interac-
tions cannot usually be separated into independent amounts. To evaluate the
relative influences of the predictors on the response in this case, it is necessary to fit
the model with and without the terms in question and compute the appropriate
F-test statistics. �

7.5 Inferences from the Estimated Regression Function
Once an investigator is satisfied with the fitted regression model, it can be used to
solve two prediction problems. Let = be selected values for the
predictor variables. Then and can be used (1) to estimate the regression func-
tion at and (2) to estimate the value of the response Y
at

Estimating the Regression Function at 

Let denote the value of the response when the predictor variables have values 
= According to the model in (7-3), the expected value of is

(7-15)

Its least squares estimate is 

Result 7.7. For the linear regression model in (7-3), is the unbiased linear
estimator of with minimum variance, = If the
errors are normally distributed, then a confidence interval for

= is provided by

where is the upper percentile of a t-distribution with
d.f.

Proof. For a fixed is just a linear combination of the ’s, so Result 
7.3 applies. Also, = = since =

by Result 7.2. Under the further assumption that is normally distrib-
uted, Result 7.4 asserts that is independently of whichs2>s2 ,Nr + 11B, s21Z¿  Z2-1

2Bn
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b  31zœ

01Z¿  Z2-1z02 s
2

zœ

0 BE1Y0 | z02
10011 - a2%E

zœ

01Z¿  Z2-1
 z0 s2 .Var 1zœ

0 Bn 2E1Y0 | z02

zœ

0 Bn

zœ

0 Bn .

E1Y0 | z02 = b0 + b1 z0 1 +
Á

+ br z0 r = zœ

0 B

Y071, z0 1 , Á , z0 r8.z0
œ

Y0

z0

z0 .
z0b0 + b1 z0 1 +

Á
+ br  z0 r

Bnz0

71, z0 1 , Á , z0 r8z0
œ

a.

378



Inferences from the Estimated Regression Function

is distributed as Consequently, the linear combination is
and

is distributed as The confidence interval follows. �

Forecasting a New Observation at 

Prediction of a new observation, such as at = is more uncertain
than estimating the expected value of According to the regression model of (7-3),

or

where is distributed as and is independent of and, hence, of and 
The errors influence the estimators and through the responses Y, but does not.

Result 7.8. Given the linear regression model of (7-3), a new observation has
the unbiased predictor

The variance of the forecast error is

When the errors have a normal distribution, a prediction interval for
is given by

where is the upper percentile of a t-distribution with
degrees of freedom.

Proof. We forecast by which estimates By Result 7.7, has

= and = The forecast error is then 

= = Thus, = +

so the predictor is unbiased. Since and are independent,

= = =

If it is further assumed that has a normal distribution, then is 

normally distributed, and so is the linear combination Consequently,

is distributed as Dividing this ratio by 

which is distributed as we obtain

which is distributed as The prediction interval follows immediately. �tn - r - 1 .
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Chapter 7 Multivariate Linear Regression Models

The prediction interval for is wider than the confidence interval for estimating
the value of the regression function = The additional uncertainty in
forecasting which is represented by the extra term in the expression

comes from the presence of the unknown error term 

Example 7.6 (Interval estimates for a mean response and a future response) Companies
considering the purchase of a computer must first assess their future needs in order
to determine the proper equipment. A computer scientist collected data from seven
similar company sites so that a forecast equation of computer-hardware requirements
for inventory management could be developed.The data are given in Table 7.3 for

Construct a 95% confidence interval for the mean CPU time, =

at = Also, find a 95% prediction interval for a
new facility’s CPU requirement corresponding to the same 

A computer program provides the estimated regression function

and Consequently,

and = = We have so the 95%
confidence interval for the mean CPU time at is

or 1150.00, 153.942.

zœ

0 Bn ; t41.0252s3zœ

01Z¿  Z2-1
 z0 = 151.97 ; 2.7761.712

z0

t41.0252 = 2.776,.71.1.2041.589282s3zœ

01Z¿  Z2-1
 z0

zœ

0 Bn = 8.42 + 1.0811302 + .4217.52 = 151.97

s = 1.204.

 1Z¿  Z2-1
= C 8.17969   

- .06411 .00052  

.08831 - .00107 .01440
S

 yn = 8.42 + 1.08z1 + .42z2

z0 .
71, 130, 7.58.z0

œb0 + b1 z0 1 + b2 z0 2

E1Y0 ƒ z02

 Y = CPU 1central processing unit2 time 1in hours2

 z2 = add-delete item count 1in thousands2

 z1 = customer orders 1in thousands2

e0 .s211 + zœ

01Z¿  Z2-1
 z02,

s2Y0 ,
zœ

0 B.E1Y0 
ƒ

 z02
Y0

Table 7.3 Computer Data

Y
(Orders) (Add–delete items) (CPU time)

123.5 2.108 141.5
146.1 9.213 168.9
133.9 1.905 154.8
128.5 .815 146.5
151.5 1.061 172.8
136.2 8.603 160.1
92.0 1.125 108.5

Source: Data taken from H. P. Artis, Forecasting Computer Requirements: A
Forecaster’s Dilemma (Piscataway, NJ: Bell Laboratories, 1979).

z2z1
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Since = = a 95% prediction inter-
val for the CPU time at a new facility with conditions is

or �

7.6 Model Checking and Other Aspects of Regression

Does the Model Fit?
Assuming that the model is “correct,” we have used the estimated regression
function to make inferences. Of course, it is imperative to examine the adequacy of
the model before the estimated function becomes a permanent part of the decision-
making apparatus.

All the sample information on lack of fit is contained in the residuals

or

(7-16)

If the model is valid, each residual is an estimate of the error which is assumed to 
be a normal random variable with mean zero and variance Although the residuals

have expected value 0, their covariance matrix =

is not diagonal. Residuals have unequal variances and nonzero correlations. Fortu-
nately, the correlations are often small and the variances are nearly equal.

Because the residuals have covariance matrix the variances of the
can vary greatly if the diagonal elements of H, the leverages are substantially

different. Consequently, many statisticians prefer graphical diagnostics based on stu-
dentized residuals. Using the residual mean square as an estimate of we have

(7-17)

and the studentized residuals are

(7-18)

We expect the studentized residuals to look, approximately, like independent drawings
from an distribution. Some software packages go one step further and
studentize using the delete-one estimated variance which is the residual
mean square when the jth observation is dropped from the analysis.
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Chapter 7 Multivariate Linear Regression Models

Residuals should be plotted in various ways to detect possible anomalies. For
general diagnostic purposes, the following are useful graphs:

1. Plot the residuals against the predicted values = ±
Departures from the assumptions of the model are typically indicated by two
types of phenomena:

(a) A dependence of the residuals on the predicted value. This is illustrated in
Figure 7.2(a). The numerical calculations are incorrect, or a term has
been omitted from the model.

(b) The variance is not constant. The pattern of residuals may be funnel
shaped, as in Figure 7.2(b), so that there is large variability for large and
small variability for small If this is the case, the variance of the error is
not constant, and transformations or a weighted least squares approach (or
both) are required. (See Exercise 7.3.) In Figure 7.2(d), the residuals form a
horizontal band. This is ideal and indicates equal variances and no depen-
dence on 

2. Plot the residuals against a predictor variable, such as or products of predic-
tor variables, such as or A systematic pattern in these plots suggests the
need for more terms in the model. This situation is illustrated in Figure 7.2(c).

3. Q–Q plots and histograms. Do the errors appear to be normally distributed? To
answer this question, the residuals or can be examined using the techniques
discussed in Section 4.6. The Q–Q plots, histograms, and dot diagrams help to
detect the presence of unusual observations or severe departures from normal-
ity that may require special attention in the analysis. If n is large, minor depar-
tures from normality will not greatly affect inferences about B.

enj
…enj

z1 z2 .z1
2

z1 ,enj

yn .
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Á
+ bn r zj r .bn 0 + bn 1 zj 1ynjenj

(a)
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ŷ

ε̂

(c)
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ε̂

(d)

ŷ

ε̂

Figure 7.2 Residual plots.
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4. Plot the residuals versus time. The assumption of independence is crucial, but
hard to check. If the data are naturally chronological, a plot of the residuals ver-
sus time may reveal a systematic pattern. (A plot of the positions of the residu-
als in space may also reveal associations among the errors.) For instance,
residuals that increase over time indicate a strong positive dependence.A statis-
tical test of independence can be constructed from the first autocorrelation,

(7-19)

of residuals from adjacent periods. A popular test based on the statistic 

is called the Durbin–Watson test. (See [14]

for a description of this test and tables of critical values.)

Example 7.7 (Residual plots) Three residual plots for the computer data discussed
in Example 7.6 are shown in Figure 7.3. The sample size is really too small to
allow definitive judgments; however, it appears as if the regression assumptions are
tenable. �
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Figure 7.3 Residual plots for the computer data of Example 7.6.
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If several observations of the response are available for the same values of the
predictor variables, then a formal test for lack of fit can be carried out. (See [13] for
a discussion of the pure-error lack-of-fit test.)

Leverage and Influence
Although a residual analysis is useful in assessing the fit of a model, departures from
the regression model are often hidden by the fitting process. For example, there may
be “outliers” in either the response or explanatory variables that can have a consid-
erable effect on the analysis yet are not easily detected from an examination of
residual plots. In fact, these outliers may determine the fit.

The leverage the diagonal element of can be interpret-
ed in two related ways. First, the leverage is associated with the jth data point mea-
sures, in the space of the explanatory variables, how far the jth observation is from the
other observations. For simple linear regression with one explanatory variable z,

The average leverage is (See Exercise 7.8.)
Second, the leverage , is a measure of pull that a single case exerts on the fit.

The vector of predicted values is

where the jth row expresses the fitted value in terms of the observations as

Provided that all other values are held fixed

=

If the leverage is large relative to the other , then will be a major contributor to
the predicted value .

Observations that significantly affect inferences drawn from the data are said to
be influential. Methods for assessing influence are typically based on the change in
the vector of parameter estimates, when observations are deleted. Plots based
upon leverage and influence statistics and their use in diagnostic checking of regres-
sion models are described in [3], [5], and [10]. These references are recommended
for anyone involved in an analysis of regression models.

If, after the diagnostic checks, no serious violations of the assumptions are de-
tected, we can make inferences about and the future Y values with some assur-
ance that we will not be misled.

Additional Problems in Linear Regression
We shall briefly discuss several important aspects of regression that deserve and receive
extensive treatments in texts devoted to regression analysis. (See [10], [11], [13],and [23].)

B

Bn ,

yNj

yjhjk

hj j 1change in yj21change in ynj2

y

yNj = hjjyj + a
k Z j

hjk yk

yNj

yN = ZBN = Z(Z¿Z)-1Zy = Hy

hjj

1r + 12>n.

hj j =

1
n

+

1zj - z–22

a
n

j = 1
 1zj - z–22

n - 1

H = Z(Z¿Z)-1Z,(j, j)hj j

384



Model Checking and Other Aspects of Regression

Selecting predictor variables from a large set. In practice, it is often difficult to for-
mulate an appropriate regression function immediately. Which predictor variables
should be included?  What form should the regression function take?

When the list of possible predictor variables is very large, not all of the variables
can be included in the regression function. Techniques and computer programs de-
signed to select the “best” subset of predictors are now readily available. The good
ones try all subsets: alone, alone, and The best choice is decided by
examining some criterion quantity like [See (7-9).] However, always increases
with the inclusion of additional predictor variables. Although this problem can be
circumvented by using the adjusted = a
better statistic for selecting variables seems to be Mallow’s statistic (see [12]),

A plot of the pairs one for each subset of predictors, will indicate models
that forecast the observed responses well. Good models typically have coor-
dinates near the line. In Figure 7.4, we have circled the point corresponding to
the “best” subset of predictor variables.

If the list of predictor variables is very long, cost considerations limit the number
of models that can be examined. Another approach, called stepwise regression (see
[13]), attempts to select important predictors without considering all the possibilities.

45 �
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The procedure can be described by listing the basic steps (algorithm) involved in the
computations:

Step 1. All possible simple linear regressions are considered. The predictor variable
that explains the largest significant proportion of the variation in Y (the variable
that has the largest correlation with the response) is the first variable to enter the re-
gression function.

Step 2. The next variable to enter is the one (out of those not yet included) that
makes the largest significant contribution to the regression sum of squares. The sig-
nificance of the contribution is determined by an F-test. (See Result 7.6.) The value
of the F-statistic that must be exceeded before the contribution of a variable is
deemed significant is often called the F to enter.

Step 3. Once an additional variable has been included in the equation, the individ-
ual contributions to the regression sum of squares of the other variables already in
the equation are checked for significance using F-tests. If the F-statistic is less than
the one (called the F to remove) corresponding to a prescribed significance level, the
variable is deleted from the regression function.

Step 4. Steps 2 and 3 are repeated until all possible additions are nonsignificant and
all possible deletions are significant. At this point the selection stops.

Because of the step-by-step procedure, there is no guarantee that this approach
will select, for example, the best three variables for prediction.A second drawback is
that the (automatic) selection methods are not capable of indicating when transfor-
mations of variables are useful.

Another popular criterion for selecting an appropriate model, called an infor-
mation criterion, also balances the size of the residual sum of squares with the num-
ber of parameters in the model.

Akaike’s information criterion (AIC) is

It is desirable that residual sum of squares be small, but the second term penal-
izes for too many parameters. Overall, we want to select models from those having
the smaller values of AIC.

Colinearity. If Z is not of full rank, some linear combination, such as Za, must equal
0. In this situation, the columns are said to be colinear. This implies that does
not have an inverse. For most regression analyses, it is unlikely that exactly.
Yet, if linear combinations of the columns of Z exist that are nearly 0, the calculation
of is numerically unstable. Typically, the diagonal entries of will 
be large. This yields large estimated variances for the ’s and it is then difficult 
to detect the “significant” regression coefficients The problems caused by colin-
earity can be overcome somewhat by (1) deleting one of a pair of predictor variables
that are strongly correlated or (2) relating the response Y to the principal compo-
nents of the predictor variables—that is, the rows of Z are treated as a sample, and
the first few principal components are calculated as is subsequently described in
Section 8.3. The response Y is then regressed on these new predictor variables.

zœ

j

bn i .
bn i

1Z¿  Z2-1
1Z¿  Z2-1

Za = 0
Z¿  Z

AIC = n ln P residual sum of squares for subset model
with p parameters, including an intercept

n Q + 2p
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Bias caused by a misspecified model. Suppose some important predictor variables
are omitted from the proposed regression model. That is, suppose the true model
has with rank and

(7-20)

where and However, the investigator unknowingly fits 
a model using only the first q predictors by minimizing the error sum of 
squares The least squares estimator of is =

Then, unlike the situation when the model is correct,

(7-21)

That is, is a biased estimator of unless the columns of are perpendicular
to those of (that is, ). If important variables are missing from the
model, the least squares estimates may be misleading.

7.7 Multivariate Multiple Regression
In this section, we consider the problem of modeling the relationship between 
m responses and a single set of predictor variables Each
response is assumed to follow its own regression model, so that

(7-22)

The error term = has and Thus, the error
terms associated with different responses may be correlated.

To establish notation conforming to the classical linear regression model, let
denote the values of the predictor variables for the jth trial,

let = be the responses, and let = be the
errors. In matrix notation, the design matrix

Z
1n *1r + 122

= Dz1 0 z1 1
Á z1 r

z2 0 z2 1
Á z2 r

o o ∞ o

zn 0 zn 1
Á zn r

T
7ej 1 , ej 2 , Á , ej m8Ej

œ7Yj 1 , Yj 2 , Á , Yj m8Yj
œ

7zj 0 , zj 1 , Á , zj r8
Var1E2 = �.E1E2 = 07e1 , e2 , Á , em8E¿

 Ym = b0 m + b1 m  z1 +
Á

+ br m  zr + em

oo

 Y2 = b0 2  + b1 2  z1  +
Á

+ br 2  zr  + e2

 Y1 = b0 1  + b1 1  z1  +
Á

+ br 1  zr  + e1

z1 , z2 , Á , zr .Y1 , Y2 , Á , Ym

Bn 112

Zœ

1 Z2 = 0Z2

Z1B112Bn 112

 = B112 + 1Zœ

1 Z12
-1

 Zœ

1 Z2 B122

 E1Bn 1122 = 1Zœ

1 Z12
-1

 Zœ

1 E1Y2 = 1Zœ

1 Z12
-1

 Zœ

11Z1 B112 + Z2 B122 + E1E22

1Zœ

1 Z12
-1

 Zœ

1 Y.
Bn 112B1121Y - Z1 B1122¿1Y - Z1 B1122.

Var1E2 = s2
 I.E1E2 = 0

 = Z1 B112 + Z2 B122 + E

 Y
1n * 12

= S Z  

 1
1n *1q + 122

 Z  

 2
1n *1r - q22

T   D B
 

 

112
11q + 12* 12

B
 

 

122
11r - q2* 12

T + E
1n * 12

r + 1Z = 7Z1 � Z28
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is the same as that for the single-response regression model. [See (7-3).] The other
matrix quantities have multivariate counterparts. Set

 = DEœ

1

Eœ

2

o

Eœ

n

T
 E
1n * m2

= De1 1 e1 2
Á e1 m

e2 1 e2 2
Á e2 m

o o ∞ o

en 1 en 2
Á en m

T = 7E112�E122� Á �E1m28
 B
11r + 12* m2

= Db0 1 b0 2
Á b0 m

b1 1 b1 2
Á b1 m

o o ∞ o

br 1 br 2
Á br m

T = 7B112�B122� Á �B1m28
 Y
1n * m2

= DY1 1 Y1 2
Á Y1 m

Y2 1 Y2 2
Á Y2 m

o o ∞ o

Yn 1 Yn 2
Á Yn m

T = 7Y112� Y122� Á � Y1m28

The multivariate linear regression model is

with (7-23)

The m observations on the jth trial have covariance matrix but ob-
servations from different trials are uncorrelated. Here and are unknown
parameters; the design matrix Z has jth row 7zj 0 , zj 1 , Á , zj r8. si kB

� = 5si k6,

E1E1i22 = 0 and Cov 1E1i2 , E1k22 = si k I  i, k = 1, 2, Á , m

Y
1n * m2

= Z
1n *1r + 122

  B
11r + 12* m2

+ E
1n * m2

Simply stated, the ith response follows the linear regression model

(7-24)

with = However, the errors for different responses on the same trial
can be correlated.

Given the outcomes and the values of the predictor variables Z with full
column rank, we determine the least squares estimates exclusively from the
observations on the ith response. In conformity with the single-response
solution, we take

(7-25)Bn 1i2 = 1Z¿  Z2-1
 Z¿  Y1i2

Y1i2
Bn 1i2

Y

si i  I.Cov 1E1i22

Y1i2 = ZB1i2 + E1i2 , i = 1, 2, Á , m

Y1i2
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Collecting these univariate least squares estimates, we obtain

or

(7-26)

For any choice of parameters = the matrix of errors
is The error sum of squares and cross products matrix is

(7-27)

The selection minimizes the ith diagonal sum of squares

Consequently, is minimized
by the choice Also, the generalized variance is min-
imized by the least squares estimates (See Exercise 7.11 for an additional general-
ized sum of squares property.)

Using the least squares estimates we can form the matrices of

Predicted values:

Residuals: (7-28)

The orthogonality conditions among the residuals, predicted values, and columns of Z,
which hold in classical linear regression, hold in multivariate multiple regression.
They follow from = Specifically,

(7-29)

so the residuals are perpendicular to the columns of Z. Also,

(7-30)

confirming that the predicted values are perpendicular to all residual vectors

Because

or

= ±

= ±

(7-31)

Presidual 1error2 sum
of squares and
cross products Qa

predicted sum of squares
and cross products

ba
total sum of squares
and cross products

b

En ¿  EnYN ¿
 YNY¿

 Y

Y¿
 Y = 1YN + En2œ1YN + En2 = YN ¿

 YN + En ¿  En + 0 + 0¿

Y = YN + En ,En1k2 .

YN 1i2

YN ¿  En = Bn ¿  Z¿7I - Z 1Z¿  Z2-1
 Z¿8 Y = 0

En1i2

Z¿  En = Z¿7I - Z 1Z¿  Z2-1
 Z¿8 Y = 0

Z¿ - Z¿ = 0.Z¿7I - Z 1Z¿  Z2-1
 Z¿8

 En = Y - YN = 7I - Z 1Z¿  Z2-1
 Z¿8 Y YN = ZBn = Z 1Z¿  Z2-1

 Z¿  Y

Bn ,

Bn .
ƒ 1Y - ZB2¿1Y - ZB2 ƒB = Bn .

tr 71Y - ZB2¿1Y - ZB281Y1i2 - Zb1i22¿1Y1i2 - Zb1i22.

b1i2 = Bn 1i2

= C 1Y112 - Zb1122¿1Y112 - Zb1122 Á 1Y112 - Zb1122¿1Y1m2 - Zb1m22
o  o

1Y1m2 - Zb1m22¿1Y112 - Zb1122 Á 1Y1m2 - Zb1m22¿1Y1m2 - Zb1m22
S

1Y - ZB2¿1Y - ZB2

Y - ZB.
7b112� b122� Á � b1m28,B

Bn = 1Z¿  Z2-1
 Z¿  Y

Bn = 7Bn 112�Bn 122� Á �Bn 1m28 = 1Z¿  Z2-1
 Z¿7Y112� Y122� Á � Y1m28
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The residual sum of squares and cross products can also be written as

(7-32)

Example 7.8 (Fitting a multivariate straight-line regression model) To illustrate the

calculations of and we fit a straight-line regression model (see Panel 7.2),

to two responses and using the data in Example 7.3. These data, augmented by
observations on an additional response, are as follows:

Y2Y1

 Yj 2 = b0 2 + b1 2  zj 1 + ej 2 , j = 1, 2, Á , 5

 Yj 1 = b0 1 + b1 1  zj 1 + ej 1

En ,Bn , YN ,

En ¿  En = Y¿
 Y - YN ¿

 YN = Y¿
 Y - Bn ¿  Z¿  ZBn

title ‘Multivariate Regression Analysis’;
data mra;
infile ‘Example 7-8 data;
input y1 y2 z1; PROGRAM COMMANDS
proc glm data = mra;
model y1 y2 = z1/ss3;
manova h = z1/printe;

(continues on next page)

PANEL 7.2 SAS ANALYSIS FOR EXAMPLE 7.8 USING PROC. GLM.

¯̊
˚̊

˘̊
˚̊

˙

General Linear Models Procedure

Dependent Variable: Y1 OUTPUT

Source DF Sum of Squares Mean Square F Value Pr > F
Model 1 40.00000000 40.00000000 20.00 0.0208
Error 3 6.00000000 2.00000000
Corrected Total 4 46.00000000

R-Square C.V. Root MSE Y1 Mean
0.869565 28.28427 1.414214 5.00000000

0 1 2 3 4
1 4 3 8 9

2 3 2-1-1y2

y1

z1

The design matrix Z remains unchanged from the single-response problem.We find that

Z¿ = B1 1 1 1 1
0 1 2 3 4

R  1Z¿  Z2-1
= B .6 - .2

- .2 .1
R
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Source DF Type III SS Mean Square F Value Pr > F
Z1 1 40.00000000 40.00000000 20.00 0.0208

T for H0: Std Error of
Parameter Estimate Parameter = 0 Pr > ITI Estimate
INTERCEPT 1.000000000 0.91 0.4286 1.09544512
Z1 2.000000000 4.47 0.0208 0.44721360

Dependent Variable: Y2

Source DF Sum of Squares Mean Square F Value Pr > F
Model 1 10.00000000 10.00000000 7.50 0.0714
Error 3 4.00000000 1.33333333
Corrected Total 4 14.00000000

R-Square C.V. Root MSE Y2 Mean
0.714286 115.4701 1.154701 1.00000000

Source DF Type III SS Mean Square F Value Pr > F
Z1 1 10.00000000 10.00000000 7.50 0.0714

T for H0: Std Error of
Parameter Estimate Parameter = 0 Pr > ITI Estimate
INTERCEPT –1.000000000 –1.12 0.3450 0.89442719
Z1 1.000000000 2.74 0.0714 0.36514837

E = Error SS & CP Matrix

Y1 Y2

Y1 6 –2
Y2 –2 4

Manova Test Criteria and Exact F Statistics for 
the Hypothesis of no Overall Z1 Effect

H = Type III SS&CP Matrix for Z1 E = Error SS&CP Matrix
S = 1 M = 0 N = 0

Statistic Value F Num DF Den DF Pr > F
Wilks’ Lambda 0.06250000 15.0000 2 2 0.0625
Pillai’s Trace 0.93750000 15.0000 2 2 0.0625
Hotelling-Lawley Trace 15.00000000 15.0000 2 2 0.0625
Roy’s Greatest Root 15.00000000 15.0000 2 2 0.0625

PANEL 7.2 (continued) 
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and

so

From Example 7.3,

Hence,

The fitted values are generated from and Collectively,

and

Note that

Since

 YN ¿
 YN = B165 45

45 15
R and En ¿  En = B 6 -2

-2 4
R

 Y¿
 Y = B 1 4 3 8 9

-1 -1 2 3 2
R   E1 -1

4 -1
3 2
8 3
9 2

U = B171 43
43 19

R

En ¿  YN = B0 1 -2 1 0
0 -1 1 1 -1

R   E1 -1
3 0
5 1
7 2
9 3

U = B0 0
0 0

R
En = Y - YN = B0 1 -2 1 0

0 -1 1 1 -1
R œ

YN = ZBn = E1 0
1 1
1 2
1 3
1 4

U   B1 -1
2 1

R = E1 -1
3 0
5 1
7 2
9 3

U
yn2 = -1 + z2 .yn1 = 1 + 2z1

Bn = 7Bn 112�Bn 1228 = B1 -1
2 1

R = 1Z¿  Z2-1
 Z¿7y112� y1228

Bn 112 = 1Z¿  Z2-1
 Z¿  y112 = B1

2
R

Bn 122 = 1Z¿  Z2-1
 Z¿  y122 = B .6 - .2

- .2 .1
R   B 5

20
R = B -1

1
R

Z¿  y122 = B1 1 1 1 1
0 1 2 3 4

R   E -1
-1

2
3
2

U = B 5
20
R
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the sum of squares and cross-products decomposition

is easily verified. �

Result 7.9. For the least squares estimator = deter-
mined under the multivariate multiple regression model (7-23) with full 
rank =

and

The residuals = satisfy and
= so

Also, and are uncorrelated.

Proof. The ith response follows the multiple regression model

Also, from (7-24),

(7-33)

and

so = and =

Next,

Using Result 4.9, with U any random vector and A a fixed matrix, we have 
that = = Consequently, from the proof
of Result 7.1 and using Result 2A.12

 = si k tr 71I - Z 1Z¿  Z2-1
 Z¿28 = si k1n - r - 12

 E1En œ

1i2 En1k22 = E1Eœ

1i21I - Z 1Z¿  Z2-1
 Z¿2 E1k22 = tr 71I - Z 1Z¿  Z2-1

 Z¿2 si k I8
tr 7AE1UU¿28.E7tr 1AUU¿28E7U¿  AU8

 = 1Z¿  Z2-1
 Z¿  E1E1i2 Eœ

1k22 Z 1Z¿  Z2-1
= si k1Z¿  Z2-1

 Cov 1Bn 1i2 , Bn 1k22 = E1Bn 1i2 - B1i22 1B
n

1k2 - B1k22
œ

0.E1En1i22B1i2E1Bn 1i22

En1i2 = Y1i2 - YN 1i2 = 7I - Z1Z¿  Z2-1
 Z¿8 Y1i2 = 7I - Z1Z¿  Z2-1

 Z¿8 E1i2
Bn 1i2 - B1i2 = 1Z¿  Z2-1

 Z¿  Y1i2 - B1i2 = 1Z¿  Z2-1
 Z¿  E1i2

Y1i2 = ZB1i2 + E1i2 , E1E1i22 = 0, and E1E1i2 Eœ

1i22 = si i I

BnEn

E1En2 = 0 and E a
1

n - r - 1
  En ¿  En b = �

1n - r - 12 si k ,E1En œ

1i2 En1k22

E1En1i22 = 0Y - ZBnEn = 7En112�En122� Á �En1m28
Cov 1Bn 1i2 , Bn 1k22 = si k 1Z¿  Z2-1,  i, k = 1, 2, Á , m

E1Bn 1i22 = B1i2 or E1Bn 2 = B

r + 1 6 n,1Z2

7Bn 112�Bn 122� Á �Bn 1m28Bn

Y¿
 Y = YN ¿

 YN + En ¿  En
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Dividing each entry of by we obtain the unbiased estimator
of Finally,

so each element of is uncorrelated with each element of �

The mean vectors and covariance matrices determined in Result 7.9 enable us
to obtain the sampling properties of the least squares predictors.

We first consider the problem of estimating the mean vector when the predictor
variables have the values = The mean of the ith response 
variable is and this is estimated by the ith component of the fitted
regression relationship. Collectively,

(7-34)

is an unbiased estimator since = = for each compo-

nent.From the covariance matrix for and the estimation errors –

have covariances

(7-35)

The related problem is that of forecasting a new observation vector =

at According to the regression model, = where
the “new” error = is independent of the errors and satisfies

and = The forecast error for the ith component of is

so = indicating that is an
unbiased predictor of The forecast errors have covariances

(7-36)

Note that since = is independent 
of A similar result holds for 

Maximum likelihood estimators and their distributions can be obtained when
the errors have a normal distribution.E

E1e0 i1B
n

1k2 - B1k22¿2.E0 .
1Z¿  Z2-1

 Z¿  E1i2 + B1i2Bn 1i2E11Bn 1i2 - B1i22 e0 k2 = 0

 = si k11 + zœ

01Z¿  Z2-1
 z02

 - zœ

0 E11Bn 1i2 - B1i22 e0 k2 - E1e0 i1B
n

1k2 - B1k22
œ

2z0

 = E1e0 i e0 k2 + zœ

0 E1Bn 1i2 - B1i22 1B
n

1k2 - B1k22
œ

 z0

 = E1e0 i - zœ

01B
n

1i2 - B1i222 1e0 k - zœ

01B
n

1k2 - B1k222

E1Y0 i - zœ

0 Bn 1i22 1Y0 k - zœ

0 Bn 1k22

Y0 i .
zœ

0 Bn 1i2E1e0 i2 - zœ

0 E1Bn 1i2 - B1i22 = 0,E1Y0 i - zœ

0 Bn 1i22

 = e0 i - zœ

01B
n

1i2 - B1i22

 Y0 i - zœ

0 Bn 1i2 = Y0 i - zœ

0 B1i2 + zœ

0 B1i2 - zœ

0 Bn 1i2

Y0si k .E1e0 i e0 k2E1e0 i2 = 0
E7e0 1 , e0 2 , Á , e0 m8E0

œ

zœ

0 B1i2 + e0 iY0 iz0 .7Y0 1 , Y0 2 , Á , Y0 m8 Y0
œ

 = si k  zœ

01Z¿  Z2-1
 z0

 E7zœ

01B1i2 - Bn 1i22 1B1k2 - Bn 1k22
œ

 z08 = zœ

01E1B1i2 - Bn 1i22 1B1k2 - Bn 1k22
œ

2z0

zœ

0 Bn 1i2zœ

0 B1i2Bn 1k2 ,Bn 1i2

zœ

0 B1i2zœ

0  E1Bn 1i22E1zœ

0 Bn 1i22zœ

0 B

zœ

0 Bn = 7zœ

0 Bn 112� zœ

0 Bn 122� Á � zœ

0 Bn 1m28
zœ

0 Bn 1i2 ,zœ

0 B1i2 ,
71, z0 1 , Á , z0 r8.z0

œ

En .Bn
 = si k11Z¿  Z2-1

 Z¿ - 1Z¿  Z2-1
 Z¿2 = 0

 = 1Z¿  Z2-1
 Z¿  si k I 1I - Z 1Z¿  Z2-1

 Z¿2

 = 1Z¿  Z2-1
 Z¿  E1E1i2 Eœ

1k22 1I - Z 1Z¿  Z2-1
 Z¿2

 Cov 1Bn 1i2 , En1k22 = E71Z¿  Z2-1
 Z¿  E1i2 Eœ

1k21I - Z 1Z¿  Z2-1
 Z¿28�.

n - r - 1,En ¿  EnEn œ

1i2 En1k2
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Result 7.10. Let the multivariate multiple regression model in (7-23) hold with full
rank and let the errors have a normal distribu-
tion. Then

is the maximum likelihood estimator of and has a normal distribution with 

and = Also, is independent of the max-
imum likelihood estimator of the positive definite given by

and

The maximized likelihood .

Proof. (See website: www.prenhall.com/statistics) �

Result 7.10 provides additional support for using least squares estimates.

When the errors are normally distributed, and are the maximum likeli-
hood estimators of and respectively. Therefore, for large samples, they have
nearly the smallest possible variances.

Comment. The multivariate multiple regression model poses no new computa-
tional problems. Least squares (maximum likelihood) estimates, =

are computed individually for each response variable. Note, however, that the model
requires that the same predictor variables be used for all responses.

Once a multivariate multiple regression model has been fit to the data, it should
be subjected to the diagnostic checks described in Section 7.6 for the single-response
model. The residual vectors can be examined for normality or 
outliers using the techniques in Section 4.6.

The remainder of this section is devoted to brief discussions of inference for the
normal theory multivariate multiple regression model. Extended accounts of these
procedures appear in [2] and [18].

Likelihood Ratio Tests for Regression Parameters
The multiresponse analog of (7-12), the hypothesis that the responses do not depend
on becomes

(7-37)

Setting we can write the general model as

E1Y2 = ZB = 7Z1 � Z28  CB112
B122

S = Z1 B112 + Z2 B122

Z = S Z  

 1
1n *1q + 122

 Z  

 2
1n *1r - q22

 

 T ,

H0  : B122 = 0 where B = D B  

 

112
11q + 12* m2

B
 

 

122
11r - q2* m2

T
zq + 1 , zq + 2 , Á , zr ,

7enj 1 , enj 2 , Á , enj m8
1Z¿  Z2-1

 Z¿  y1i2 ,Bn 1i2

�,B
n-1

 En ¿  EnBn

L (Mn , �N
 
) = (2p)-mn>2

ƒ   �N   ƒ
-n>2

 e-mn>2

n�N  is distributed as Wp, n - r - 11�2

�N =

1
n

 En ¿  En =

1
n

 1Y - ZBn 2œ 1Y - ZBn 2

�

Bnsi k1Z¿  Z2-1 .Cov 1Bn 1i2 , Bn 1k22E1Bn 2 = B

BnB

Bn = 1Z¿  Z2-1
 Z¿  Y

En Ú 1r + 12 + m,1Z2 = r + 1,
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Under and the likelihood ratio test of is based
on the quantities involved in the

where and 
From Result 7.10, the likelihood ratio, can be expressed in terms of generalized

variances:

(7-38)

Equivalently, Wilks’ lambda statistic

can be used.

Result 7.11. Let the multivariate multiple regression model of (7-23) hold with Z
of full rank and Let the errors be normally distributed.
Under is distributed as independently of 

which, in turn, is distributed as The likelihood ratio test of is equivalent
to rejecting for large values of

For n large,5 the modified statistic

has, to a close approximation, a chi-square distribution with d.f.

Proof. (See Supplement 7A.) �

If Z is not of full rank, but has rank then where
is the generalized inverse discussed in [22]. (See also Exercise 7.6.) The

distributional conclusions stated in Result 7.11 remain the same, provided that r is
replaced by and by rank However, not all hypotheses concerning 
can be tested due to the lack of uniqueness in the identification of caused by the
linear dependencies among the columns of Z. Nevertheless, the generalized inverse
allows all of the important MANOVA models to be analyzed as special cases of the
multivariate multiple regression model.

B
B1Z12.q + 1r1

1Z¿  Z2-
Bn = 1Z¿  Z2-  Z¿  Y,r1 + 1,

m1r - q2

- Bn - r - 1 -

1
2

 1m - r + q + 12R  ln ¢ ƒ �N ƒ

ƒ �N 1 ƒ

≤
-2 ln ¶ = -n ln ¢ ƒ �N ƒ

ƒ �N 1 ƒ

≤ = -n ln 
ƒ n�N ƒ

ƒ n�N + n1�N 1 - �N 2 ƒ

H0

H0Wp, r - q1�2.

n1�N 1 - �N 2Wp, n - r - 11�2n�NH0  : B122 = 0,
E1r + 12 + m … n.r + 1

¶
2>n

=

ƒ �N ƒ

ƒ �N 1 ƒ

¶ =

max
B112, �

 L1B112 , �2

max
B, �

 L1B, �2
=

L1Bn 112 , �N 12

L1Bn , �N 2
= ¢ ƒ �N ƒ

ƒ �N 1 ƒ

≤n>2

¶,
�N 1 = n-11Y - Z1 Bn 1122

œ

 1Y - Z1 Bn 1122.Bn 112 = 1Zœ

1 Z12
-1

 Zœ

1 Y

 = n1�N 1 - �N 2

 = 1Y - Z1 Bn 1122
œ

 1Y - Z1 Bn 1122 - 1Y - ZBn 2œ 1Y - ZBn 2

extra sum of squares and cross products

H0Y = Z1 B112 + EH0 : B122 = 0,

5Technically, both and should also be large to obtain a good chi-square approximation.n - mn - r
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Example 7.9 (Testing the importance of additional predictors with a multivariate
response) The service in three locations of a large restaurant chain was rated
according to two measures of quality by male and female patrons. The first service-
quality index was introduced in Example 7.5. Suppose we consider a regression model
that allows for the effects of location, gender, and the location–gender interaction on
both service-quality indices. The design matrix (see Example 7.5) remains the same
for the two-response situation. We shall illustrate the test of no location-gender inter-
action in either response using Result 7.11.A computer program provides

Let be the matrix of interaction parameters for the two responses. Although
the sample size is not large, we shall illustrate the calculations involved in
the test of given in Result 7.11. Setting we test by referring

to a chi-square percentage point with d.f. Since 
we do not reject at the 5% level. The interaction terms are not needed. �

Information criterion are also available to aid in the selection of a simple but
adequate multivariate multiple regresson model. For a model that includes d
predictor variables counting the intercept, let

Then, the multivariate multiple regression version of the Akaike’s information
criterion is

This criterion attempts to balance the generalized variance with the number of
parameters. Models with smaller AIC’s are preferable.

In the context of Example 7.9, under the null hypothesis of no interaction terms,
we have , response variables, and terms, so

More generally, we could consider a null hypothesis of the form =

where C is and is of full rank For the choices1r - q2.1r - q2 * 1r + 12
Ω0 ,H0  : CB

 = 18 * ln(20545.7) - 16 = 162.75

 AIC = n ln( ƒ � ƒ) - 2p * d = 18 ln a `    
1
18

 c
3419.15 1267.88
1267.88 2417.07

d   ` b - 2 * 2 * 4

d = 4p = 2n = 18

AIC = n ln( ƒ  �N d ƒ) - 2p * d

�N d =

1
n

 (residual sum of squares and cross products matrix)

H09.49,
=3.28 6 x4

21.052m1r1 - q12 = 2122 = 4

 = - B18 - 5 - 1 -

1
2

 12 - 5 + 3 + 12R  ln 1.76052 = 3.28

- Bn - r1 - 1 -

1
2

 1m - r1 + q1 + 12R  ln ¢ ƒ n�N ƒ

ƒ n�N + n1�N 1 - �N 2 ƒ

≤ H0a = .05,H0  : B122 = 0
n = 18

B122

 a
extra sum of squares
and cross products

b = n1�N 1 - �N 2 = B441.76 246.16
246.16 366.12

R
 a

residual sum of squares
and cross products

b = n�N = B2977.39 1021.72
1021.72 2050.95
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and this null hypothesis becomes 

the case considered earlier. It can be shown that the extra sum of squares and cross
products generated by the hypothesis is

Under the null hypothesis, the statistic is distributed as inde-
pendently of This distribution theory can be employed to develop a test of

similar to the test discussed in Result 7.11. (See, for example, [18].)

Other Multivariate Test Statistics

Tests other than the likelihood ratio test have been proposed for testing 
in the multivariate multiple regression model.

Popular computer-package programs routinely calculate four multivariate test
statistics. To connect with their output, we introduce some alternative notation. Let
E be the error, or residual, sum of squares and cross products matrix

that results from fitting the full model. The hypothesis, or extra, sum of
squares and cross-products matrix

The statistics can be defined in terms of E and H directly, or in terms of
the nonzero eigenvalues of where 
Equivalently, they are the roots of The definitions are

Roy’s test selects the coefficient vector a so that the univariate F-statistic based on a
has its maximum possible value. When several of the eigenvalues are moder-

ately large, Roy’s test will perform poorly relative to the other three. Simulation
studies suggest that its power will be best when there is only one large eigenvalue.

Charts and tables of critical values are available for Roy’s test. (See [21] and
[17].) Wilks’ lambda, Roy’s greatest root, and the Hotelling–Lawley trace test are
nearly equivalent for large sample sizes.

If there is a large discrepancy in the reported P-values for the four tests, the
eigenvalues and vectors may lead to an interpretation. In this text, we report Wilks’
lambda, which is the likelihood ratio test.

hia¿  Yj

 Roy’s greatest root =

h1

1 + h1

 Hotelling–Lawley trace = a
s

i = 1
 hi = tr 3HE-14

 Pillai’s trace = a
s

i = 1
 
hi

1 + hi
= tr 3H1H + E2-14

 Wilks’ lambda = q
s

i = 1
 

1
1 + hi

=

ƒ E ƒ

ƒ E + H ƒ

ƒ 1�N 1 - �N 2 - h�N ƒ = 0.
s = min 1p, r - q2.HE-1 ,h1 Ú h2 Ú Á Ú hs

H = n1�N 1 - �N 2

p * p

E = n�N

p * p

H0 : B122 = 0

H0  : CB = Ω0

�N .
Wr - q1�2n1�N 1 - �N 2

n1�N 1 - �N 2 = 1CBn - Ω02
œ
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H0

H0  : CB = B122 = 0,Ω0 = 0,C = S0 � I
1r - q2*1r - q2

T
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Predictions from Multivariate Multiple Regressions

Suppose the model with normal errors has been fit and checked for
any inadequacies. If the model is adequate, it can be employed for predictive purposes.

One problem is to predict the mean responses corresponding to fixed values 
of the predictor variables. Inferences about the mean responses can be made using
the distribution theory in Result 7.10. From this result, we determine that

and

The unknown value of the regression function at is So, from the discussion
of the -statistic in Section 5.2, we can write

(7-39)

and the confidence ellipsoid for is provided by the inequality

(7-40)

where is the upper th percentile of an F-distribution with m and
d.f.

The simultaneous confidence intervals for = are

(7-41)

where is the ith column of and is the ith diagonal element of 
The second prediction problem is concerned with forecasting new responses 

= at Here is independent of Now,

independently of so the prediction ellipsoid for becomes

(7-42)

The simultaneous prediction intervals for the individual responses are

(7-43)i = 1, 2, Á , m
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where and are the same quantities appearing in (7-41). Com-
paring (7-41) and (7-43), we see that the prediction intervals for the actual values of
the response variables are wider than the corresponding intervals for the expected
values. The extra width reflects the presence of the random error 

Example 7.10 (Constructing a confidence ellipse and a prediction ellipse for bivariate
responses) A second response variable was measured for the computer-requirement
problem discussed in Example 7.6. Measurements on the response disk
input/output capacity, corresponding to the and values in that example were

Obtain the 95% confidence ellipse for and the 95% prediction ellipse for 
= for a site with the configuration =

Computer calculations provide the fitted equation

with Thus, = From Example 7.6,

We find that

and

Since

and a 95% confidence ellipse for = is, from

(7-40), the set

with This ellipse is centered at Its orientation and
the lengths of the major and minor axes can be determined from the eigenvalues
and eigenvectors of

Comparing (7-40) and (7-42), we see that the only change required for the
calculation of the 95% prediction ellipse is to replace = .34725 withzœ

01Z¿  Z2-1
 z0

n�N .

1151.97, 349.172.F2, 31.052 = 9.55.

… 1.347252 c a
2142

3
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The Concept of Linear Regression

= 1.34725. Thus, the 95% prediction ellipse for = is
also centered at but is larger than the confidence ellipse. Both
ellipses are sketched in Figure 7.5.

It is the prediction ellipse that is relevant to the determination of computer 
requirements for a particular site with the given  �

7.8 The Concept of Linear Regression
The classical linear regression model is concerned with the association between a
single dependent variable Y and a collection of predictor variables The
regression model that we have considered treats Y as a random variable whose
mean depends upon fixed values of the ’s.This mean is assumed to be a linear func-
tion of the regression coefficients

The linear regression model also arises in a different setting. Suppose all the
variables Y, are random and have a joint distribution, not necessarily 
normal, with mean vector and covariance matrix Partitioning 

and in an obvious fashion, we write

with
(7-44)

can be taken to have full rank.6 Consider the problem of predicting Y using the

(7-45)linear predictor = b0 + b1 Z1 +
Á

+ br Zr = b0 + b¿  Z

�Z Z

SZ Y
œ

= 7sY Z1
, sY Z2

 , Á , sY Zr
8

 and � = Ds  

 Y Y
11 * 12

 

S  Z Y
1r * 12

 

 

S  

 Z
œ

Y 

11 * r2
 

�  

 Z Z
1r * r2

 

 

TM = D m  

 Y
11 * 12

 

M  

 Z
1r * 12

 

T
�

M�
1r + 12*1r + 12

.M
1r + 12* 1

Z2 , Á , ZrZ1 ,

b1 , Á , br .b0 ,
zi

z2 , Á , zr .z1 ,

z0 .

1151.97, 349.172,
7Y0 1 , Y0 28Y0

œ1 + zœ

01Z¿  Z2-1
 z0

Prediction ellipse

Confidence ellipse

Response 1
120

340

360

380

Response 2

0 140 160 180

Figure 7.5 95% confidence
and prediction ellipses for
the computer data with two
responses.

6If is not of full rank, one variable—for example, —can be written as a linear combination of
the other ’s and thus is redundant in forming the linear regression function That is, Z may be
replaced by any subset of components whose nonsingular covariance matrix has the same rank as �Z Z .

Z¿  B.Zi

Zk�Z Z

401



Chapter 7 Multivariate Linear Regression Models

For a given predictor of the form of (7-45), the error in the prediction of Y is

(7-46)

Because this error is random, it is customary to select and b to minimize the

(7-47)

Now the mean square error depends on the joint distribution of Y and Z only
through the parameters and It is possible to express the “optimal” linear pre-
dictor in terms of these latter quantities.

Result 7.12. The linear predictor ± with coefficients

has minimum mean square among all linear predictors of the response Y. Its mean
square error is

Also, = is the linear predictor having maxi-
mum correlation with Y; that is,

Proof. Writing = ± – we get

Adding and subtracting we obtain

The mean square error is minimized by taking = making the last
term zero, and then choosing = = to make the third
term zero. The minimum mean square error is thus –

Next, we note that = = so

Employing the extended Cauchy–Schwartz inequality of (2-49) with we
obtain
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or

with equality for b = The alternative expression for the maximum
correlation follows from the equation = = =

�

The correlation between Y and its best linear predictor is called the population
multiple correlation coefficient

(7-48)

The square of the population multiple correlation coefficient, is called the
population coefficient of determination. Note that, unlike other correlation coeffi-
cients, the multiple correlation coefficient is a positive square root, so 

The population coefficient of determination has an important interpretation.
From Result 7.12, the mean square error in using to forecast Y is

(7-49)

If there is no predictive power in Z. At the other extreme, im-
plies that Y can be predicted with no error.

Example 7.11 (Determining the best linear predictor, its mean square error, and the
multiple correlation coefficient) Given the mean vector and covariance matrix of Y,

determine (a) the best linear predictor ± (b) its mean square
error, and (c) the multiple correlation coefficient. Also, verify that the mean square
error equals 

First,

so the best linear predictor is = The mean square error is
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and the multiple correlation coefficient is

Note that = is the mean square error. �

It is possible to show (see Exercise 7.5) that

(7-50)

where is the upper-left-hand corner of the inverse of the correlation matrix
determined from 

The restriction to linear predictors is closely connected to the assumption of
normality. Specifically, if we take

then the conditional distribution of Y with fixed (see Result 4.6) is

The mean of this conditional distribution is the linear predictor in Result 7.12.
That is,

(7-51)

and we conclude that is the best linear predictor of Y when the
population is The conditional expectation of Y in (7-51) is called the
regression function. For normal populations, it is linear.

When the population is not normal, the regression function 
need not be of the form Nevertheless, it can be shown (see [22]) that

whatever its form, predicts Y with the smallest mean square
error. Fortunately, this wider optimality among all estimators is possessed by the
linear predictor when the population is normal.

Result 7.13. Suppose the joint distribution of Y and Z is Let

be the sample mean vector and sample covariance matrix, respectively, for a random
sample of size n from this population. Then the maximum likelihood estimators of
the coefficients in the linear predictor are
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Consequently, the maximum likelihood estimator of the linear regression function is

and the maximum likelihood estimator of the mean square error is

Proof. We use Result 4.11 and the invariance property of maximum likelihood esti-
mators. [See (4-20).] Since, from Result 7.12,

and

the conclusions follow upon substitution of the maximum likelihood estimators

for

�

It is customary to change the divisor from n to in the estimator of the
mean square error, = in order to obtain the unbiased
estimator

(7-52)

Example 7.12 (Maximum likelihood estimate of the regression function—single
response) For the computer data of Example 7.6, the observations on Y
(CPU time), (orders), and (add–delete items) give the sample mean vector
and sample covariance matrix:
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Assuming that Y, and are jointly normal, obtain the estimated regression
function and the estimated mean square error.

Result 7.13 gives the maximum likelihood estimates

and the estimated regression function

The maximum likelihood estimate of the mean square error arising from the
prediction of Y with this regression function is

�

Prediction of Several Variables

The extension of the previous results to the prediction of several responses 
is almost immediate. We present this extension for normal populations.

Suppose

with

By Result 4.6, the conditional expectation of given the fixed values
of the predictor variables, is

(7-53)

This conditional expected value, considered as a function of is called
the multivariate regression of the vector Y on Z. It is composed of m univariate
regressions. For instance, the first component of the conditional mean vector is

± = which minimizes the mean square
error for the prediction of The matrix = is called the matrix
of regression coefficients.
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The error of prediction vector

has the expected squares and cross-products matrix

(7-54)

Because and are typically unknown, they must be estimated from a random
sample in order to construct the multivariate linear predictor and determine expect-
ed prediction errors.

Result 7.14. Suppose Y and Z are jointly distributed as Then the re-
gression of the vector Y on Z is

The expected squares and cross-products matrix for the errors is

Based on a random sample of size n, the maximum likelihood estimator of the
regression function is

and the maximum likelihood estimator of is

Proof. The regression function and the covariance matrix for the prediction errors
follow from Result 4.6. Using the relationships

we deduce the maximum likelihood statements from the invariance property [see
(4-20)] of maximum likelihood estimators upon substitution of

�

It can be shown that an unbiased estimator of is

(7-55)=

1
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n
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Example 7.13 (Maximum likelihood estimates of the regression functions—two
responses) We return to the computer data given in Examples 7.6 and 7.10. For

time, I/O capacity, and add–delete items,
we have

and

Assuming normality, we find that the estimated regression function is

Thus, the minimum mean square error predictor of is

Similarly, the best predictor of is

The maximum likelihood estimate of the expected squared errors and cross-
products matrix is given by

 = a
6
7
b   B1.043 1.042

1.042 2.572
R = B .894 .893

.893 2.205
R

 - B 418.763 35.983
1008.976 140.558

R   B .003128 - .006422
- .006422 .086404

R   B418.763 1008.976
35.983 140.558

R ≤
 = a

6
7
b   ¢ B 467.913 1148.536

1148.536 3072.491
R

a
n - 1

n
b  1SY Y - SY Z SZ Z

-1
 SZ Y2

�Y Y #Z

14.14 + 2.25z1 + 5.67z2

Y2

150.44 + 1.0791z1 - 130.242 + .4201z2 - 3.5472 = 8.42 + 1.08z1 + .42z2

Y1

 = B150.44
327.79

R + B1.079 1z1 - 130.242 + .420 1z2 - 3.5472
2.254 1z1 - 130.242 + 5.665 1z2 - 3.5472

R
* B .003128 - .006422
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R
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S = BSY Y SY Z
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The first estimated regression function, ± and the associated
mean square error, .894, are the same as those in Example 7.12 for the single-response
case. Similarly, the second estimated regression function, ± is
the same as that given in Example 7.10.

We see that the data enable us to predict the first response, with smaller
error than the second response, The positive covariance .893 indicates that over-
prediction (underprediction) of CPU time tends to be accompanied by overpredic-
tion (underprediction) of disk capacity. �

Comment. Result 7.14 states that the assumption of a joint normal distribu-
tion for the whole collection leads to the prediction
equations

We note the following:

1. The same values, are used to predict each 
2. The are estimates of the th entry of the regression coefficient matrix 

= for 

We conclude this discussion of the regression problem by introducing one further
correlation coefficient.

Partial Correlation Coefficient

Consider the pair of errors

obtained from using the best linear predictors to predict and Their correla-
tion, determined from the error covariance matrix =

measures the association between and after eliminating the effects of 

We define the partial correlation coefficient between and eliminating 
by

(7-56)

where is the th entry in the matrix = The
corresponding sample partial correlation coefficient is
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with the th element of – Assuming that Y and Z have
a joint multivariate normal distribution, we find that the sample partial correlation
coefficient in (7-57) is the maximum likelihood estimator of the partial correlation
coefficient in (7-56).

Example 7.14 (Calculating a partial correlation) From the computer data in 
Example 7.13,

Therefore,

(7-58)

Calculating the ordinary correlation coefficient, we obtain Compar-
ing the two correlation coefficients, we see that the association between and 
has been sharply reduced after eliminating the effects of the variables Z on both
responses. �

7.9 Comparing the Two Formulations of the Regression Model
In Sections 7.2 and 7.7, we presented the multiple regression models for one 
and several response variables, respectively. In these treatments, the predictor
variables had fixed values at the jth trial. Alternatively, we can start—as 
in Section 7.8—with a set of variables that have a joint normal distribution.
The process of conditioning on one subset of variables in order to predict values
of the other set leads to a conditional expectation that is a multiple regression
model. The two approaches to multiple regression are related. To show this
relationship explicitly, we introduce two minor variants of the regression model
formulation.

Mean Corrected Form of the Regression Model

For any response variable Y, the multiple regression model asserts that

The predictor variables can be “centered” by subtracting their means. For instance,
= ± and we can write

(7-59) = b… + b11z1 j - z–12 +
Á

+ br1zr j - z–r2 + ej
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with ± The mean corrected design matrix corresponding
to the reparameterization in (7-59) is

where the last r columns are each perpendicular to the first column, since

Further, setting with we obtain

so

(7-60)

That is, the regression coefficients are unbiasedly estimated by
and is estimated by Because the definitions re-

main unchanged by the reparameterization in (7-59), their best estimates computed
from the design matrix are exactly the same as the best estimates com-
puted from the design matrix Z. Thus, setting = the linear
predictor of Y can be written as

(7-61)

with = Finally,
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Comment. The multivariate multiple regression model yields the same mean
corrected design matrix for each response. The least squares estimates of the coeffi-
cient vectors for the ith response are given by

(7-63)

Sometimes, for even further numerical stability, “standardized” input variables  

= are used. In this case, the

slope coefficients in the regression model are replaced by =

The least squares estimates of the beta coefficients become =

These relationships hold for each response in the multivariate multiple
regression situation as well.

Relating the Formulations

When the variables Y, are jointly normal, the estimated predictor of Y
(see Result 7.13) is

(7-64) 

where the estimation procedure leads naturally to the introduction of centered ’s.
Recall from the mean corrected form of the regression model that the best lin-

ear predictor of Y [see (7-61)] is

with and = Comparing (7-61) and (7-64), we see that 
= and = since7

(7-65)

Therefore, both the normal theory conditional mean and the classical regression
model approaches yield exactly the same linear predictors.

A similar argument indicates that the best linear predictors of the responses in
the two multivariate multiple regression setups are also exactly the same.

Example 7.15 (Two approaches yield the same linear predictor) The computer data with
the single response time were analyzed in Example 7.6 using the classical lin-
ear regression model. The same data were analyzed again in Example 7.12, assuming
that the variables and were jointly normal so that the best predictor of is
the conditional mean of given and Both approaches yielded the same predictor,
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Although the two formulations of the linear prediction problem yield the same
predictor equations, conceptually they are quite different. For the model in (7-3) or
(7-23), the values of the input variables are assumed to be set by the experimenter.
In the conditional mean model of (7-51) or (7-53), the values of the predictor vari-
ables are random variables that are observed along with the values of the response
variable(s). The assumptions underlying the second approach are more stringent,
but they yield an optimal predictor among all choices, rather than merely among
linear predictors.

We close by noting that the multivariate regression calculations in either case
can be couched in terms of the sample mean vectors and and the sample sums of
squares and cross-products:

This is the only information necessary to compute the estimated regression coeffi-
cients and their estimated covariances. Of course, an important part of regression
analysis is model checking.This requires the residuals (errors), which must be calcu-
lated using all the original data.

7.10 Multiple Regression Models with Time Dependent Errors
For data collected over time, observations in different time periods are often relat-
ed, or autocorrelated. Consequently, in a regression context, the observations on the
dependent variable or, equivalently, the errors, cannot be independent. As indicated
in our discussion of dependence in Section 5.8, time dependence in the observations
can invalidate inferences made using the usual independence assumption. Similarly,
inferences in regression can be misleading when regression models are fit to time
ordered data and the standard regression assumptions are used. This issue is impor-
tant so, in the example that follows, we not only show how to detect the presence of
time dependence, but also how to incorporate this dependence into the multiple re-
gression model.

Example 7.16 (Incorporating time dependent errors in a regression model) Power
companies must have enough natural gas to heat all of their customers’ homes and
businesses, particularly during the coldest days of the year. A major component of
the planning process is a forecasting exercise based on a model relating the send-
outs of natural gas to factors, like temperature, that clearly have some relationship 
to the amount of gas consumed. More gas is required on cold days. Rather than 
use the daily average temperature, it is customary to use degree heating days
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(DHD)=65 deg-daily average temperature. A large number for DHD indi-
cates a cold day. Wind speed, again a 24-hour average, can also be a factor 
in the sendout amount. Because many businesses close for the weekend, the
demand for natural gas is typically less on a weekend day. Data on these variables
for one winter in a major northern city are shown, in part, in Table 7.4. (See 
website: www.prenhall.com/statistics for the complete data set. There are 
observations.)

n = 63

Table 7.4 Natural Gas Data

Y
Sendout DHD DHDLag Windspeed Weekend

227 32 30 12 1
236 31 32 8 1
228 30 31 8 0
252 34 30 8 0
238 28 34 12 0

333 46 41 8 0
266 33 46 8 0
280 38 33 18 0
386 52 38 22 0
415 57 52 18 0

ooooo

Z4Z3Z2Z1

Initially, we developed a regression model relating gas sendout to degree
heating days, wind speed and a weekend dummy variable. Other variables likely 
to have some affect on natural gas consumption, like percent cloud cover, are
subsumed in the error term. After several attempted fits, we decided to include
not only the current DHD but also that of the previous day. (The degree heating
day lagged one time period is denoted by DHDLag in Table 7.4.) The fitted 
model is

with All the coefficients, with the exception of the intercept, are signifi-
cant and it looks like we have a very good fit. (The intercept term could be dropped.
When this is done, the results do not change substantially.) However, if we calculate
the correlation of the residuals that are adjacent in time, the lag 1 autocorrelation,
we get

lag 1 autocorrelation = r11en2 =

a
n

j = 2
 enj enj - 1

a
n

j = 1
 enj

2
= .52

R2
= .952.

 + 1.315 Windspeed - 15.857 Weekend

 Sendout = 1.858 + 5.874 DHD + 1.405 DHDLag
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The value, .52, of the lag 1 autocorrelation is too large to be ignored. A plot of 
the residual autocorrelations for the first 15 lags shows that there might also be
some dependence among the errors 7 time periods, or one week, apart. This amount
of dependence invalidates the t-tests and P-values associated with the coefficients in
the model.

The first step toward correcting the model is to replace the presumed indepen-
dent errors in the regression model for sendout with a possibly dependent series of
noise terms That is, we formulate a regression model for the where we relate
each to its previous value its value one week ago, and an independent
error Thus, we consider

where the are independent normal random variables with mean 0 and variance
The form of the equation for is known as an autoregressive model. (See [8].)

The SAS commands and part of the output from fitting this combined regression
model for sendout with an autoregressive model for the noise are shown in Panel 7.3
on page 416.

The fitted model is

and the time dependence in the noise terms is estimated by

The variance of is estimated to be 
From Panel 7.3, we see that the autocorrelations of the residuals from the en-

riched model are all negligible. Each is within two estimated standard errors of 0.
Also, a weighted sum of squares of residual autocorrelations for a group of consec-
utive lags is not large as judged by the P-value for this statistic. That is, there is no
reason to reject the hypothesis that a group of consecutive autocorrelations are si-
multaneously equal to 0. The groups examined in Panel 7.3 are those for lags 1–6,
1–12, 1–18, and 1–24.

The noise is now adequately modeled. The tests concerning the coefficient of
each predictor variable, the significance of the regression, and so forth, are now
valid.8 The intercept term in the final model can be dropped. When this is done,
there is very little change in the resulting model. The enriched model has better
forecasting potential and can now be used to forecast sendout of natural gas for
given values of the predictor variables. We will not pursue prediction here, since it
involves ideas beyond the scope of this book. (See [8].) �

sn 2
= 228.89.e

Nj = .470Nj - 1 + .240Nj - 7 + ej

+ 1.207 Windspeed - 10.109 Weekend

Sendout = 2.130 + 5.810 DHD + 1.426 DHDLag

Njs2.
ej

Nj = f1 Nj - 1 + f7 Nj - 7 + ej

ej .
Nj - 7 ,Nj - 1 ,Nj

NjNj .

8These tests are obtained by the extra sum of squares procedure but applied to the regression plus
autoregressive noise model. The tests are those described in the computer output.
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When modeling relationships using time ordered data, regression models with
noise structures that allow for the time dependence are often useful. Modern soft-
ware packages, like SAS, allow the analyst to easily fit these expanded models.

data a;
infile ‘T7-4.dat’;
time = _n_;
input obsend dhd dhdlag wind xweekend;

proc arima data = a;
identify var = obsend crosscor = (

PROGRAM COMMANDS

dhd dhdlag wind xweekend );
estimate p = (1 7) method = ml input = (
dhd dhdlag wind xweekend ) plot;

estimate p = (1 7) noconstant method = ml input = (
dhd dhdlag wind xweekend ) plot;

ARIMA Procedure

Maximum Likelihood Estimation OUTPUT

Approx.
Parameter Estimate Std Error T Ratio Lag Variable Shift
MU 2.12957 13.12340 0.16 0 OBSEND 0
AR1, 1 0.47008 0.11779 3.99 1 OBSEND 0
AR1, 2 0.23986 0.11528 2.08 7 OBSEND 0
NUM1 5.80976 0.24047 24.16 0 DHD 0
NUM2 1.42632 0.24932 5.72 0 DHDLAG 0
NUM3 1.20740 0.44681 2.70 0 WIND 0
NUM4 –10.10890 6.03445 –1.68 0 XWEEKEND 0

Constant Estimate = 0.61770069

Variance Estimate = 228.894028

Std Error Estimate = 15.1292441
AIC = 528.490321
SBC = 543.492264
Number of Residuals = 63

Autocorrelation Check of Residuals

To Chi Autocorrelations
Lag Square DF Prob

6 6.04 4 0.196 0.079 0.012 0.022 0.192 –0.127 0.161
12 10.27 10 0.417 0.144 –0.067 –0.111 –0.056 –0.056 –0.108
18 15.92 16 0.458 0.013 0.106 –0.137 –0.170 –0.079 0.018
24 23.44 22 0.377 0.018 0.004 0.250 –0.080 –0.069 –0.051

(continues on next page)

PANEL 7.3 SAS ANALYSIS FOR EXAMPLE 7.16 USING PROC ARIMA
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Autocorrelation Plot of Residuals

Lag Covariance Correlation –1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
0 228.894 1.00000 | |********************|
1 18.194945 0.07949 | . |** . |
2 2.763255 0.01207 | . | . |
3 5.038727 0.02201 | . | . |
4 44.059835 0.19249 | . |**** . |
5 –29.118892 –0.12722 | . *** | . |
6 36.904291 0.16123 | . |*** . |
7 33.008858 0.14421 | . |*** . |
8 –15.424015 –0.06738 | . *| . |
9 –25.379057 –0.11088 | . **| . |

10 –12.890888 –0.05632 | . *| . |
11 –12.777280 –0.05582 | . *| . |
12 –24.825623 –0.10846 | . **| . |
13 2.970197 0.01298 | . | . |
14 24.150168 0.10551 | . |** . |
15 –31.407314 –0.13721 | . *** | . |

"." marks two standard errors

PANEL 7.3 (continued)
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THE DISTRIBUTION OF THE LIKELIHOOD
RATIO FOR THE MULTIVARIATE
MULTIPLE REGRESSION MODEL

The development in this supplement establishes Result 7.11.

We know that = and under =

with Set =

Since = = the
columns of Z are perpendicular to P.Thus, we can write

where = We then use the Gram–Schmidt process (see Re-
sult 2A.3) to construct the orthonormal vectors = from the
columns of Then we continue, obtaining the orthonormal set from and
finally complete the set to n dimensions by constructing an arbitrary orthonormal
set of vectors orthogonal to the previous vectors. Consequently, we have

from columns from columns of arbitrary set of
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The Distribution of the Likelihood Ratio for the Multivariate Multiple Regression Model

and the eigenvalues of are 0 or 1. Moreover,

= = = = where 

are the eigenvalues of This shows that
has eigenvalues equal to 1. Now, = so

any linear combination of unit length is an eigenvector corresponding to the
eigenvalue 1. The orthonormal vectors are therefore eigen-
vectors of since they are formed by taking particular linear combi-
nations of the columns of By the spectral decomposition (2-16), we have 

= Similarly, by writing we readily see 

that the linear combination = for example, is an eigenvector of 

with eigenvalue so that =

Continuing, we have = = so =

are eigenvectors of P with eigenvalues Also, from the way the 
were constructed, so that Consequently, these ’s

are eigenvectors of P corresponding to the unit eigenvalues. By the spec-

tral decomposition (2-16), and

where, because = = the =

= are independently distributed as Conse-
quently, by (4-22), is distributed as In the same manner,

so = We can write the extra sum of squares and cross products as

where the are independently distributed as By (4-22), is
distributed as independently of since involves a different
set of independent ’s.

The large sample distribution for –

follows from Result 5.2, with = – –

d.f. The use of – instead 

of n in the statistic is due to Bartlett [4] following Box [7], and it improves the 

chi-square approximation.
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Chapter 7 Multivariate Linear Regression Models

Exercises

7.1. Given the data

10 5 7 19 11 8

y 15 9 3 25 7 13

z1

fit the linear regression model Specifically,
calculate the least squares estimates the fitted values the residuals and the
residual sum of squares,

7.2. Given the data

En ¿  En .
En ,yN ,Bn ,

j = 1, 2, Á , 6.Yj = b0 + b1 zj 1 + ej ,

10 5 7 19 11 18
2 3 3 6 7 9

y 15 9 3 25 7 13

z2

z1

fit the regression model

to the standardized form (see page 412) of the variables and From this fit, deduce
the corresponding fitted regression equation for the original (not standardized) variables.

7.3. (Weighted least squares estimators.) Let

where but = with known and positive definite. For
V of full rank, show that the weighted least squares estimator is

If is unknown, it may be estimated, unbiasedly, by 

*

Hint: = is of the classical linear regression form =

with and = Thus, = =

7.4. Use the weighted least squares estimator in Exercise 7.3 to derive an expression for 
the estimate of the slope in the model = = when
(a) (b) and (c) Comment on the man-
ner in which the unequal variances for the errors influence the optimal choice of 

7.5. Establish (7-50):
Hint: From (7-49) and Exercise 4.11

From Result 2A.8(c), where is the entry of in the first row and
first column. Since (see Exercise 2.23) and =

the entry in the position of is rYY
= sYY

 sYY .R-111, 12V1>2
 �-1

 V1>2 ,
R-1

= 1V -1>2
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-1R = V -1>2
  �  V -1>2

�-1sYYsYY
= ƒ �ZZ ƒ> ƒ � ƒ ,

1 - rY1Z2
2

=

sYY - Sœ

ZY  �ZZ
-1

 SZY
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ƒ �ZZ ƒ
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 SZY2

sYY
=
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ƒ �ZZ ƒsYY

rY1Z2
2

= 1 - 1>rYY .

bn W .
Var 1ej2 = s2

 zj
2 .V��ar 1ej2 = s2

 zj ,V��ar 1ej2 = s2 ,
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1Z* Z*2-1
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 Y
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Exercises

7.6. (Generalized inverse of ) A matrix is called a generalized inverse of if
= Let and suppose 

are the nonzero eigenvalues of with corresponding eigenvectors 

(a) Show that

is a generalized inverse of 

(b) The coefficients that minimize the sum of squared errors 
satisfy the normal equations = Show that these equations are satisfied
for any such that is the projection of y on the columns of Z.

(c) Show that = is the projection of y on the columns of Z. (See Foot-
note 2 in this chapter.)

(d) Show directly that is a solution to the normal equations
=

Hint: (b) If is the projection, then is perpendicular to the columns of Z.

(d) The eigenvalue–eigenvector requirement implies that = for 
and for Therefore, = Summing
over i gives

since for 
7.7. Suppose the classical regression model is, with rank written as

where and If the parameters are identified
beforehand as being of primary interest, show that a confidence region for

is given by

Hint: By Exercise 4.12, with 1’s and 2’s interchanged,

Multiply by the square-root matrix and conclude that 
is so that

7.8. Recall that the hat matrix is defined by with diagonal elements 

(a) Show that H is an idempotent matrix. [See Result 7.1 and (7-6).]

(b) Show that and that where r is the 

number of independent variables in the regression model. (In fact, )11>n2 … hj j 6 1.

a
n
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Chapter 7 Multivariate Linear Regression Models

(c) Verify, for the simple linear regression model with one independent variable z, that
the leverage, is given by

7.9. Consider the following data on one predictor variable and two responses and Y2 :Y1z1

hj j =

1
n

+

1zj - z–22

a
n

j = 1
 1zj - z–22

hj j ,

0 1 2

5 3 4 2 1
2 3-1-1-3y2

y1

-1-2z1

Determine the least squares estimates of the parameters in the bivariate straight-line re-
gression model

Also, calculate the matrices of fitted values and residuals with 
Verify the sum of squares and cross-products decomposition

7.10. Using the results from Exercise 7.9, calculate each of the following.

(a) A 95% confidence interval for the mean response = corre-
sponding to 

(b) A 95% prediction interval for the response corresponding to 

(c) A 95% prediction region for the responses and corresponding to 

7.11. (Generalized least squares for multivariate multiple regression.) Let A be a positive
definite matrix, so that = is a squared statistical 
distance from the jth observation to its regression Show that the choice 

= minimizes the sum of squared statistical distances,

for any choice of positive definite A. Choices for A include and I.
Hint: Repeat the steps in the proof of Result 7.10 with replaced by A.

7.12. Given the mean vector and covariance matrix of and 

determine each of the following.

(a) The best linear predictor of Y

(b) The mean square error of the best linear predictor

(c) The population multiple correlation coefficient

(d) The partial correlation coefficient rYZ1
#Z2

b0 + b1 Z1 + b2 Z2

M = CmY

 

MZ
S = C 4

3
-2
S and � = CsY Y Sœ

Z Y

  

SZ Y �Z Z
S = C9 3 1

3 2 1
1 1 1

S
Z2 ,Y, Z1 ,

�-1
�-1

a
n

j = 1
 dj

21B2,1Z¿  Z2-1
 Z¿  YB = Bn

B¿  zj .yj

1yj - B¿  zj2
œ

 A1yj - B¿  zj2dj
21B2

z0 1 = 0.5Y0 2Y0 1

z0 1 = 0.5Y0 1

z0 1 = 0.5
b0 1 + b1 1 z0 1E1Y0 12

Y¿
 Y = YN ¿

 YN + En ¿  En

Y = 7y1 � y28.EnYN

 Yj 2 = b0 2 + b1 2 zj 1 + ej 2 ,  j = 1, 2, 3, 4, 5

 Yj 1 = b0 1 + b1 1 zj 1 + ej 1
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Exercises

7.13. The test scores for college students described in Example 5.5 have

Assume joint normality.

(a) Obtain the maximum likelihood estimates of the parameters for predicting from
and 

(b) Evaluate the estimated multiple correlation coefficient 

(c) Determine the estimated partial correlation coefficient 

7.14. Twenty-five portfolio managers were evaluated in terms of their performance. Suppose
Y represents the rate of return achieved over a period of time, is the manager’s atti-
tude toward risk measured on a five-point scale from “very conservative” to “very risky,”
and is years of experience in the investment business. The observed correlation coef-
ficients between pairs of variables are

(a) Interpret the sample correlation coefficients and 

(b) Calculate the partial correlation coefficient and interpret this quantity with
respect to the interpretation provided for in Part a.

The following exercises may require the use of a computer.

7.15. Use the real-estate data in Table 7.1 and the linear regression model in Example 7.4.

(a) Verify the results in Example 7.4.

(b) Analyze the residuals to check the adequacy of the model. (See Section 7.6.)

(c) Generate a 95% prediction interval for the selling price corresponding to total
dwelling size and assessed value 

(d) Carry out a likelihood ratio test of with a significance level of 
Should the original model be modified? Discuss.

7.16. Calculate a plot corresponding to the possible linear regressions involving the 
real-estate data in Table 7.1.

7.17. Consider the Forbes data in Exercise 1.4.

(a) Fit a linear regression model to these data using profits as the dependent variable
and sales and assets as the independent variables.

(b) Analyze the residuals to check the adequacy of the model. Compute the leverages
associated with the data points. Does one (or more) of these companies stand out as
an outlier in the set of independent variable data points?

(c) Generate a 95% prediction interval for profits corresponding to sales of 100 (billions
of dollars) and assets of 500 (billions of dollars).

(d) Carry out a likelihood ratio test of with a significance level of 
Should the original model be modified? Discuss.

a = .05.H0  : b2 = 0

Cp

a = .05.H0  : b2 = 0

z2 = 46.z1 = 17
1Y02

rYZ1

rYZ1
#Z2

rYZ2
= - .82.rYZ1

= - .35

R = C Y Z1 Z2

1.0 - .35 .82
- .35 1.0 - .60

.82 - .60 1.0
S

Z2

Z1

RZ1, Z2
#Z3

.

RZ11Z2, Z32 .

Z3 .Z2

Z1

z– = C z–1

z–2

z–3

S = C527.74
54.69
25.13

S  ,  S = C5691.34   

600.51 126.05  

217.25 23.37 23.11
S
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Chapter 7 Multivariate Linear Regression Models

7.18. Calculate

(a) a plot corresponding to the possible regressions involving the Forbes data in 
Exercise 1.4.

(b) the AIC for each possible regression.

7.19. Satellite applications motivated the development of a silver-zinc battery. Table 7.5
contains failure data collected to characterize the performance of the battery during its
life cycle. Use these data.

(a) Find the estimated linear regression of on an appropriate (“best”) subset of
predictor variables.

(b) Plot the residuals from the fitted model chosen in Part a to check the normal
assumption.

ln 1Y2

Cp

Table 7.5 Battery-Failure Data

Y
Depth of End of

Charge Discharge discharge charge
rate rate (% of rated Temperature voltage Cycles to

(amps) (amps) ampere-hours) (volts) failure

.375 3.13 60.0 40 2.00 101
1.000 3.13 76.8 30 1.99 141
1.000 3.13 60.0 20 2.00 96
1.000 3.13 60.0 20 1.98 125
1.625 3.13 43.2 10 2.01 43
1.625 3.13 60.0 20 2.00 16
1.625 3.13 60.0 20 2.02 188
.375 5.00 76.8 10 2.01 10

1.000 5.00 43.2 10 1.99 3
1.000 5.00 43.2 30 2.01 386
1.000 5.00 100.0 20 2.00 45
1.625 5.00 76.8 10 1.99 2
.375 1.25 76.8 10 2.01 76

1.000 1.25 43.2 10 1.99 78
1.000 1.25 76.8 30 2.00 160
1.000 1.25 60.0 0 2.00 3
1.625 1.25 43.2 30 1.99 216
1.625 1.25 60.0 20 2.00 73
.375 3.13 76.8 30 1.99 314
.375 3.13 60.0 20 2.00 170

Source: Selected from S. Sidik, H. Leibecki, and J. Bozek, Failure of Silver–Zinc Cells with Competing 
Failure Modes—Preliminary Data Analysis, NASA Technical Memorandum 81556 (Cleveland: Lewis Research
Center, 1980).

1°C2

Z5Z4Z3Z2Z1

7.20. Using the battery-failure data in Table 7.5, regress on the first principal compo-
nent of the predictor variables (See Section 8.3.) Compare the result with
the fitted model obtained in Exercise 7.19(a).

z1 , z2 , Á , z5 .
ln 1Y2
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Exercises

7.21. Consider the air-pollution data in Table 1.5. Let and be the two
responses (pollutants) corresponding to the predictor variables and

radiation.

(a) Perform a regression analysis using only the first response 

(i) Suggest and fit appropriate linear regression models.

(ii) Analyze the residuals.

(iii) Construct a 95% prediction interval for corresponding to and

(b) Perform a multivariate multiple regression analysis using both responses and 

(i) Suggest and fit appropriate linear regression models.

(ii) Analyze the residuals.

(iii) Construct a 95% prediction ellipse for both and for and 
Compare this ellipse with the prediction interval in Part a (iii). Comment.

7.22. Using the data on bone mineral content in Table 1.8:

(a) Perform a regression analysis by fitting the response for the dominant radius bone to
the measurements on the last four bones.

(i) Suggest and fit appropriate linear regression models.

(ii) Analyze the residuals.

(b) Perform a multivariate multiple regression analysis by fitting the responses from
both radius bones.

(c) Calculate the AIC for the model you chose in (b) and for the full model.

7.23. Using the data on the characteristics of bulls sold at auction in Table 1.10:

(a) Perform a regression analysis using the response and the predictor vari-
ables Breed, YrHgt, FtFrBody, PrctFFB, Frame, BkFat, SaleHt, and SaleWt.

(i) Determine the “best” regression equation by retaining only those predictor
variables that are individually significant.

(ii) Using the best fitting model, construct a 95% prediction interval for selling
price for the set of predictor variable values (in the order listed above) 5, 48.7,
990, 74.0, 7, .18, 54.2 and 1450.

(iii) Examine the residuals from the best fitting model.

(b) Repeat the analysis in Part a, using the natural logarithm of the sales price as the
response. That is, set Which analysis do you prefer? Why?

7.24. Using the data on the characteristics of bulls sold at auction in Table 1.10:

(a) Perform a regression analysis, using only the response and the predic-
tor variables and 

(i) Fit an appropriate model and analyze the residuals.

(ii) Construct a 95% prediction interval for SaleHt corresponding to and

(b) Perform a multivariate regression analysis with the responses and
and the predictors and 

(i) Fit an appropriate multivariate model and analyze the residuals.

(ii) Construct a 95% prediction ellipse for both SaleHt and SaleWt for 
and Compare this ellipse with the prediction interval in Part a (ii).
Comment.

z2 = 970.
z1 = 50.5

Z2 = FtFrBody.Z1 = YrHgtY2 = SaleWt
Y1 = SaleHt

z2 = 970.
z1 = 50.5

Z2 = FtFrBody.Z1 = YrHgt
Y1 = SaleHt

Y1 = Ln 1SalePr2.

Y1 = SalePr

z2 = 80.z1 = 10O3NO2

Y2 .Y1

z2 = 80.
z1 = 10NO2

Y1 .

Z2 = solar
Z1 = wind

Y2 = O3Y1 = NO2
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Chapter 7 Multivariate Linear Regression Models

7.25. Amitriptyline is prescribed by some physicians as an antidepressant. However, there
are also conjectured side effects that seem to be related to the use of the drug: irregular
heartbeat, abnormal blood pressures, and irregular waves on the electrocardiogram,
among other things. Data gathered on 17 patients who were admitted to the hospital
after an amitriptyline overdose are given in Table 7.6. The two response variables 
are

The five predictor variables are

 Z5 = QRS wave measurement 1QRS2

 Z4 = Diastolic blood pressure 1DIAP2

 Z3 = PR wave measurement 1PR2

 Z2 = Amount of antidepressants taken at time of overdose 1AMT2

 Z1 = Gender: 1 if female, 0 if male 1GEN2

 Y2 = Amount of amitriptyline present in TCAD plasma level 1AMI2

 Y1 = Total TCAD plasma level 1TOT2

Table 7.6 Amitriptyline Data

TOT AMI GEN AMT PR DIAP QRS

3389 3149 1 7500 220 0 140
1101 653 1 1975 200 0 100
1131 810 0 3600 205 60 111
596 448 1 675 160 60 120
896 844 1 750 185 70 83

1767 1450 1 2500 180 60 80
807 493 1 350 154 80 98

1111 941 0 1500 200 70 93
645 547 1 375 137 60 105
628 392 1 1050 167 60 74

1360 1283 1 3000 180 60 80
652 458 1 450 160 64 60
860 722 1 1750 135 90 79
500 384 0 2000 160 60 80
781 501 0 4500 180 0 100

1070 405 0 1500 170 90 120
1754 1520 1 3000 180 0 129

Source: See [24].

z5z4z3z2z1y2y1

(a) Perform a regression analysis using only the first response 

(i) Suggest and fit appropriate linear regression models.

(ii) Analyze the residuals.

(iii) Construct a 95% prediction interval for Total TCAD for 
and 

(b) Repeat Part a using the second response Y2 .

z5 = 85.z4 = 70,z3 = 140,
z2 = 1200,z1 = 1,

Y1 .
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Exercises

(c) Perform a multivariate multiple regression analysis using both responses and 

(i) Suggest and fit appropriate linear regression models.

(ii) Analyze the residuals.

(iii) Construct a 95% prediction ellipse for both Total TCAD and Amount of
amitriptyline for and Compare
this ellipse with the prediction intervals in Parts a and b. Comment.

7.26. Measurements of properties of pulp fibers and the paper made from them are contained
in Table 7.7 (see also [19] and website: www.prenhall.com/statistics). There are 
observations of the pulp fiber characteristics, arithmetic fiber length, long
fiber fraction, fine fiber fraction, zero span tensile, and the paper properties,

breaking length, elastic modulus, stress at failure, burst strength.y4 =y3 =y2 =y1 =

z4 =z3 =

z2 =z1 =

n = 62

z5 = 85.z4 = 70,z3 = 140,z2 = 1200,z1 = 1,

Y2 .Y1

Table 7.7 Pulp and Paper Properites Data

BL EM SF BS AFL LFF FFF ZST

21.312 7.039 5.326 .932 �.030 35.239 36.991 1.057
21.206 6.979 5.237 .871 .015 35.713 36.851 1.064
20.709 6.779 5.060 .742 .025 39.220 30.586 1.053
19.542 6.601 4.479 .513 .030 39.756 21.072 1.050
20.449 6.795 4.912 .577 �.070 32.991 36.570 1.049

16.441 6.315 2.997 �.400 �.605 2.845 84.554 1.008
16.294 6.572 3.017 �.478 �.694 1.515 81.988 .998
20.289 7.719 4.866 .239 �.559 2.054 8.786 1.081
17.163 7.086 3.396 �.236 �.415 3.018 5.855 1.033
20.289 7.437 4.859 .470 �.324 17.639 28.934 1.070

Source: See Lee [19].

oooooooo

z4z3z2z1y4y3y2y1

(a) Perform a regression analysis using each of the response variables , , and .

(i) Suggest and fit appropriate linear regression models.

(ii) Analyze the residuals. Check for outliers or observations with high leverage.

(iii) Construct a 95% prediction interval for SF ( ) for .330, ,
, .

(b) Perform a multivariate multiple regression analysis using all four response variables,
, , and , and the four independent variables, , , and .

(i) Suggest and fit an appropriate linear regression model. Specify the matrix of
estimated coefficients and estimated error covariance matrix .

(ii) Analyze the residuals. Check for outliers.

(iii) Construct simultaneous 95% prediction intervals for the individual responses
, , 2, 3, 4, for the same settings of the independent variables given in part

a (iii) above. Compare the simultaneous prediction interval for with the
prediction interval in part a (iii). Comment.

7.27. Refer to the data on fixing breakdowns in cell phone relay towers in Table 6.20. In the
initial design, experience level was coded as Novice or Guru. Now consider three levels
of experience: Novice, Guru and Experienced. Some additional runs for an experienced
engineer are given below. Also, in the original data set, reclassify Guru in run 3 as

Y03

i = 1Y0i

�NBN

Z4Z3Z2Z1Y4Y3Y2Y1

z4 = 1.010z3 = 20.375
z2 = 45.500z1 =Y3

Y4Y3Y2Y1
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Chapter 7 Multivariate Linear Regression Models

Experienced and Novice in run 14 as Experienced. Keep all the other numbers for these
two engineers the same. With these changes and the new data below, perform a multi-
variate multiple regression analysis with assessment and implementation times as the
responses, and problem severity, problem complexity and experience level as the predictor
variables. Consider regression models with the predictor variables and two factor inter-
action terms as inputs. (Note: The two changes in the original data set and the additional
data below unbalances the design, so the analysis is best handled with regression
methods.)
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PRINCIPAL COMPONENTS

8.1 Introduction
A principal component analysis is concerned with explaining the variance–covariance
structure of a set of variables through a few linear combinations of these variables. Its
general objectives are (1) data reduction and (2) interpretation.

Although p components are required to reproduce the total system variability,
often much of this variability can be accounted for by a small number k of the prin-
cipal components. If so, there is (almost) as much information in the k components
as there is in the original p variables. The k principal components can then replace
the initial p variables, and the original data set, consisting of n measurements on
p variables, is reduced to a data set consisting of n measurements on k principal
components.

An analysis of principal components often reveals relationships that were not
previously suspected and thereby allows interpretations that would not ordinarily
result. A good example of this is provided by the stock market data discussed in
Example 8.5.

Analyses of principal components are more of a means to an end rather than an
end in themselves, because they frequently serve as intermediate steps in much
larger investigations. For example, principal components may be inputs to a multiple
regression (see Chapter 7) or cluster analysis (see Chapter 12). Moreover, (scaled)
principal components are one “factoring” of the covariance matrix for the factor
analysis model considered in Chapter 9.

8.2 Population Principal Components
Algebraically, principal components are particular linear combinations of the p ran-
dom variables Geometrically, these linear combinations represent
the selection of a new coordinate system obtained by rotating the original system

X1 , X2 , Á , Xp .

C h a p t e r

8
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Population Principal Components

with as the coordinate axes. The new axes represent the directions
with maximum variability and provide a simpler and more parsimonious description
of the covariance structure.

As we shall see, principal components depend solely on the covariance 
matrix (or the correlation matrix ) of Their development does
not require a multivariate normal assumption. On the other hand, principal
components derived for multivariate normal populations have useful interpreta-
tions in terms of the constant density ellipsoids. Further, inferences can be made
from the sample components when the population is multivariate normal. (See
Section 8.5.)

Let the random vector have the covariance matrix 
with eigenvalues 

Consider the linear combinations

(8-1)

Then, using (2-45), we obtain

(8-2)

(8-3)

The principal components are those uncorrelated linear combinations 
whose variances in (8-2) are as large as possible.

The first principal component is the linear combination with maximum
variance.That is, it maximizes = It is clear that = can
be increased by multiplying any by some constant.To eliminate this indeterminacy,
it is convenient to restrict attention to coefficient vectors of unit length. We there-
fore define

At the ith step,

 Cov 1aœ

i   X, aœ

k X2 = 0 for k 6 i

 Var 1aœ

i   X2 subject to aœ

i  ai = 1  and

 ith principal component = linear combination aœ

i   X that maximizes

 Cov 1aœ

1 X, aœ

2 X2 = 0

 Var 1aœ

2 X2 subject to aœ

2 a2 = 1 and

 Second principal component = linear combination aœ

2 X that maximizes

 Var 1aœ

1 X2 subject to aœ

1 a1 = 1

 First principal component = linear combination aœ

1 X that maximizes

a1

aœ

1 �a1Var 1Y12aœ

1 �a1 .Var 1Y12

YpY1 , Y2 , Á ,

 Cov 1Yi , Yk2 = aœ

i  �ak   i, k = 1, 2, Á , p

 Var 1Yi2 = aœ

i  �ai   i = 1, 2, Á , p

 Yp = aœ

p X =  ap 1 X1 + ap 2 X2 +
Á

+ ap p Xp

 o     o

 Y2 = aœ

2 X =  a2 1 X1 + a2 2 X2 +
Á

+ a2 p Xp

 Y1 = aœ

1 X =  a1 1 X1 + a1 2 X2 +
Á

+ a1 p Xp

l1 Ú l2 Ú
Á

Ú lp Ú 0.
�X¿ = 7X1 , X2 , Á , Xp8

X1 , X2 , Á , Xp .R�

X1 , X2 , Á , Xp
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Chapter 8 Principal Components

Result 8.1. Let be the covariance matrix associated with the random vector 
= Let have the eigenvalue-eigenvector pairs 

where Then the ith principal com-
ponent is given by

(8-4)

With these choices,

(8-5)

If some are equal, the choices of the corresponding coefficient vectors, and
hence are not unique.

Proof. We know from (2-51), with that

But since the eigenvectors are normalized. Thus,

Similarly, using (2-52), we get

For the choice with for and 

But = = so = It remains to show
that perpendicular to (that is, ) gives Now, the
eigenvectors of are orthogonal if all the eigenvalues are distinct. If
the eigenvalues are not all distinct, the eigenvectors corresponding to common
eigenvalues may be chosen to be orthogonal. Therefore, for any two eigenvectors 
and Since = premultiplication by gives

for any and the proof is complete. �

From Result 8.1, the principal components are uncorrelated and have variances
equal to the eigenvalues of 

Result 8.2. Let have covariance matrix with eigenvalue–
eigenvector pairs where 
Let be the principal components. Then

s1 1 + s2 2 +
Á

+ sp p = a
p

i = 1
 Var 1Xi2 = l1 + l2 +

Á
+ lp = a

p

i = 1
 Var 1Yi2

Yp = eœ

p XY2 = eœ

2 X, Á ,Y1 = eœ

1 X,
l1 Ú l2 Ú

Á
Ú lp Ú 0.1lp , ep21l2 , e22, Á ,1l1 , e12,

�,X¿ = 7X1 , X2 , Á , Xp8�.

i Z k,

Cov 1Yi , Yk2 = eœ

i  �ek = eœ

i  lk ek = lk eœ

i  ek = 0

eœ

ilk ek ,�eki Z k.eœ

i  ek = 0,ek ,
ei

l1 , l2 , Á , lp�
Cov 1Yi , Yk2 = 0.i Z keœ

i  ek = 0,ekei

lk + 1 .Var 1Yk + 12lk + 1lk + 1 eœ

k + 1 ek + 1eœ

k + 11�ek + 12

eœ

k + 1 �ek + 1 >eœ

k + 1 ek + 1 = eœ

k + 1 �ek + 1 = Var 1Yk + 12

k = 1, 2, Á , p - 1,i = 1, 2, Á , keœ

k + 1 ei = 0,a = ek + 1 ,

max
a � e1, e2

 

,Á, ek

 
a¿  �a
a¿  a

= lk + 1 k = 1, 2, Á , p - 1

max
a Z 0

 
a¿  �a
a¿  a

= l1 =

eœ

1 �e1

eœ

1 e1
= eœ

1 �e1 = Var 1Y12

eœ

1 e1 = 1

max
a Z 0

 
a¿  �a
a¿  a

= l1  1attained when a = e12

B = �,

Yi ,
ei ,li

 Cov 1Yi , Yk2 = eœ

i  �ek = 0  i Z k

 Var 1Yi2 = eœ

i  �ei = li  i = 1, 2, Á , p

Yi = eœ

i  X = ei 1 X1 + ei 2 X2 +
Á

+ ei p Xp ,  i = 1, 2, Á , p

l1 Ú l2 Ú
Á

Ú lp Ú 0.1lp , ep21l2 , e22, Á ,
1l1 , e12,�7X1 , X2 , Á , Xp8.X¿
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Population Principal Components

Proof. From Definition 2A.28, ± From (2-20) with
we can write where is the diagonal matrix of eigenvalues and

so that = = Using Result 2A.12(c), we have

Thus,

�

Result 8.2 says that

(8-6)

and consequently, the proportion of total variance due to (explained by) the kth
principal component is

(8-7)

If most (for instance, 80 to 90%) of the total population variance, for large p, can be
attributed to the first one, two, or three components, then these components can
“replace” the original p variables without much loss of information.

Each component of the coefficient vector also merits
inspection. The magnitude of measures the importance of the kth variable to the
ith principal component, irrespective of the other variables. In particular, is pro-
portional to the correlation coefficient between and 

Result 8.3. If are the principal components
obtained from the covariance matrix then

(8-8)

are the correlation coefficients between the components and the variables 
Here are the eigenvalue–eigenvector pairs for 

Proof. Set so that and =

= according to (2-45). Since = =

Then [see (8-5)] and yield

�

Although the correlations of the variables with the principal components often
help to interpret the components, they measure only the univariate contribution of
an individual X to a component Y. That is, they do not indicate the importance of
an X to a component Y in the presence of the other X’s. For this reason, some

rYi, Xk
=

Cov 1Yi , Xk22Var 1Yi2 2Var 1Xk2
=

li ei k1li 1sk k
=

ei k1li1sk k
 i, k = 1, 2, Á , p

Var1Xk2 = sk kVar1Yi2 = lili ei k .
aœ

k li eiCov 1Xk , Yi2�ei = li ei ,aœ

k �ei ,Cov 1aœ

k X, eœ

i  X2
Cov 1Xk , Yi2Xk = aœ

k Xaœ

k = 70, Á , 0, 1, 0, Á , 08 �.1lp , ep21l2 , e22, Á ,1l1 , e12,
Xk .Yi

rYi, Xk
=

ei k1li1sk k
  i, k = 1, 2, Á , p

�,
Yp = eœ

p XY2 = eœ

2 X, Á ,Y1 = eœ

1 X,

Xk .Yi

ei k

ei k

eœ

i = 7ei 1 , Á , ei k , Á , ei p8

§ Proportion of total
population variance
due to kth principal

component

¥ =

lk

l1 + l2 +
Á

+ lp
  k = 1, 2, Á , p

 = l1 + l2 +
Á

+ lp

 Total population variance = s1 1 + s2 2 +
Á

+ sp p

a
p

i = 1
 Var1Xi2 = tr1�2 = tr1∂2 = a

p

i = 1
 Var1Yi2

tr 1�2 = tr 1P∂P¿2 = tr 1∂P¿  P2 = tr 1∂2 = l1 + l2 +
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Á
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Chapter 8 Principal Components

statisticians (see, for example, Rencher [16]) recommend that only the coefficients
and not the correlations, be used to interpret the components. Although the co-

efficients and the correlations can lead to different rankings as measures of the im-
portance of the variables to a given component, it is our experience that these
rankings are often not appreciably different. In practice, variables with relatively
large coefficients (in absolute value) tend to have relatively large correlations, so
the two measures of importance, the first multivariate and the second univariate,
frequently give similar results. We recommend that both the coefficients and the
correlations be examined to help interpret the principal components.

The following hypothetical example illustrates the contents of Results 8.1, 8.2,
and 8.3.

Example 8.1 (Calculating the population principal components) Suppose the
random variables and have the covariance matrix

It may be verified that the eigenvalue–eigenvector pairs are

Therefore, the principal components become

The variable is one of the principal components, because it is uncorrelated with
the other two variables.

Equation (8-5) can be demonstrated from first principles. For example,

It is also readily apparent that

s1 1 + s2 2 + s3 3 = 1 + 5 + 2 = l1 + l2 + l3 = 5.83 + 2.00 + .17

 = .383102 - .924102 = 0

 = .383 Cov 1X1 , X32 - .924 Cov 1X2 , X32

 Cov 1Y1 , Y22 = Cov 1.383X1 - .924X2 , X32

 = 5.83 = l1

 = .147112 + .854152 - .7081-22

 +  21.3832 1- .9242 Cov 1X1 , X22

 = 1.38322 Var 1X12 + 1- .92422 Var 1X22

 Var 1Y12 = Var 1.383X1 - .924X22

X3

 Y3 = eœ

3 X = .924X1 + .383X2

 Y2 = eœ

2 X = X3

 Y1 = eœ

1 X = .383X1 - .924X2

 l3 = 0.17,  eœ

3 = 7.924, .383, 08 l2 = 2.00,  eœ

2 = 70, 0, 18 l1 = 5.83,  eœ

1 = 7.383, - .924, 08
� = C 1 -2 0

-2 5 0
0 0 2

S
X3X1 , X2

ei k ,
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Population Principal Components

validating Equation (8-6) for this example. The proportion of total variance accounted
for by the first principal component is Further, the
first two components account for a proportion of the population
variance. In this case, the components and could replace the original three
variables with little loss of information.

Next, using (8-8), we obtain

Notice here that the variable with coefficient receives the greatest
weight in the component It also has the largest correlation (in absolute value)
with The correlation of with is almost as large as that for indi-
cating that the variables are about equally important to the first principal compo-
nent. The relative sizes of the coefficients of and suggest, however, that 
contributes more to the determination of than does Since, in this case, both
coefficients are reasonably large and they have opposite signs, we would argue that
both variables aid in the interpretation of 

Finally,

The remaining correlations can be neglected, since the third component is
unimportant. �

It is informative to consider principal components derived from multivariate
normal random variables. Suppose X is distributed as We know from
(4-7) that the density of X is constant on the centered ellipsoids

which have axes where the are the eigenvalue– 
eigenvector pairs of A point lying on the ith axis of the ellipsoid will have coordi-
nates proportional to in the coordinate system that has origin

and axes that are parallel to the original axes It will be convenient
to set in the argument that follows.1

From our discussion in Section 2.3 with we can write

c2
= x¿  �-1

 x =

1
l1

 1eœ

1  x22 +

1
l2

 1eœ

2  x22 +
Á

+

1
lp

 1eœ

p  x22

A = �-1 ,
M = 0

x1 , x2 , Á , xp .M

eœ

i = 7ei 1 , ei 2 , Á , ei p8�.
1li , ei2i = 1, 2, Á , p,;c1li ei ,

1x - M2
œ

 �-11x - M2 = c2

M

Np1M, �2.

rY2, X1
= rY2, X2

= 0 and rY2, X3
=

1l21s3 3
=

1212
= 1 1as it should2

Y1 .

X1 .Y1

X2X2X1

X2 ,Y1 , .925,X1 ,Y1 .
Y1 .

- .924,X2 ,

rY1, X2
=

e1 21l11s2 2
=

- .92415.8315
= - .998

rY1, X1
=

e1 11l11s1 1
=

.38315.8311
= .925

Y2Y1

15.83 + 22>8 = .98
l1>1l1 + l2 + l32 = 5.83>8 = .73.

1This can be done without loss of generality because the normal random vector X can always be
translated to the normal random vector and However, Cov 1X2 = Cov 1W2.E1W2 = 0.W = X - M
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where are recognized as the principal components of x. Setting
we have

and this equation defines an ellipsoid (since are positive) in a coordi-
nate system with axes lying in the directions of respec-
tively. If is the largest eigenvalue, then the major axis lies in the direction The
remaining minor axes lie in the directions defined by 

To summarize, the principal components lie
in the directions of the axes of a constant density ellipsoid. Therefore, any point on
the ith ellipsoid axis has x coordinates proportional to and,
necessarily, principal component coordinates of the form 

When it is the mean-centered principal component that
has mean 0 and lies in the direction 

A constant density ellipse and the principal components for a bivariate normal
random vector with and are shown in Figure 8.1. We see that the
principal components are obtained by rotating the original coordinate axes through
an angle until they coincide with the axes of the constant density ellipse.This result
holds for dimensions as well.p 7 2

u

r = .75M = 0

ei .
yi = eœ

i1x - M2M Z 0,
70, Á , 0, yi , 0, Á , 08.eœ

i = 7ei 1 , ei 2 , Á , ei p8yp = eœ

p  xy2 = eœ

2  x, Á ,y1 = eœ

1  x,
e2 , Á , ep .

e1 .l1

e1 , e2 , Á , ep ,y1 , y2 , Á , yp

l1 , l2 , Á , lp

c2
=

1
l1

 y1
2

+

1
l2

 y2
2

+
Á

+

1
lp

 yp
2

yp = eœ

p  x,y2 = eœ

2  x, Á ,y1 = eœ

1  x,
eœ

p  xeœ

2  x, Á ,eœ

1  x,

x2

x1

� 0

θ

x' ��1x � c2

y1
 � e'1x

y2
 � e'2x

µ
� .75ρ

Figure 8.1 The constant density
ellipse and the principal
components for a bivariate
normal random vector X having 
mean 0.

y1 , y2

x ¿  �-1
 x = c2

Principal Components Obtained from Standardized Variables

Principal components may also be obtained for the standardized variables

(8-9)

 Zp =

1Xp - mp21sp p

 o   o

 Z2 =

1X2 - m221s2 2

 Z1 =

1X1 - m121s1 1
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In matrix notation,

(8-10)

where the diagonal standard deviation matrix is defined in (2-35). Clearly,
and

by (2-37). The principal components of Z may be obtained from the eigenvectors of
the correlation matrix of X. All our previous results apply, with some simplifica-
tions, since the variance of each is unity. We shall continue to use the notation 
to refer to the ith principal component and for the eigenvalue–eigenvector
pair from either or However, the derived from are, in general, not the
same as the ones derived from

Result 8.4. The ith principal component of the standardized variables
with is given by

Moreover,

(8-11)

and

In this case, are the eigenvalue–eigenvector pairs for
with

Proof. Result 8.4 follows from Results 8.1, 8.2, and 8.3, with in place
of and in place of �

We see from (8-11) that the total (standardized variables) population variance
is simply p, the sum of the diagonal elements of the matrix Using (8-7) with Z in
place of X, we find that the proportion of total variance explained by the kth princi-
pal component of Z is

(8-12)

where the ’s are the eigenvalues of 

Example 8.2 (Principal components obtained from covariance and correlation matrices
are different) Consider the covariance matrix

� = B1 4
4 100

R
R.lk
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population variance due

to kth principal component
≥ =
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p
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Cov 1Z2 = R,Z¿ = 7Z1 , Z2 , Á , Zp8
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�1li , ei2�.R
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-1

 �1V1>22
-1
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Z = 1V1>22
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1X - M2
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and the derived correlation matrix

The eigenvalue–eigenvector pairs from are

Similarly, the eigenvalue–eigenvector pairs from are

The respective principal components become

and

Because of its large variance, completely dominates the first principal component
determined from Moreover, this first principal component explains a proportion

of the total population variance.
When the variables and are standardized, however, the resulting

variables contribute equally to the principal components determined from Using
Result 8.4, we obtain

and

In this case, the first principal component explains a proportion

of the total (standardized) population variance.
Most strikingly, we see that the relative importance of the variables to, for

instance, the first principal component is greatly affected by the standardization.

l1

p
=

1.4
2

= .7

rY1, Z2
= e2 11l1 = .70711.4 = .837

rY1, Z1
= e1 11l1 = .70711.4 = .837

R.
X2X1

l1

l1 + l2
=

100.16
101

= .992

�.
X2

 = .707 1X1 - m12 - .07071X2 - m22

 Y2 = .707Z1 - .707Z2 = .707 ¢X1 - m1

1
≤ - .707 ¢X2 - m2

10
≤ = .707 1X1 - m12 + .07071X2 - m22R:

 Y1 = .707Z1 + .707Z2 = .707 ¢X1 - m1

1
≤ + .707 ¢X2 - m2

10
≤

�: 
Y1 = .040X1 + .999X2

Y2 = .999X1 - .040X2

 l2 = 1 - r = .6,   eœ

2 = 7.707, - .7078 l1 = 1 + r = 1.4,   eœ

1 = 7.707, .7078R

 l2 = .84,   eœ

2 = 7.999, - .0408 l1 = 100.16,   eœ

1 = 7.040, .9998�

R = B 1 .4
.4 1

R
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When the first principal component obtained from is expressed in terms of 
and the relative magnitudes of the weights .707 and .0707 are in direct opposi-
tion to those of the weights .040 and .999 attached to these variables in the principal
component obtained from �

The preceding example demonstrates that the principal components derived
from are different from those derived from Furthermore, one set of principal
components is not a simple function of the other. This suggests that the standardiza-
tion is not inconsequential.

Variables should probably be standardized if they are measured on scales with
widely differing ranges or if the units of measurement are not commensurate. For
example, if represents annual sales in the $10,000 to $350,000 range and is the
ratio (net annual income)>(total assets) that falls in the .01 to .60 range, then the
total variation will be due almost exclusively to dollar sales. In this case, we would
expect a single (important) principal component with a heavy weighting of 
Alternatively, if both variables are standardized, their subsequent magnitudes will
be of the same order, and (or ) will play a larger role in the construction of the
principal components. This behavior was observed in Example 8.2.

Principal Components for Covariance Matrices 
with Special Structures

There are certain patterned covariance and correlation matrices whose principal
components can be expressed in simple forms. Suppose is the diagonal matrix

(8-13)

Setting with 1 in the ith position, we observe that

and we conclude that is the ith eigenvalue–eigenvector pair. Since the linear
combination the set of principal components is just the original set of un-
correlated random variables.

For a covariance matrix with the pattern of (8-13), nothing is gained by extracting
the principal components. From another point of view, if X is distributed as 
the contours of constant density are ellipsoids whose axes already lie in the directions
of maximum variation. Consequently, there is no need to rotate the coordinate system.
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Chapter 8 Principal Components

Standardization does not substantially alter the situation for the in (8-13). In
that case, the identity matrix. Clearly, so the eigenvalue 1
has multiplicity p and are convenient
choices for the eigenvectors. Consequently, the principal components determined
from are also the original variables Moreover, in this case of equal
eigenvalues, the multivariate normal ellipsoids of constant density are spheroids.

Another patterned covariance matrix, which often describes the correspon-
dence among certain biological variables such as the sizes of living things, has the
general form

(8-14)

The resulting correlation matrix

(8-15)

is also the covariance matrix of the standardized variables. The matrix in (8-15)
implies that the variables are equally correlated.

It is not difficult to show (see Exercise 8.5) that the p eigenvalues of the corre-
lation matrix (8-15) can be divided into two groups. When is positive, the largest is

(8-16)
with associated eigenvector

(8-17)

The remaining eigenvalues are

and one choice for their eigenvectors is
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Summarizing Sample Variation by Principal Components

The first principal component

is proportional to the sum of the p standarized variables. It might be regarded as an
“index” with equal weights. This principal component explains a proportion

(8-18)

of the total population variation. We see that for close to 1 or p large.
For example, if and the first component explains 84% of the 
total variance. When is near 1, the last components collectively con-
tribute very little to the total variance and can often be neglected. In this special
case, retaining only the first principal component 
a measure of total size, still explains the same proportion (8-18) of total 
variance.

If the standardized variables have a multivariate normal distrib-
ution with a covariance matrix given by (8-15), then the ellipsoids of constant densi-
ty are “cigar shaped,” with the major axis proportional to the first principal
component This principal component is the projection
of Z on the equiangular line The minor axes (and remaining prin-
cipal components) occur in spherically symmetric directions perpendicular to the
major axis (and first principal component).

8.3 Summarizing Sample Variation by Principal Components
We now have the framework necessary to study the problem of summarizing the
variation in n measurements on p variables with a few judiciously chosen linear
combinations.

Suppose the data represent n independent drawings from some
p-dimensional population with mean vector and covariance matrix These data
yield the sample mean vector the sample covariance matrix S, and the sample cor-
relation matrix R.

Our objective in this section will be to construct uncorrelated linear combina-
tions of the measured characteristics that account for much of the variation in the
sample. The uncorrelated combinations with the largest variances will be called the
sample principal components.

Recall that the n values of any linear combination

have sample mean and sample variance Also, the pairs of values
for two linear combinations, have sample covariance [see

(3-36)].
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Chapter 8 Principal Components

The sample principal components are defined as those linear combinations
which have maximum sample variance. As with the population quantities, we re-
strict the coefficient vectors to satisfy Specifically,

First sample linear combination that maximizes
principal component=the sample variance of subject

to 

Second sample linear combination that maximizes the sample
principal component=variance of subject to and zero sample

covariance for the pairs 

At the ith step, we have

ith sample linear combination that maximizes the sample
principal component=variance of subject to and zero sample

covariance for all pairs 

The first principal component maximizes or, equivalently,

(8-19)

By (2-51), the maximum is the largest eigenvalue attained for the choice
of S. Successive choices of maximize (8-19) subject to

= or perpendicular to Thus, as in the proofs of Results
8.1–8.3, we obtain the following results concerning sample principal components:
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If is the sample covariance matrix with eigenvalue-eigenvector
pairs the ith sample principal component is given
by

where and x is any observation on the variables
Also,

In addition, (8-20)

and
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Summarizing Sample Variation by Principal Components

We shall denote the sample principal components by irrespective
of whether they are obtained from S or R.2 The components constructed from S and
R are not the same, in general, but it will be clear from the context which matrix is
being used, and the single notation is convenient. It is also convenient to label the
component coefficient vectors and the component variances for both situations.

The observations are often “centered” by subtracting This has no effect on
the sample covariance matrix S and gives the ith principal component

(8-21)

for any observation vector x. If we consider the values of the ith component

(8-22)

generated by substituting each observation for the arbitrary x in (8-21), then

(8-23)

That is, the sample mean of each principal component is zero. The sample variances
are still given by the ’s, as in (8-20).

Example 8.3 (Summarizing sample variability with two sample principal components)
A census provided information, by tract, on five socioeconomic variables for the
Madison,Wisconsin, area.The data from 61 tracts are listed in Table 8.5 in the exercises
at the end of this chapter. These data produced the following summary statistics:

3.96, 71.42, 26.91,

total professional employed government median
population degree age over 16 employment home value
(thousands) (percent) (percent) (percent) ($100,000)

and

Can the sample variation be summarized by one or two principal components?

S = E 3.397 -1.102 4.306 -2.078 0.027
-1.102 9.673 -1.513 10.953 1.203

4.306 -1.513 55.626 -28.937 -0.044
-2.078 10.953 -28.937 89.067 0.957

0.027 1.203 -0.044 0.957 0.319

U
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2Sample principal components also can be obtained from the maximum likelihood esti-
mate of the covariance matrix if the are normally distributed. (See Result 4.11.) In this case,
provided that the eigenvalues of are distinct, the sample principal components can be viewed as 
the maximum likelihood estimates of the corresponding population counterparts. (See [1].) We shall 
not consider because the assumption of normality is not required in this section. Also, has eigenvalues

and corresponding eigenvectors where are the eigenvalue–eigenvector pairs for
S. Thus, both S and give the same sample principal components [see (8-20)] and the same propor-
tion of explained variance Finally, both S and give the same sample correla-
tion matrix R, so if the variables are standardized, the choice of S or is irrelevant.�N
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Chapter 8 Principal Components

We find the following:

The first principal component explains 67.7% of the total sample variance. The
first two principal components, collectively, explain 92.8% of the total sample vari-
ance. Consequently, sample variation is summarized very well by two principal com-
ponents and a reduction in the data from 61 observations on 5 observations to 61
observations on 2 principal components is reasonable.

Given the foregoing component coefficients, the first principal component,
appears to be essentially a weighted difference between the percent employed by
government and the percent total employment. The second principal component
appears to be a weighted sum of the two. �

As we said in our discussion of the population components, the component
coefficients and the correlations should both be examined to interpret the
principal components. The correlations allow for differences in the variances of 
the original variables, but only measure the importance of an individual X without
regard to the other X’s making up the component. We notice in Example 8.3,
however, that the correlation coefficients displayed in the table confirm the
interpretation provided by the component coefficients.

The Number of Principal Components

There is always the question of how many components to retain. There is no defin-
itive answer to this question. Things to consider include the amount of total sample
variance explained, the relative sizes of the eigenvalues (the variances of the sam-
ple components), and the subject-matter interpretations of the components. In ad-
dition, as we discuss later, a component associated with an eigenvalue near zero
and, hence, deemed unimportant, may indicate an unsuspected linear dependency
in the data.

ryn i
 , xk

eni k

Coefficients for the Principal Components
(Correlation Coefficients in Parentheses)

Variable

Total population �0.039(�.22) 0.071(.24) 0.188 0.977 �0.058
Profession 0.105(.35) 0.130(.26) �0.961 0.171 �0.139
Employment (%) �0.492(�.68) 0.864(.73) 0.046 �0.091 0.005
Government

employment (%) 0.863(.95) 0.480(.32) 0.153 �0.030 0.007
Medium home 

value 0.009(.16) 0.015(.17) �0.125 0.082 0.989

Variance 107.02 39.67 8.37 2.87 0.15
Cumulative 

percentage of 
total variance 67.7 92.8 98.1 99.9 1.00011

1ln i2:

eN 5eN 4eN 3eN 2 1ryn 2, xk
2eN1 1ryn1, xk

2
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Summarizing Sample Variation by Principal Components

A useful visual aid to determining an appropriate number of principal
components is a scree plot.3 With the eigenvalues ordered from largest to smallest,
a scree plot is a plot of versus i—the magnitude of an eigenvalue versus its
number. To determine the appropriate number of components, we look for an
elbow (bend) in the scree plot. The number of components is taken to be the 
point at which the remaining eigenvalues are relatively small and all about 
the same size. Figure 8.2 shows a scree plot for a situation with six principal 
components.

An elbow occurs in the plot in Figure 8.2 at about That is, the eigenvalues
after are all relatively small and about the same size. In this case, it appears,
without any other evidence, that two (or perhaps three) sample principal compo-
nents effectively summarize the total sample variance.

Example 8.4 (Summarizing sample variability with one sample principal component)
In a study of size and shape relationships for painted turtles, Jolicoeur and Mosi-
mann [11] measured carapace length, width, and height. Their data, reproduced in
Exercise 6.18, Table 6.9, suggest an analysis in terms of logarithms. (Jolicoeur [10]
generally suggests a logarithmic transformation in studies of size-and-shape rela-
tionships.) Perform a principal component analysis.

ln2

i = 3.

ln i

1 2 3 4 5 6
i0

1.0

2.0

3.0

λ i
ˆ

Figure 8.2 A scree plot.

3Scree is the rock debris at the bottom of a cliff.
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Chapter 8 Principal Components

The natural logarithms of the dimensions of 24 male turtles have sample mean
vector = and covariance matrix

A principal component analysis (see Panel 8.1 on page 447 for the output from
the SAS statistical software package) yields the following summary:

S = 10-3
 C11.072 8.019 8.160

8.019 6.417 6.005
8.160 6.005 6.773

S
74.725, 4.478, 3.7038x– ¿

Coefficients for the Principal Components
(Correlation Coefficients in Parentheses)

Variable

ln (length) .683 (.99)
ln (width) .510 (.97) – .622
ln (height) .523 (.97) – .788 – .324

Variance 
Cumulative

percentage of total
variance 96.1 98.5 100

.36 * 10-3.60 * 10-323.30 * 10-31ln i2:

- .594
- .713- .159

eN3eN2eN11ryn 1, xk
2

A scree plot is shown in Figure 8.3. The very distinct elbow in this plot occurs
at There is clearly one dominant principal component.

The first principal component, which explains 96% of the total variance, has an
interesting subject-matter interpretation. Since

 = ln 71length2.6831width2.5101height2.5238 yn1 = .683 ln 1length2 + .510 ln 1width2 + .523 ln 1height2

i = 2.

1 2 3
0

10

20

i

λi � 103ˆ

Figure 8.3 A scree plot for the
turtle data.
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Summarizing Sample Variation by Principal Components

title ‘Principal Component Analysis’;
data turtle;
infile ‘E8-4.dat’;

PROGRAM COMMANDSinput length width height;
x1 = log(length); x2 =log(width); x3 =log(height);
proc princomp cov data = turtle out = result;
var x1 x2 x3;

PANEL 8.1 SAS ANALYSIS FOR EXAMPLE 8.4 USING PROC PRINCOMP.

¯
˚

˚
˘

˚
˚

˙

Principal Components Analysis

24 Observations OUTPUT
3 Variables

Simple Statistics
X1 X2 X3

Mean 4.725443647 4.477573765 3.703185794
StD 0.105223590 0.080104466 0.082296771

Covariance Matrix

X1 X2 X3

X1 0.0110720040 0.0080191419 0.0081596480

X2 0.0080191419 0.0064167255 0.0060052707

X3 0.0081596480 0.0060052707 0.0067727585

Total Variance = 0.024261488

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative
PRIN1 0.023303 0.022705 0.960508 0.96051
PRIN2 0.000598 0.000238 0.024661 0.98517
PRIN3 0.000360 0.014832 1.00000

Eigenvectors

PRIN1 PRIN2 PRIN3
X1 0.683102 –.159479 –.712697
X2 0.510220 –.594012 0.621953
X3 0.522539 0.788490 0.324401
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Chapter 8 Principal Components

the first principal component may be viewed as the ln (volume) of a box with ad-
justed dimensions. For instance, the adjusted height is which accounts,
in some sense, for the rounded shape of the carapace. �

Interpretation of the Sample Principal Components

The sample principal components have several interpretations. First, suppose the
underlying distribution of X is nearly Then the sample principal components,

are realizations of population principal components 
which have an distribution.The diagonal matrix has entries 
and are the eigenvalue–eigenvector pairs of 

Also, from the sample values we can approximate by and by S. If S is
positive definite, the contour consisting of all vectors x satisfying

(8-24)

estimates the constant density contour of the underlying
normal density. The approximate contours can be drawn on the scatter plot to indi-
cate the normal distribution that generated the data. The normality assumption is
useful for the inference procedures discussed in Section 8.5, but it is not required
for the development of the properties of the sample principal components summa-
rized in (8-20).

Even when the normal assumption is suspect and the scatter plot may depart
somewhat from an elliptical pattern, we can still extract the eigenvalues from S and ob-
tain the sample principal components. Geometrically, the data may be plotted as n
points in p-space. The data can then be expressed in the new coordinates, which
coincide with the axes of the contour of (8-24). Now, (8-24) defines a hyperellipsoid
that is centered at and whose axes are given by the eigenvectors of or,
equivalently, of S. (See Section 2.3 and Result 4.1, with S in place of ) The lengths 

of these hyperellipsoid axes are proportional to where 
are the eigenvalues of S.

Because has length 1, the absolute value of the ith principal component,
= gives the length of the projection of the vector on the

unit vector [See (2-8) and (2-9).] Thus, the sample principal components
lie along the axes of the hyperellipsoid, and their

absolute values are the lengths of the projections of in the directions of the
axes Consequently, the sample principal components can be viewed as the
result of translating the origin of the original coordinate system to and then
rotating the coordinate axes until they pass through the scatter in the directions of
maximum variance.

The geometrical interpretation of the sample principal components is illustrated
in Figure 8.4 for Figure 8.4(a) shows an ellipse of constant distance, centered 
at with The sample principal components are well determined. They 
lie along the axes of the ellipse in the perpendicular directions of maximum 
sample variance. Figure 8.4(b) shows a constant distance ellipse, centered at with

If the axes of the ellipse (circle) of constant distance are not
uniquely determined and can lie in any two perpendicular directions, including the
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Summarizing Sample Variation by Principal Components

directions of the original coordinate axes. Similarly, the sample principal components
can lie in any two perpendicular directions, including those of the original coordi-
nate axes. When the contours of constant distance are nearly circular or, equiva-
lently, when the eigenvalues of S are nearly equal, the sample variation is homogeneous
in all directions. It is then not possible to represent the data well in fewer than p
dimensions.

If the last few eigenvalues are sufficiently small such that the variation in the
corresponding directions is negligible, the last few sample principal components
can often be ignored, and the data can be adequately approximated by their repre-
sentations in the space of the retained components. (See Section 8.4.)

Finally, Supplement 8A gives a further result concerning the role of the sam-
ple principal components when directly approximating the mean-centered data

Standardizing the Sample Principal Components

Sample principal components are, in general, not invariant with respect to changes
in scale. (See Exercises 8.6 and 8.7.) As we mentioned in the treatment of popula-
tion components, variables measured on different scales or on a common scale with
widely differing ranges are often standardized. For the sample, standardization is
accomplished by constructing

(8-25)zj = D-1>21xj - x–2 = G
xj 1 - x–11s1 1
xj 2 - x–21s2 2

o

xj p - x–p1sp p

W j = 1, 2, Á , n

xj - x– .

eN i

ln i

x1 x1

x2

x2 

x1

x2

x1

y2

(x � x )' S�1 (x � x ) � c2

(x � x )' S�1 (x � x ) � c2

y1

(a) λ1 � λ2

ˆ
ˆ y2

y1

(b) λ1 � λ2

x2 

ˆ ˆ ˆ ˆ

ˆˆ

Figure 8.4 Sample principal components and ellipses of constant distance.
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Chapter 8 Principal Components

The data matrix of standardized observations

Z =

(8-26)

yields the sample mean vector [see (3-24)]

Z Z = (8-27)

and sample covariance matrix [see (3-27)]

Z Z Z Z

Z Z

Z Z

(8-28)

The sample principal components of the standardized observations are given by
(8-20), with the matrix R in place of S. Since the observations are already “centered”
by construction, there is no need to write the components in the form of (8-21).
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Summarizing Sample Variation by Principal Components

Using (8-29), we see that the proportion of the total sample variance explained
by the ith sample principal component is

(8-30)

A rule of thumb suggests retaining only those components whose variances are
greater than unity or, equivalently, only those components which, individually, ex-
plain at least a proportion 1>p of the total variance. This rule does not have a great
deal of theoretical support, however, and it should not be applied blindly. As we
have mentioned, a scree plot is also useful for selecting the appropriate number of
components.

Example 8.5 (Sample principal components from standardized data) The weekly
rates of return for five stocks (JP Morgan, Citibank,Wells Fargo, Royal Dutch Shell,
and ExxonMobil) listed on the New York Stock Exchange were determined for the
period January 2004 through December 2005. The weekly rates of return are
defined as (current week closing price—previous week closing price)/(previous
week closing price), adjusted for stock splits and dividends. The data are listed in
Table 8.4 in the Exercises. The observations in 103 successive weeks appear to be
independently distributed, but the rates of return across stocks are correlated,
because as one expects, stocks tend to move together in response to general
economic conditions.

Let denote observed weekly rates of return for JP Morgan,
Citibank, Wells Fargo, Royal Dutch Shell, and ExxonMobil, respectively. Then

x– ¿ = 7.0011, .0007, .0016, .0040, .00408
x1 , x2 , Á , x5

ln i

£Proportion of 1standardized2
sample variance due to ith

sample principal component
≥ =

ln i

p
  i = 1, 2, Á , p

If are standardized observations with covariance matrix R, the ith
sample principal component is

where is the ith eigenvalue-eigenvector pair of R with

Also,

In addition, (8-29)

Total (standardized) sample 

and

ryn i, zk
= eni k3ln i ,  i, k = 1, 2, Á , p

variance = tr 1R2 = p = ln1 + ln2 +
Á

+ lnp

 Sample covariance 1yni , ynk2 = 0   i Z k

 Sample variance 1yni2 = ln i   i = 1, 2, Á , p

ln1 Ú ln2 Ú
Á

Ú lnp Ú 0.

1ln i , eN i2

yni = eN œ

i  z = eni 1 z1 + eni 2 z2 +
Á

+ eni p zp ,  i = 1, 2, Á , p

z1 , z2 , Á , zn
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Chapter 8 Principal Components

and

We note that R is the covariance matrix of the standardized observations

The eigenvalues and corresponding normalized eigenvectors of R, determined by a
computer, are

Using the standardized variables, we obtain the first two sample principal
components:

These components, which account for

of the total (standardized) sample variance, have interesting interpretations. The
first component is a roughly equally weighted sum, or “index,” of the five stocks.
This component might be called a general stock-market component, or, simply, a
market component.

The second component represents a contrast between the banking stocks
(JP Morgan, Citibank, Wells Fargo) and the oil stocks (Royal Dutch Shell, Exxon-
Mobil). It might be called an industry component. Thus, we see that most of the
variation in these stock returns is due to market activity and uncorrelated industry
activity. This interpretation of stock price behavior also has been suggested by
King [12].

The remaining components are not easy to interpret and, collectively, represent
variation that is probably specific to each stock. In any event, they do not explain
much of the total sample variance. �

¢ln1 + ln2

p
≤  100% = a

2.437 + 1.407
5

b  100% = 77%

 yn2 = eN œ

2 z = - .368z1 - .236z2 - .315z3 + .585z4 + .606z5

 yn1 = eN œ

1 z = .469z1 + .532z2 + .465z3 + .387z4 + .361z5

 ln5 = .255,   eN œ

5 = 7 .384, - .496, .071, .595, - .4988 ln4 = .400,   eN œ

4 = 7 .363, - .629, .289, - .381, .4938 ln3 = .501,   eN œ

3 = 7- .604, - .136, .772, .093, - .1098 ln2 = 1.407,   eN œ

2 = 7- .368, - .236, - .315, .585, .6068 ln1 = 2.437,   eN œ

1 = 7 .469, .532, .465, .387, .3618
z1 =

x1 - x–11s1 1
, z2 =

x2 - x–21s2 2
 , Á , z5 =

x5 - x–51s5 5

R = E1.000 .632 .511 .115 .155
.632 1.000 .574 .322 .213
.511 .574 1.000 .183 .146
.115 .322 .183 1.000 .683
.155 .213 .146 .683 1.000

U
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Summarizing Sample Variation by Principal Components

Example 8.6 (Components from a correlation matrix with a special structure) Geneticists
are often concerned with the inheritance of characteristics that can be measured
several times during an animal’s lifetime. Body weight (in grams) for
female mice were obtained immediately after the birth of their first four litters.4

The sample mean vector and sample correlation matrix were, respectively,

and

The eigenvalues of this matrix are

We note that the first eigenvalue is nearly equal to =

= where is the arithmetic average of the off-diagonal elements of R. The 

remaining eigenvalues are small and about equal, although is somewhat smaller 
than and Thus, there is some evidence that the corresponding population
correlation matrix may be of the “equal-correlation” form of (8-15). This notion 
is explored further in Example 8.9.

The first principal component

accounts for = = of the total variance. Although
the average postbirth weights increase over time, the variation in weights is fairly
well explained by the first principal component with (nearly) equal coefficients. �

Comment. An unusually small value for the last eigenvalue from either the sam-
ple covariance or correlation matrix can indicate an unnoticed linear dependency in
the data set. If this occurs, one (or more) of the variables is redundant and should
be deleted. Consider a situation where and are subtest scores and the
total score is the sum Then, although the linear combination 

= = is always zero, rounding error in the
computation of eigenvalues may lead to a small nonzero value. If the linear
expression relating to was initially overlooked, the smallest
eigenvalue–eigenvector pair should provide a clue to its existence. (See the discus-
sion in Section 3.4, pages 131–133.)

Thus, although “large” eigenvalues and the corresponding eigenvectors are im-
portant in a principal component analysis, eigenvalues very close to zero should not
be routinely ignored. The eigenvectors associated with these latter eigenvalues may
point out linear dependencies in the data set that can cause interpretive and compu-
tational problems in a subsequent analysis.

1x1 , x2 , x32x4

x1 + x2 + x3 - x471, 1, 1, -18 xe¿  x
x1 + x2 + x3 .x4

x3x1 , x2 ,

76%10013.058>42%1001ln1>p2%

yn1 = eN œ

1 z = .49z1 + .52z2 + .49z3 + .50z4

R
ln3 .ln2

ln4

r–3.056,
12 1.685421 + 14 -1 + 1p - 12r–

ln1 = 3.085, ln2 = .382, ln3 = .342, and ln4 = .217

R = D1.000 .7501 .6329 .6363
.7501 1.000 .6925 .7386
.6329 .6925 1.000 .6625
.6363 .7386 .6625 1.000

T
x–œ

= 739.88, 45.08, 48.11, 49.958
n = 150

4Data courtesy of J. J. Rutledge.
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Chapter 8 Principal Components

8.4 Graphing the Principal Components
Plots of the principal components can reveal suspect observations, as well as provide
checks on the assumption of normality. Since the principal components are linear
combinations of the original variables, it is not unreasonable to expect them to be
nearly normal. It is often necessary to verify that the first few principal components
are approximately normally distributed when they are to be used as the input data
for additional analyses.

The last principal components can help pinpoint suspect observations. Each
observation can be expressed as a linear combination

of the complete set of eigenvectors of S.Thus, the magnitudes of the last
principal components determine how well the first few fit the observations. That is,

± differs from by ± the square of
whose length is Suspect observations will often be such that at least
one of the coordinates contributing to this squared length will be large.
(See Supplement 8A for more general approximation results.)

The following statements summarize these ideas.

1. To help check the normal assumption, construct scatter diagrams for pairs of the
first few principal components. Also, make Q–Q plots from the sample values
generated by each principal component.

2. Construct scatter diagrams and Q–Q plots for the last few principal compo-
nents. These help identify suspect observations.

Example 8.7 (Plotting the principal components for the turtle data) We illustrate
the plotting of principal components for the data on male turtles discussed in
Example 8.4. The three sample principal components are

where and respectively.
Figure 8.5 shows the Q–Q plot for and Figure 8.6 shows the scatter plot of

The observation for the first turtle is circled and lies in the lower right cor-
ner of the scatter plot and in the upper right corner of the Q–Q plot; it may be sus-
pect. This point should have been checked for recording errors, or the turtle should
have been examined for structural anomalies. Apart from the first turtle, the scatter
plot appears to be reasonably elliptical.The plots for the other sets of principal com-
ponents do not indicate any substantial departures from normality. �

1yn1 , yn22.
yn2

x3 = ln 1height2,x2 = ln 1width2,x1 = ln 1length2,

 yn3 = - .7131x1 - 4.7252 + .6221x2 - 4.4782 + .3241x3 - 3.7032

 yn2 = - .1591x1 - 4.7252 - .5941x2 - 4.4782 + .7881x3 - 3.7032

 yn1 = .6831x1 - 4.7252 + .5101x2 - 4.4782 + .5231x3 - 3.7032

ynj q , Á , ynj p

yn j q
2

+
Á

+ yn j p
2 .

ynj p eNp ,ynj q eNq +
Áxj

Á
+ ynj, q - 1 eNq - 1ynj 1 eN1 + ynj 2 eN 2

eN 1 , eN 2 , Á , eNp

 = ynj 1 eN 1 + ynj 2 eN 2 +
Á

+ ynj p eNp

 xj = 1xœ

j eN 12 eN 1 + 1xœ

j eN 22 eN 2 +
Á

+ 1xœ

j eNp2 eNp
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Graphing the Principal Components

The diagnostics involving principal components apply equally well to the
checking of assumptions for a multivariate multiple regression model. In fact,
having fit any model by any method of estimation, it is prudent to consider the

or

(8-31)

for the multivariate linear model. Principal components, derived from the
covariance matrix of the residuals,

(8-32)

can be scrutinized in the same manner as those determined from a random
sample.You should be aware that there are linear dependencies among the residuals
from a linear regression analysis, so the last eigenvalues will be zero, within round-
ing error.

1
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–
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Figure 8.5 A Q–Q plot for the
second principal component from
the data on male turtles.

yn2

y1

1
–.03 –.01 .01 .03 .05 .07

–.3

–.1

.1

.3

ˆ

ŷ2

Figure 8.6 Scatter plot of the
principal components and of the
data on male turtles.
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Chapter 8 Principal Components

8.5 Large Sample Inferences
We have seen that the eigenvalues and eigenvectors of the covariance (correlation)
matrix are the essence of a principal component analysis. The eigenvectors deter-
mine the directions of maximum variability, and the eigenvalues specify the vari-
ances.When the first few eigenvalues are much larger than the rest, most of the total
variance can be “explained” in fewer than p dimensions.

In practice, decisions regarding the quality of the principal component
approximation must be made on the basis of the eigenvalue–eigenvector
pairs extracted from S or R. Because of sampling variation, these eigen-
values and eigenvectors will differ from their underlying population counter-
parts. The sampling distributions of and are difficult to derive and beyond
the scope of this book. If you are interested, you can find some of these deriva-
tions for multivariate normal populations in [1], [2], and [5]. We shall simply sum-
marize the pertinent large sample results.

Large Sample Properties of and 

Currently available results concerning large sample confidence intervals for and 
assume that the observations are a random sample from a normal
population. It must also be assumed that the (unknown) eigenvalues of are dis-
tinct and positive, so that The one exception is the case
where the number of equal eigenvalues is known. Usually the conclusions for dis-
tinct eigenvalues are applied, unless there is a strong reason to believe that has a
special structure that yields equal eigenvalues. Even when the normal assumption is
violated, the confidence intervals obtained in this manner still provide some indica-
tion of the uncertainty in and 

Anderson [2] and Girshick [5] have established the following large sample distribu-
tion theory for the eigenvalues = and eigenvectors of S:

1. Let be the diagonal matrix of eigenvalues of then 
is approximately 

2. Let

then is approximately 

3. Each is distributed independently of the elements of the associated 

Result 1 implies that, for n large, the are independently distributed. Moreover,
has an approximate distribution. Using this normal distribution, we

obtain = A large sample confi-
dence interval for is thus provided by

(8-33)
ln i

11 + z1a>2212>n 2
… li …

ln i

11 - z1a>2212>n 2
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10011 - a2%1 - a.P7 ƒ ln i - li ƒ … z1a>22li12>n8N1li , 2li
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Np10, Ei2.1n 1eN i - ei2

Ei = li a
p

k = 1
k Z i
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Á
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Large Sample Inferences

where is the upper th percentile of a standard normal distribution.
Bonferroni-type simultaneous intervals for are obtained by
replacing with (See Section 5.4.)

Result 2 implies that the are normally distributed about the corresponding
for large samples. The elements of each are correlated, and the correlation

depends to a large extent on the separation of the eigenvalues (which
is unknown) and the sample size n. Approximate standard errors for the coeffi-
cients are given by the square roots of the diagonal elements of where

is derived from by substituting for the and for the

Example 8.8 (Constructing a confidence interval for ) We shall obtain a 95% con-
fidence interval for the variance of the first population principal component,
using the stock price data listed in Table 8.4 in the Exercises.

Assume that the stock rates of return represent independent drawings from
an population, where is positive definite with distinct eigenvalues

Since is large, we can use (8-33) with to con-
struct a 95% confidence interval for From Exercise 8.10, and in addition,

Therefore, with 95% confidence,

�

Whenever an eigenvalue is large, such as 100 or even 1000, the intervals gener-
ated by (8-33) can be quite wide, for reasonable confidence levels, even though n is
fairly large. In general, the confidence interval gets wider at the same rate that 
gets larger. Consequently, some care must be exercised in dropping or retaining
principal components based on an examination of the 

Testing for the Equal Correlation Structure

The special correlation structure = or 
all is one important structure in which the eigenvalues of are not distinct
and the previous results do not apply.

To test for this structure, let

and

A test of versus may be based on a likelihood ratio statistic, but Lawley [14]
has demonstrated that an equivalent test procedure can be constructed from the off-
diagonal elements of R.

H1H0

H1  : R Z R0

H0  : R = R  

 0
1p * p2

= D1 r Á r

r 1 Á r

o o ∞ o
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T
�i Z k,

Corr 1Xi , Xk2 = r,1si i sk k r,Cov 1Xi , Xk2

ln i’s.
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 or .0011 … l1 … .0019

z1.0252 = 1.96.
ln1 = .0014l1 .
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Á
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Chapter 8 Principal Components

Lawley’s procedure requires the quantities

(8-34)

It is evident that is the average of the off-diagonal elements in the kth column (or
row) of R and is the overall average of the off-diagonal elements.

The large sample approximate -level test is to reject in favor of if

(8-35)

where is the upper th percentile of a chi-square distribution
with d.f.

Example 8.9 (Testing for equicorrelation structure) From Example 8.6, the sample
correlation matrix constructed from the post-birth weights of female 
mice is

We shall use this correlation matrix to illustrate the large sample test in (8-35).
Here and we set

Using (8-34) and (8-35), we obtain

 = .01277

+ 1.6329 - .685522 +
Á

+ 1.6625 - .685522
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Monitoring Quality with Principal Components

and

Since = the 5% critical value for the test in (8-35) is
The value of our test statistic is approximately equal to the large

sample 5% critical point, so the evidence against (equal correlations) is strong,
but not overwhelming.

As we saw in Example 8.6, the smallest eigenvalues and are slightly
different, with being somewhat smaller than the other two. Consequently, with
the large sample size in this problem, small differences from the equal correlation
structure show up as statistically significant. �

Assuming a multivariate normal population, a large sample test that all vari-
ables are independent (all the off-diagonal elements of are zero) is contained in
Exercise 8.9.

8.6 Monitoring Quality with Principal Components
In Section 5.6, we introduced multivariate control charts, including the quality ellipse
and the chart. Today, with electronic and other automated methods of data collec-
tion, it is not uncommon for data to be collected on 10 or 20 process variables. Major
chemical and drug companies report measuring over 100 process variables, including
temperature, pressure, concentration, and weight, at various positions along the pro-
duction process. Even with 10 variables to monitor, there are 45 pairs for which to cre-
ate quality ellipses. Clearly, another approach is required to both visually display
important quantities and still have the sensitivity to detect special causes of variation.

Checking a Given Set of Measurements for Stability

Let be a random sample from a multivariate normal distribution with
mean and covariance matrix We consider the first two sample principal compo-
nents, and Additional principal components
could be considered, but two are easier to inspect visually and, of any two components,
the first two explain the largest cumulative proportion of the total sample variance.

If a process is stable over time, so that the measured characteristics are influ-
enced only by variations in common causes, then the values of the first two principal
components should be stable. Conversely, if the principal components remain stable
over time, the common effects that influence the process are likely to remain con-
stant. To monitor quality using principal components, we consider a two-part proce-
dure. The first part of the procedure is to construct an ellipse format chart for the
pairs of values for j = 1, 2, Á , n.1ynj 1 , ynj 22

ynj 2 = eN œ

21xj - x–2.ynj 1 = eN œ

11xj - x–2
�.M
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�

ln4

ln4ln2 , ln3 ,

H0

x5
21.052 = 11.07.
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11 - .685522
 7.01277 - 12.13292 1.0024528 = 11.4

 gn =
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4 - 14 - 22 11 - .685522

= 2.1329

 a
4

k = 1
 1r–k - r–22 = 1.6731 - .685522 +

Á
+ 1.6791 - .685522 = .00245
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Chapter 8 Principal Components

By (8-20), the sample variance of the first principal component is given by the
largest eigenvalue and the sample variance of the second principal component 
is the second-largest eigenvalue The two sample components are uncorrelated,
so the quality ellipse for n large (see Section 5.6) reduces to the collection of pairs of
possible values such that

(8-36)

Example 8.10 (An ellipse format chart based on the first two principal components)
Refer to the police department overtime data given in Table 5.8. Table 8.1 contains
the five normalized eigenvectors and eigenvalues of the sample covariance matrix S.

The first two sample components explain 82% of the total variance.
The sample values for all five components are displayed in Table 8.2.

yn1
2

ln1

+

yn2
2

ln2

… x2
21a2

1yn1 , yn22

ln2 .
yn2ln1 ,

yn1

Table 8.1 Eigenvectors and Eigenvalues of Sample Covariance Matrix for 
Police Department Data

Variable

Appearances overtime .046 .629 .432
Extraordinary event .039 .985

Holdover hours .107 .582 .250
COA hours .734 .069 .503 .397

Meeting hours .107 .081 .586 .784

2,770,226 1,429,206 628,129 221,138 99,824ln i

- .1551x52
- .2131x42
- .392- .6581x32
- .007- .151- .0771x22

- .643- .0481x12

eN 5eN 4eN 3eN2eN 1

Table 8.2 Values of the Principal Components for 
the Police Department Data

Period

1 2044.9 588.2 425.8
2 883.6
3 707.5 736.3 38.2
4 450.5 443.7
5 115.7 296.4 437.5
6 563.2 281.2 620.5 142.7
7 403.1 66.8 340.6 521.2
8 61.6
9 132.8 563.7 125.3 68.2 611.5

10 7.8 169.4
11 283.4 3936.9 276.2
12 761.6 256.0 28.2
13 244.7 966.5 182.6
14 2366.2 270.6
15 1917.8
16 2187.7 170.1 -250.2-84.1-373.8

-89.9-196.8-82.9-782.0
-344.9-165.5-1193.7

-1142.3-498.3
-418.8-2153.6

-159.6-0.9
-202.3-213.4-2787.3

-148.8-1437.3-801.8-1988.9
-135.5

-1045.4
-545.7-878.6

-325.3-184.0-2186.2
-464.6-177.8

-441.5-565.9-686.2-2143.7
-209.8-189.1

ynj 5ynj 4ynj 3ynj 2ynj 1
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Monitoring Quality with Principal Components

Let us construct a 95% ellipse format chart using the first two sample principal
components and plot the 16 pairs of component values in Table 8.2.

Although is not large, we use and the ellipse becomes

This ellipse centered at (0, 0), is shown in Figure 8.7, along with the data.
One point is out of control, because the second principal component for this

point has a large value. Scanning Table 8.2, we see that this is the value 3936.9 for pe-
riod 11. According to the entries of in Table 8.1, the second principal component
is essentially extraordinary event overtime hours.The principal component approach
has led us to the same conclusion we came to in Example 5.9. �

In the event that special causes are likely to produce shocks to the system, the
second part of our two-part procedure—that is, a second chart—is required. This
chart is created from the information in the principal components not involved in
the ellipse format chart.

Consider the deviation vector and assume that X is distributed as
Even without the normal assumption, can be expressed as the

sum of its projections on the eigenvectors of 
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Figure 8.7 The 95% control ellipse
based on the first two principal
components of overtime hours.
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or

(8-37)

where is the population ith principal component centered to have
mean 0. The approximation to by the first two principal components has the
form This leaves an unexplained component of

Let be the orthogonal matrix whose columns are the eigenvec-
tors of The orthogonal transformation of the unexplained part,

so the last principal components are obtained as an orthogonal transformation
of the approximation errors. Rather than base the chart on the approximation
errors, we can, equivalently, base it on these last principal components. Recall that

and for Consequently, the statistic based
on the last population principal components, becomes

(8-38)

This is just the sum of the squares of independent standard normal variables,
and so has a chi-square distribution with degrees of freedom.

In terms of the sample data, the principal components and eigenvalues must be
estimated. Because the coefficients of the linear combinations are also estimates,
the principal components do not have a normal distribution even when the popula-
tion is normal. However, it is customary to create a -chart based on the statistic

which involves the estimated eigenvalues and vectors. Further, it is usual to appeal
to the large sample approximation described by (8-38) and set the upper control
limit of the -chart as 

This -statistic is based on high-dimensional data. For example, when 
variables are measured, it uses the information in the 18-dimensional space perpen-
dicular to the first two eigenvectors and Still, this based on the unexplained
variation in the original observations is reported as highly effective in picking up
special causes of variation.
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Monitoring Quality with Principal Components

Example 8.11 (A -chart for the unexplained [orthogonal] overtime hours)
Consider the quality control analysis of the police department overtime hours in
Example 8.10. The first part of the quality monitoring procedure, the quality ellipse
based on the first two principal components, was shown in Figure 8.7. To illustrate
the second step of the two-step monitoring procedure, we create the chart for the
other principal components.

Since this chart is based on dimensions, and the upper control
limit is Using the eigenvalues and the values of the principal com-
ponents, given in Example 8.10, we plot the time sequence of values

where the first value is and so on. The -chart is shown in Figure 8.8.T2T2
= .891

Tj
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yn j 3
2

ln3

+

yn j 4
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ln4
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5 - 2 = 3p = 5,
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Figure 8.8 A -chart based on the last three principal components of overtime hours.T2

Since points 12 and 13 exceed or are near the upper control limit, something has
happened during these periods. We note that they are just beyond the period in
which the extraordinary event overtime hours peaked.

From Table 8.2, is large in period 12, and from Table 8.1, the large coefficients
in belong to legal appearances, holdover, and COA hours. Was there some adjust-
ing of these other categories following the period extraordinary hours peaked? �

Controlling Future Values
Previously, we considered checking whether a given series of multivariate observa-
tions was stable by considering separately the first two principal components and
then the last Because the chi-square distribution was used to approximate
the UCL of the -chart and the critical distance for the ellipse format chart, no fur-
ther modifications are necessary for monitoring future values.

T2
p - 2.

e3

yn3 j
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Chapter 8 Principal Components

Example 8.12 (Control ellipse for future principal components) In Example 8.10, we
determined that case 11 was out of control. We drop this point and recalculate the
eigenvalues and eigenvectors based on the covariance of the remaining 15 observa-
tions. The results are shown in Table 8.3.

Table 8.3 Eigenvectors and Eigenvalues from the 15 Stable Observations

Appearances overtime .049 .629 .304 .479 .530
Extraordinary event .007 .939

Holdover hours .582
COA hours .731 .503

Meeting hours .081 .632

2,964,749.9 672,995.1 396,596.5 194,401.0 92,760.3ln i

- .752- .058- .1591x52
- .291- .336- .1231x42
- .437- .158- .089- .6621x32
- .212- .260- .0781x22

1x12

eN 5eN 4eN 3eN 2eN 1

�5000 �2000 0 2000 4000

�
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�
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00

10
00

0
30

00

y1
ˆ

y 2ˆ

Figure 8.9 A 99% ellipse
format chart for the first two
principal components of
future values of overtime.

The principal components have changed. The component consisting primarily of
extraordinary event overtime is now the third principal component and is not includ-
ed in the chart of the first two. Because our initial sample size is only 16, dropping a
single case can make a substantial difference. Usually, at least 50 or more observa-
tions are needed, from stable operation of the process, in order to set future limits.

Figure 8.9 gives the 99% prediction (8-36) ellipse for future pairs of values for
the new first two principal components of overtime. The 15 stable pairs of principal
components are also shown. �
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Monitoring Quality with Principal Components

In some applications of multivariate control in the chemical and pharmaceutical
industries, more than 100 variables are monitored simultaneously.These include nu-
merous process variables as well as quality variables.Typically, the space orthogonal
to the first few principal components has a dimension greater than 100 and some of
the eigenvalues are very small. An alternative approach (see [13]) to constructing a
control chart, that avoids the difficulty caused by dividing a small squared principal
component by a very small eigenvalue, has been successfully applied. To implement
this approach, we proceed as follows.

For each stable observation, take the sum of squares of its unexplained component

Note that, by inserting we also have

which is just the sum of squares of the neglected principal components.
Using either form, the are plotted versus j to create a control chart. The

lower limit of the chart is 0 and the upper limit is set by approximating the distribu-
tion of as the distribution of a constant c times a chi-square random variable with

degrees of freedom.
For the chi-square approximation, the constant c and degrees of freedom are

chosen to match the sample mean and variance of the In particu-
lar, we set

and determine

The upper control limit is then where or .01.a = .05cxn
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THE GEOMETRY OF THE SAMPLE
PRINCIPAL COMPONENT
APPROXIMATION

In this supplement, we shall present interpretations for approximations to the data
based on the first r sample principal components. The interpretations of both the
p-dimensional scatter plot and the n-dimensional representation rely on the algebraic
result that follows. We consider approximations of the form =

to the mean corrected data matrix

The error of approximation is quantified as the sum of the np squared errors

(8A-1)

Result 8A.1 Let be any matrix with rank(A) Let =

where is the ith eigenvector of S. The error of approximation sum
of squares in (8A-1) is minimized by the choice

so the jth column of its transpose is
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The Geometry of the Sample Principal Component Approximation

where

are the values of the first r sample principal components for the jth unit. Moreover,

where are the smallest eigenvalues of S.

Proof. Consider first any A whose transpose has columns that are a linear
combination of a fixed set of r perpendicular vectors so that
U = satisfies For fixed U, is best approximated by
its projection on the space spanned by (see Result 2A.3), or

(8A-2)

This follows because, for an arbitrary vector 

so the error sum of squares is

where the cross product vanishes because = =

The last term is positive unless is chosen so that =

and = is the projection of on the plane.
Further, with the choice = (8A-1) becomes

(8A-3)

We are now in a position to minimize the error over choices of U by maximizing the
last term in (8A-3). By the properties of trace (see Result 2A.12),
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Chapter 8 Principal Components

That is, the best choice for U maximizes the sum of the diagonal elements of 
From (8-19), selecting to maximize the first diagonal element of gives

For perpendicular to is maximized by [See (2-52).] Continuing,
we find that = = and = as
asserted.

With this choice the ith diagonal element of is = = so 

= Also, =

= = Let in (8A-3), and the 
error bound follows. �

The p-Dimensional Geometrical Interpretation

The geometrical interpretations involve the determination of best approximating
planes to the p-dimensional scatter plot. The plane through the origin, determined
by consists of all points x with

This plane, translated to pass through a, becomes for some b.
We want to select the r-dimensional plane that minimizes the sum of 

squared distances between the observations and the plane. If is approxi-

mated by with =
5 then

by Result 8A.1, since = has rank The lower bound is
reached by taking so the plane passes through the sample mean.This plane is
determined by The coefficients of are = the kth
sample principal component evaluated at the jth observation.

The approximating plane interpretation of sample principal components is
illustrated in Figure 8.10.

An alternative interpretation can be given. The investigator places a plane
through and moves it about to obtain the largest spread among the shadows of thex–

ynj k ,eN œ

k1xj - x–2eNkeN2 , Á , eN r .eN1 ,
a = x–,

 1A2 … r.A¿7Ub1 , Á , Ubn8
 Ú a

n

j = 1
 1xj - x– - EN r EN œ

r1xj - x–22œ 1xj - x– - EN r EN œ

r1xj - x–22

 = a
n

j = 1
 1xj - x– - Ubj2

œ

 1xj - x– - Ubj2 + n1x– - a2œ 1x– - a2

 = a
n

j = 1
 1xj - x– - Ubj + x– - a2œ 1xj - x– - Ubj + x– - a2

a
n

j = 1
 1xj - a - Ubj2¿  1xj - a - Ubj2

0,a
n

j = 1
 bja + Ubj

xjxja
n

j = 1
 dj

2

a + Ub
a + Ub

x = b1 u1 + b2 u2 +
Á

+ br ur = Ub,  for some b

u2 , Á , ur ,u1 ,

U = UN1n - 12 1ln1 + ln2 +
Á

+ lnp2.1n - 12 tr 1S2

tr ca
n

j = 1
 1xj - x–2 1xj - x–2œ d1xj - x–2a

n

j = 1
 1xj - x–2œln1 + ln2 +

Á
+ lnr .tr 7UN ¿  SUN 8 ln ieN œ

i 1l
n

i eN i2eN œ

i  S eN iUN ¿  SUN

x2 - x–, Á , xn - x–8,EN r EN œ

r7x1 - x–,AN ¿EN r7eN 1 , eN2 , Á , eN r8UN
eN 2 .uœ

2 Su2eN 1 ,u2u1 = eN1 .
U¿  SU,uœ

1 Su1 ,u1

U¿  SU.

5 If = use = ± = a*
+ Ubj

… .U1bj - b
–
21a + Ub

–
2a + Ubjnb

–
Z 0,a

n

j = 1
 bj

468



The Geometry of the Sample Principal Component Approximation

observations. From (8A-2), the projection of the deviation on the plane Ub is
= Now, and the sum of the squared lengths of the projection

deviations

is maximized by Also, since 

and this plane also maximizes the total variance

The n-Dimensional Geometrical Interpretation

Let us now consider, by columns, the approximation of the mean-centered data
matrix by A. For the ith column is approxi-
mated by a multiple of a fixed vector = The square of the
length of the error of approximation is

Considering to be of rank one, we conclude from Result 8A.1 that
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Chapter 8 Principal Components

minimizes the sum of squared lengths That is, the best direction is determined 

by the vector of values of the first principal component. This is illustrated in
Figure 8.11(a). Note that the longer deviation vectors (the larger ’s) have the most 

influence on the minimization of 

If the variables are first standardized, the resulting vector 
has length for all variables, and each

vector exerts equal influence on the choice of direction. [See Figure 8.11(b).]
In either case, the vector b is moved around in n-space to minimize the sum of 

the squares of the distances In the former case is the squared distance  

between and its projection on the line determined
by b. The second principal component minimizes the same quantity among all
vectors perpendicular to the first choice.

Exercises

8.1. Determine the population principal components and for the covariance matrix

Also, calculate the proportion of the total population variance explained by the first
principal component.

8.2. Convert the covariance matrix in Exercise 8.1 to a correlation matrix 

(a) Determine the principal components and from and compute the proportion
of total population variance explained by Y1 .
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Exercises

(b) Compare the components calculated in Part a with those obtained in Exercise 8.1.
Are they the same? Should they be?

(c) Compute the correlations and 

8.3. Let

Determine the principal components and What can you say about the eigen-
vectors (and principal components) associated with eigenvalues that are not distinct?

8.4. Find the principal components and the proportion of the total population variance
explained by each when the covariance matrix is

8.5. (a) Find the eigenvalues of the correlation matrix

Are your results consistent with (8-16) and (8-17)?

(b) Verify the eigenvalue–eigenvector pairs for the matrix given in (8-15).

8.6. Data on and profits for the 10 largest companies in the world were
listed in Exercise 1.4 of Chapter 1.
From Example 4.12

(a) Determine the sample principal components and their variances for these data. (You
may need the quadratic formula to solve for the eigenvalues of S.)

(b) Find the proportion of the total sample variance explained by 

(c) Sketch the constant density ellipse and indicate the
principal components and on your graph.

(d) Compute the correlation coefficients What interpretation, if any, can
you give to the first principal component?

8.7. Convert the covariance matrix S in Exercise 8.6 to a sample correlation matrix R.

(a) Find the sample principal components and their variances.

(b) Compute the proportion of the total sample variance explained by 

(c) Compute the correlation coefficients Interpret 

(d) Compare the components obtained in Part a with those obtained in Exercise 8.6(a).
Given the original data displayed in Exercise 1.4, do you feel that it is better to
determine principal components from the sample covariance matrix or sample
correlation matrix? Explain.
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Chapter 8 Principal Components

8.8. Use the results in Example 8.5.

(a) Compute the correlations for and Do these correla-
tions reinforce the interpretations given to the first two components? Explain.

(b) Test the hypothesis

versus

at the 5% level of significance. List any assumptions required in carrying out this test.

8.9. (A test that all variables are independent.)

(a) Consider that the normal theory likelihood ratio test of is the diagonal matrix

Show that the test is as follows: Reject if

For a large sample size, is approximately Bartlett [3] suggests that
the test statistic be used in place of This
results in an improved chi-square approximation. The large sample critical point is

Note that testing is the same as testing 

(b) Show that the likelihood ratio test of rejects if

For a large sample size, Bartlett [3] suggests that

is approximately Thus, the large sample critical point is
This test is called a sphericity test, because the constant density

contours are spheres when � = s2
 I.
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Exercises

Hint:

(a) is given by (5-10), and is the product of the univariate 

likelihoods, Hence � 

and = The divisor n cancels in so S may be used.

(b) Verify = under Again,

the divisors n cancel in the statistic, so S may be used. Use Result 5.2 to calculate the
chi-square degrees of freedom.

The following exercises require the use of a computer.

8.10. The weekly rates of return for five stocks listed on the New York Stock Exchange are given
in Table 8.4. (See the stock-price data on the following website: www.prenhall.com/statistics.)

(a) Construct the sample covariance matrix S, and find the sample principal components
in (8-20). (Note that the sample mean vector is displayed in Example 8.5.)

(b) Determine the proportion of the total sample variance explained by the first three
principal components. Interpret these components.

(c) Construct Bonferroni simultaneous 90% confidence intervals for the variances
and of the first three population components and 

(d) Given the results in Parts a–c, do you feel that the stock rates-of-return data can be
summarized in fewer than five dimensions? Explain.
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Table 8.4 Stock-Price Data (Weekly Rate Of Return)

J P Wells Royal Exxon
Week Morgan Citibank Fargo Dutch Shell Mobil

1 0.01303 0.00784 0.00319 0.04477 0.00522
2 0.00849 0.01669 0.01196 0.01349
3 0.01792 0.00864 0.01004 0 0.00614
4 0.02156 0.00349 0.01744 0.02859 0.00695
5 0.01082 0.00372 0.01013 0.02919 0.04098
6 0.01017 0.01220 0.00838 0.01371 0.00299
7 0.01113 0.02800 0.00807 0.03054 0.00323
8 0.04848 0.00515 0.01825 0.00633 0.00768
9 0.03449 0.01380 0.00805 0.02990 0.01081

10 0.00466 0.02099 0.00608 0.02039 0.01267

94 0.03732 0.03593 0.02528 0.05819 0.01697
95 0.02380 0.00311 0.00688 0.01225 0.02817
96 0.02568 0.05253 0.04070 0.03166 0.01885
97 0.00606 0.00863 0.00584 0.04456 0.03059
98 0.02174 0.02296 0.02920 0.00844 0.03193
99 0.00337 0.01531 0.02382 0.00167 0.01723

100 0.00336 0.00290 0.00305 0.00122 0.00970
101 0.01701 0.00951 0.01820 0.01618 0.00756
102 0.01039 0.00266 0.00443 0.00248 0.01645
103 0.01279 0.01437 0.01874 0.00498 0.01637-----

---

--

---

----

-

--

-

oooooo

----

-----

-

--

-
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---

-0.00621
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Chapter 8 Principal Components

8.11. Consider the census-tract data listed in Table 8.5. Suppose the observations on
value home were recorded in ten thousands, rather than hundred thousands,

of dollars; that is, multiply all the numbers listed in the sixth column of the table by 10.

(a) Construct the sample covariance matrix S for the census-tract data when
value home is recorded in ten thousands of dollars. (Note that this

covariance matrix can be obtained from the covariance matrix given in Example 8.3
by multiplying the off-diagonal elements in the fifth column and row by 10 and the
diagonal element by 100. Why?)

(b) Obtain the eigenvalue–eigenvector pairs and the first two sample principal compo-
nents for the covariance matrix in Part a.

(c) Compute the proportion of total variance explained by the first two principal
components obtained in Part b. Calculate the correlation coefficients, and
interpret these components if possible. Compare your results with the results in
Example 8.3. What can you say about the effects of this change in scale on the
principal components?

8.12. Consider the air-pollution data listed in Table 1.5. Your job is to summarize these data in
fewer than dimensions if possible. Conduct a principal component analysis of the
data using both the covariance matrix S and the correlation matrix R. What have you
learned? Does it make any difference which matrix is chosen for analysis? Can the data be
summarized in three or fewer dimensions? Can you interpret the principal components?

p = 7

ry
n i, xk

,

s5 5

X5 = median

X5 = median

Table 8.5 Census-tract Data

Total Professional Employed Government Median 
population degree age over 16 employment home value

Tract (thousands) (percent) (percent) (percent) ($100,000)

1 2.67 5.71 69.02 30.3 1.48
2 2.25 4.37 72.98 43.3 1.44
3 3.12 10.27 64.94 32.0 2.11
4 5.14 7.44 71.29 24.5 1.85
5 5.54 9.25 74.94 31.0 2.23
6 5.04 4.84 53.61 48.2 1.60
7 3.14 4.82 67.00 37.6 1.52
8 2.43 2.40 67.20 36.8 1.40
9 5.38 4.30 83.03 19.7 2.07

10 7.34 2.73 72.60 24.5 1.42

52 7.25 1.16 78.52 23.6 1.50
53 5.44 2.93 73.59 22.3 1.65
54 5.83 4.47 77.33 26.2 2.16
55 3.74 2.26 79.70 20.2 1.58
56 9.21 2.36 74.58 21.8 1.72
57 2.14 6.30 86.54 17.4 2.80
58 6.62 4.79 78.84 20.0 2.33
59 4.24 5.82 71.39 27.1 1.69
60 4.72 4.71 78.01 20.6 1.55
61 6.48 4.93 74.23 20.9 1.98

Note: Observations from adjacent census tracts are likely to be correlated. That is, these 61 observations may not
constitute a random sample. Complete data set available at www.prenhall.com/statistics.
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8.13. In the radiotherapy data listed in Table 1.7 (see also the radiotherapy data on the 
website www.prenhall.com/statistics), the observations on variables rep-
resent patients’ reactions to radiotherapy.

(a) Obtain the covariance and correlation matrices S and R for these data.

(b) Pick one of the matrices S or R (justify your choice), and determine the eigenval-
ues and eigenvectors. Prepare a table showing, in decreasing order of size, the per-
cent that each eigenvalue contributes to the total sample variance.

(c) Given the results in Part b, decide on the number of important sample principal
components. Is it possible to summarize the radiotherapy data with a single reaction-
index component? Explain.

(d) Prepare a table of the correlation coefficients between each principal component
you decide to retain and the original variables. If possible, interpret the components.

8.14. Perform a principal component analysis using the sample covariance matrix of the
sweat data given in Example 5.2. Construct a Q–Q plot for each of the important
principal components. Are there any suspect observations? Explain.

8.15. The four sample standard deviations for the postbirth weights discussed in Example 8.6
are

Use these and the correlations given in Example 8.6 to construct the sample covariance
matrix S. Perform a principal component analysis using S.

8.16. Over a period of five years in the 1990s, yearly samples of fishermen on 28 lakes in
Wisconsin were asked to report the time they spent fishing and how many of each 
type of game fish they caught. Their responses were then converted to a catch rate per
hour for

The estimated correlation matrix (courtesy of Jodi Barnet)

is based on a sample of about 120. (There were a few missing values.)
Fish caught by the same fisherman live alongside of each other, so the data should

provide some evidence on how the fish group. The first four fish belong to the centrar-
chids, the most plentiful family. The walleye is the most popular fish to eat.

(a) Comment on the pattern of correlation within the centrarchid family through 
Does the walleye appear to group with the other fish?

(b) Perform a principal component analysis using only through Interpret your
results.

(c) Perform a principal component analysis using all six variables. Interpret your results.

x4 .x1

x4 .x1

R = F
1 .4919 .2636 .4653 - .2277 .0652

.4919 1 .3127 .3506 - .1917 .2045

.2635 .3127 1 .4108 .0647 .2493

.4653 .3506 .4108 1 - .2249 .2293
- .2277 - .1917 .0647 - .2249 1 - .2144

.0652 .2045 .2493 .2293 - .2144 1

V

 x4 = Largemouth bass  x5 = Walleye  x6 = Northern pike

 x1 = Bluegill  x2 = Black crappie  x3 = Smallmouth bass

1s1 1 = 32.9909, 1s2 2 = 33.5918, 1s3 3 = 36.5534, and 1s4 4 = 37.3517

p = 6n = 98
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Chapter 8 Principal Components

8.17. Using the data on bone mineral content in Table 1.8, perform a principal component
analysis of S.

8.18. The data on national track records for women are listed in Table 1.9.

(a) Obtain the sample correlation matrix R for these data, and determine its eigenvalues
and eigenvectors.

(b) Determine the first two principal components for the standardized variables. Pre-
pare a table showing the correlations of the standardized variables with the compo-
nents, and the cumulative percentage of the total (standardized) sample variance
explained by the two components.

(c) Interpret the two principal components obtained in Part b. (Note that the first
component is essentially a normalized unit vector and might measure the athlet-
ic excellence of a given nation. The second component might measure the rela-
tive strength of a nation at the various running distances.)

(d) Rank the nations based on their score on the first principal component. Does this
ranking correspond with your inituitive notion of athletic excellence for the various
countries?

8.19. Refer to Exercise 8.18. Convert the national track records for women in Table 1.9 to
speeds measured in meters per second. Notice that the records for 800 m, 1500 m,
3000 m, and the marathon are given in minutes. The marathon is 26.2 miles, or 
42,195 meters, long. Perform a principal components analysis using the covariance
matrix S of the speed data. Compare the results with the results in Exercise 8.18. Do
your interpretations of the components differ? If the nations are ranked on the basis of
their score on the first principal component, does the subsequent ranking differ from
that in Exercise 8.18? Which analysis do you prefer? Why?

8.20. The data on national track records for men are listed in Table 8.6. (See also the data
on national track records for men on the website www.prenhall.com/statistics) Repeat
the principal component analysis outlined in Exercise 8.18 for the men. Are the results
consistent with those obtained from the women’s data?

8.21. Refer to Exercise 8.20. Convert the national track records for men in Table 8.6 to speeds
measured in meters per second. Notice that the records for 800 m, 1500 m, 5000 m,
10,000 m and the marathon are given in minutes. The marathon is 26.2 miles, or
42,195 meters, long. Perform a principal component analysis using the covariance matrix
S of the speed data. Compare the results with the results in Exercise 8.20.Which analysis
do you prefer? Why?

8.22. Consider the data on bulls in Table 1.10. Utilizing the seven variables YrHgt, FtFrBody,
PrctFFB, Frame, BkFat, SaleHt, and SaleWt, perform a principal component analysis
using the covariance matrix S and the correlation matrix R.Your analysis should include
the following:

(a) Determine the appropriate number of components to effectively summarize the
sample variability. Construct a scree plot to aid your determination.

(b) Interpret the sample principal components.

(c) Do you think it is possible to develop a “body size” or “body configuration” index
from the data on the seven variables above? Explain.

(d) Using the values for the first two principal components, plot the data in a two-
dimensional space with along the vertical axis and along the horizontal axis.
Can you distinguish groups representing the three breeds of cattle? Are there any
outliers?

(e) Construct a Q–Q plot using the first principal component. Interpret the plot.

yn2yn1
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Table 8.6 National Track Records for Men

100 m 200 m 400 m 800 m 1500 m 5000 m 10,000 m Marathon
Country (s) (s) (s) (min) (min) (min) (min) (min)

Argentina 10.23 20.37 46.18 1.77 3.68 13.33 27.65 129.57
Australia 9.93 20.06 44.38 1.74 3.53 12.93 27.53 127.51
Austria 10.15 20.45 45.80 1.77 3.58 13.26 27.72 132.22
Belgium 10.14 20.19 45.02 1.73 3.57 12.83 26.87 127.20
Bermuda 10.27 20.30 45.26 1.79 3.70 14.64 30.49 146.37
Brazil 10.00 19.89 44.29 1.70 3.57 13.48 28.13 126.05
Canada 9.84 20.17 44.72 1.75 3.53 13.23 27.60 130.09
Chile 10.10 20.15 45.92 1.76 3.65 13.39 28.09 132.19
China 10.17 20.42 45.25 1.77 3.61 13.42 28.17 129.18
Columbia 10.29 20.85 45.84 1.80 3.72 13.49 27.88 131.17
Cook Islands 10.97 22.46 51.40 1.94 4.24 16.70 35.38 171.26
Costa Rica 10.32 20.96 46.42 1.87 3.84 13.75 28.81 133.23
Czech Republic 10.24 20.61 45.77 1.75 3.58 13.42 27.80 131.57
Denmark 10.29 20.52 45.89 1.69 3.52 13.42 27.91 129.43
DominicanRepublic 10.16 20.65 44.90 1.81 3.73 14.31 30.43 146.00
Finland 10.21 20.47 45.49 1.74 3.61 13.27 27.52 131.15
France 10.02 20.16 44.64 1.72 3.48 12.98 27.38 126.36
Germany 10.06 20.23 44.33 1.73 3.53 12.91 27.36 128.47
Great Britain 9.87 19.94 44.36 1.70 3.49 13.01 27.30 127.13
Greece 10.11 19.85 45.57 1.75 3.61 13.48 28.12 132.04
Guatemala 10.32 21.09 48.44 1.82 3.74 13.98 29.34 132.53
Hungary 10.08 20.11 45.43 1.76 3.59 13.45 28.03 132.10
India 10.33 20.73 45.48 1.76 3.63 13.50 28.81 132.00
Indonesia 10.20 20.93 46.37 1.83 3.77 14.21 29.65 139.18
Ireland 10.35 20.54 45.58 1.75 3.56 13.07 27.78 129.15
Israel 10.20 20.89 46.59 1.80 3.70 13.66 28.72 134.21
Italy 10.01 19.72 45.26 1.73 3.35 13.09 27.28 127.29
Japan 10.00 20.03 44.78 1.77 3.62 13.22 27.58 126.16
Kenya 10.28 20.43 44.18 1.70 3.44 12.66 26.46 124.55
Korea, South 10.34 20.41 45.37 1.74 3.64 13.84 28.51 127.20
Korea, North 10.60 21.23 46.95 1.82 3.77 13.90 28.45 129.26
Luxembourg 10.41 20.77 47.90 1.76 3.67 13.64 28.77 134.03
Malaysia 10.30 20.92 46.41 1.79 3.76 14.11 29.50 149.27
Mauritius 10.13 20.06 44.69 1.80 3.83 14.15 29.84 143.07
Mexico 10.21 20.40 44.31 1.78 3.63 13.13 27.14 127.19
Myanmar(Burma) 10.64 21.52 48.63 1.80 3.80 14.19 29.62 139.57
Netherlands 10.19 20.19 45.68 1.73 3.55 13.22 27.44 128.31
New Zealand 10.11 20.42 46.09 1.74 3.54 13.21 27.70 128.59
Norway 10.08 20.17 46.11 1.71 3.62 13.11 27.54 130.17
Papua New Guinea 10.40 21.18 46.77 1.80 4.00 14.72 31.36 148.13
Philippines 10.57 21.43 45.57 1.80 3.82 13.97 29.04 138.44
Poland 10.00 19.98 44.62 1.72 3.59 13.29 27.89 129.23
Portugal 9.86 20.12 46.11 1.75 3.50 13.05 27.21 126.36
Romania 10.21 20.75 45.77 1.76 3.57 13.25 27.67 132.30
Russia 10.11 20.23 44.60 1.71 3.54 13.20 27.90 129.16
Samoa 10.78 21.86 49.98 1.94 4.01 16.28 34.71 161.50
Singapore 10.37 21.14 47.60 1.84 3.86 14.96 31.32 144.22
Spain 10.17 20.59 44.96 1.73 3.48 13.04 27.24 127.23
Sweden 10.18 20.43 45.54 1.76 3.61 13.29 27.93 130.38
Switzerland 10.16 20.41 44.99 1.71 3.53 13.13 27.90 129.56
Taiwan 10.36 20.81 46.72 1.79 3.77 13.91 29.20 134.35
Thailand 10.23 20.69 46.05 1.81 3.77 14.25 29.67 139.33
Turkey 10.38 21.04 46.63 1.78 3.59 13.45 28.33 130.25
U.S.A. 9.78 19.32 43.18 1.71 3.46 12.97 27.23 125.38

Source: IAAF/ATES Track and Field Statistics Handbook for the Helsinki 2005 Olympics. Courtesy of Ottavio Castellini.
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Chapter 8 Principal Components

8.23. A naturalist for the Alaska Fish and Game Department studies grizzly bears with the
goal of maintaining a healthy population. Measurements on bears provided the
following summary statistics:

Variable Weight Body Neck Girth Head Head
(kg) length (cm) (cm) length width

(cm) (cm) (cm)

Sample
mean 95.52 164.38 55.69 93.39 17.98 31.13

Covariance matrix

(a) Perform a principal component analysis using the covariance matrix. Can the data
be effectively summarized in fewer than six dimensions?

(b) Perform a principal component analysis using the correlation matrix.
(c) Comment on the similarities and differences between the two analyses.

8.24. Refer to Example 8.10 and the data in Table 5.8, page 240.Add the variable regular
overtime hours whose values are (read across)

6187 7336 6988 6964 8425 6778 5922 7307

7679 8259 10954 9353 6291 4969 4825 6019

and redo Example 8.10.

8.25. Refer to the police overtime hours data in Example 8.10. Construct an alternate control
chart, based on the sum of squares to monitor the unexplained variation in the orig-
inal observations summarized by the additional principal components.

8.26. Consider the psychological profile data in Table 4.6. Using the five variables, Indep, Supp,
Benev, Conform and Leader, performs a principal component analysis using the covari-
ance matrix S and the correlation matrix R. Your analysis should include the following:
(a) Determine the appropriate number of components to effectively summarize the

variability. Construct a scree plot to aid in your determination.
(b) Interpret the sample principal components.
(c) Using the values for the first two principal components, plot the data in a two-

dimensional space with along the vertical axis and along the horizontal axis.
Can you distinguish groups representing the two socioeconomic levels and/or the
two genders? Are there any outliers?

(d) Construct a 95% confidence interval for the variance of the first population
principal component from the covariance matrix.

8.27. The pulp and paper properties data is given in Table 7.7. Using the four paper variables,
BL (breaking length), EM (elastic modulus), SF (Stress at failure) and BS (burst
strength), perform a principal component analysis using the covariance matrix S and the
correlation matrix R. Your analysis should include the following:
(a) Determine the appropriate number of components to effectively summarize the

variability. Construct a scree plot to aid in your determination.

l1,

yn2yn1
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S = F
3266.46 1343.97 731.54 1175.50 162.68 238.37
1343.97 721.91 324.25 537.35 80.17 117.73

731.54 324.25 179.28 281.17 39.15 56.80
1175.50 537.35 281.17 474.98 63.73 94.85

162.68 80.17 39.15 63.73 9.95 13.88
238.37 117.73 56.80 94.85 13.88 21.26

V
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(b) Interpret the sample principal components.
(c) Do you think it it is possible to develop a “paper strength” index that effectively con-

tains the information in the four paper variables? Explain.
(d) Using the values for the first two principal components, plot the data in a two-

dimensional space with along the vertical axis and along the horizontal axis.
Identify any outliers in this data set.

8.28. Survey data were collected as part of a study to assess options for enhancing food secu-
rity through the sustainable use of natural resources in the Sikasso region of Mali (West
Africa).A total of farmers were surveyed and observations on the nine variables

were recorded.The data are listed in Table 8.7 and on the website www.prenhall.com/statistics
(a) Construct two-dimensional scatterplots of Family versus DistRd, and DistRd versus

Cattle. Remove any obvious outliers from the data set.

 x8 = Cattle (total); x9 = Goats (total)

 x7 = Bull (total number of bullocks or draft animals)

 x6 = Millet (hectares of millet planted in year 2000)

 x5 = Sorg (hectares of sorghum planted in year 2000)

 x4 = Maize (hectares of maize planted in year 2000)

 x3 = Cotton (hectares of cotton planted in year 2000)

 x2 = DistRd (distance in kilometers to nearest passable road)

 x1 = Family (total number of individuals in household)

n = 76

yn2yn1

Table 8.7 Mali Family Farm Data

Family DistRD Cotton Maize Sorg Millet Bull Cattle Goats

12 80 1.5 1.00 3.0 .25 2 0 1
54 8 6.0 4.00 0 1.00 6 32 5
11 13 .5 1.00 0 0 0 0 0
21 13 2.0 2.50 1.0 0 1 0 5
61 30 3.0 5.00 0 0 4 21 0
20 70 0 2.00 3.0 0 2 0 3
29 35 1.5 2.00 0 0 0 0 0
29 35 2.0 3.00 2.0 0 0 0 0
57 9 5.0 5.00 0 0 4 5 2
23 33 2.0 2.00 1.0 0 2 1 7

20 0 1.5 1.00 3.0 0 1 6 0
27 41 1.1 .25 1.5 1.50 0 3 1
18 500 2.0 1.00 1.5 .50 1 0 0
30 19 2.0 2.00 4.0 1.00 2 0 5
77 18 8.0 4.00 6.0 4.00 6 8 6
21 500 5.0 1.00 3.0 4.00 1 0 5
13 100 .5 .50 0 1.00 0 0 4
24 100 2.0 3.00 0 .50 3 14 10
29 90 2.0 1.50 1.5 1.50 2 0 2
57 90 10.0 7.00 0 1.50 7 8 7

Source: Data courtesy of Jay Angerer.
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(b) Perform a principal component analysis using the correlation matrix R. Determine
the number of components to effectively summarize the variability. Use the propor-
tion of variation explained and a scree plot to aid in your determination.

(c) Interpret the first five principal components. Can you identify, for example, a “farm
size” component? A, perhaps, “goats and distance to road” component?

8.29. Refer to Exercise 5.28. Using the covariance matrix S for the first 30 cases of car body
assembly data, obtain the sample principal components.
(a) Construct a 95% ellipse format chart using the first two principal components and

Identify the car locations that appear to be out of control.
(b) Construct an alternative control chart, based on the sum of squares to monitor

the variation in the original observations summarized by the remaining four princi-
pal components. Interpret this chart.
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FACTOR ANALYSIS AND INFERENCE
FOR STRUCTURED COVARIANCE
MATRICES

9.1 Introduction
Factor analysis has provoked rather turbulent controversy throughout its history. Its
modern beginnings lie in the early-20th-century attempts of Karl Pearson, Charles
Spearman, and others to define and measure intelligence. Because of this early
association with constructs such as intelligence, factor analysis was nurtured and
developed primarily by scientists interested in psychometrics. Arguments over the
psychological interpretations of several early studies and the lack of powerful com-
puting facilities impeded its initial development as a statistical method. The advent
of high-speed computers has generated a renewed interest in the theoretical and
computational aspects of factor analysis. Most of the original techniques have been
abandoned and early controversies resolved in the wake of recent developments. It
is still true, however, that each application of the technique must be examined on its
own merits to determine its success.

The essential purpose of factor analysis is to describe, if possible, the covariance
relationships among many variables in terms of a few underlying, but unobservable,
random quantities called factors. Basically, the factor model is motivated by the
following argument: Suppose variables can be grouped by their correlations. That is,
suppose all variables within a particular group are highly correlated among them-
selves, but have relatively small correlations with variables in a different group. Then
it is conceivable that each group of variables represents a single underlying construct,
or factor, that is responsible for the observed correlations. For example, correlations
from the group of test scores in classics, French, English, mathematics, and music
collected by Spearman suggested an underlying “intelligence” factor. A second group
of variables, representing physical-fitness scores, if available, might correspond to
another factor. It is this type of structure that factor analysis seeks to confirm.

C h a p t e r

9
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Chapter 9 Factor Analysis and Inference for Structured Covariance Matrices

Factor analysis can be considered an extension of principal component analysis.
Both can be viewed as attempts to approximate the covariance matrix However,
the approximation based on the factor analysis model is more elaborate. The
primary question in factor analysis is whether the data are consistent with a
prescribed structure.

9.2 The Orthogonal Factor Model
The observable random vector X, with p components, has mean and covariance
matrix The factor model postulates that X is linearly dependent upon a few un-
observable random variables called common factors, and p addition-
al sources of variation called errors or, sometimes, specific factors.1 In
particular, the factor analysis model is

(9-1)

or, in matrix notation,

(9-2)

The coefficient is called the loading of the ith variable on the jth factor, so the matrix
L is the matrix of factor loadings. Note that the ith specific factor is associated only
with the ith response The p deviations are
expressed in terms of random variables which are
unobservable.This distinguishes the factor model of (9-2) from the multivariate regres-
sion model in (7-23), in which the independent variables [whose position is occupied by
F in (9-2)] can be observed.

With so many unobservable quantities, a direct verification of the factor model
from observations on is hopeless. However, with some additional
assumptions about the random vectors F and the model in (9-2) implies certain
covariance relationships, which can be checked.

We assume that

(9-3) E1E2 = 0
1p * 12

,   Cov 1E2 = E7EE¿8 = ±

1p * p2
= Dc1 0 Á 0

0 c2
Á 0

o o ∞ o

0 0 Á cp

T
 E1F2 = 0

1m * 12
,   Cov 1F2 = E7F F¿8 = I

1m * m2

E,
X1 , X2 , Á , Xp

e1 , e2 , Á , epF1 , F2 , Á , Fm ,p + m
Xp - mpX2 - m2 , Á ,X1 - m1 ,Xi .

ei

/i j

X - M
1p * 12

= L
1p * m2

 F
1m * 12

+ E
1p * 12

 Xp - mp = /p 1 F1 + /p 2 F2 +
Á

+ /p m  Fm + ep

 o   o

 X2 - m2 = /2 1 F1 + /2 2 F2 +
Á

+ /2 m  Fm + e2

 X1 - m1 = /1 1 F1 + /1 2 F2 +
Á

+ /1 m  Fm + e1

e1 , e2 , Á , ep ,
F1 , F2 , Á , Fm ,

�.
M

�.

1As Maxwell [12] points out, in many investigations the tend to be combinations of measurement
error and factors that are uniquely associated with the individual variables.
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and that F and are independent, so

These assumptions and the relation in (9-2) constitute the orthogonal factor model.2

Cov 1E, F2 = E1EF¿2 = 0
1p * m2

E

2Allowing the factors F to be correlated so that is not diagonal gives the oblique factor
model. The oblique model presents some additional estimation difficulties and will not be discussed in
this book. (See [10].)

Cov 1F2

Orthogonal Factor Model with m Common Factors

(9-4)

The unobservable random vectors F and satisfy the following conditions:

F and are independent

where is a diagonal matrix± E1E2 = 0,  Cov 1E2 = ±,

 E1F2 = 0,  Cov 1F2 = I

E

E

 /i j = loading of the ith variable on the jth factor 

 Fj = jth common factor

 ei = ith specific factor

 mi = mean of variable i

 X
1p * 12

= M
1p * 12

+ L
1p * m2

 F
1m * 12

+ E
1p * 12

The orthogonal factor model implies a covariance structure for X. From the
model in (9-4),

so that

according to (9-3). Also by independence,
Also, by the model in (9-4), = = so

= = ± E1EF¿2 = L.LE1FF¿2E1X - M2 F¿Cov 1X, F2
LF F¿ + EF¿,1LF + E2 F¿1X - M2 F¿

E1E, F¿2 = 0Cov 1E, F2 =

 = LL¿ + ±

 = LE1FF¿2 L¿ + E1EF¿2 L¿ + LE1FE¿2 + E1EE¿2

 � = Cov 1X2 = E1X - M2 1X - M2¿

 = LF1LF2¿ + E1LF2¿ + LFE¿ + EE¿

 = 1LF + E2 11LF2¿ + E¿2

 1X - M2 1X - M2¿ = 1LF + E2 1LF + E2¿

483



Chapter 9 Factor Analysis and Inference for Structured Covariance Matrices

The model = is linear in the common factors. If the p responses
X are, in fact, related to underlying factors, but the relationship is nonlinear, such as
in = and so forth, then the covari-
ance structure given by (9-5) may not be adequate.The very important as-
sumption of linearity is inherent in the formulation of the traditional factor model.

That portion of the variance of the ith variable contributed by the m common
factors is called the ith communality. That portion of = due to the spe-
cific factor is often called the uniqueness, or specific variance. Denoting the ith com-
munality by we see from (9-5) that

= ±
¯˘˙ ¯˚˚˚˘˚˚˚˙ ¯˚˚˘˚˚˙

= communality ± specific variance

or

(9-6)

and

The ith communality is the sum of squares of the loadings of the ith variable on the
m common factors.

Example 9.1 (Verifying the relation for two factors) Consider the co-
variance matrix

� = D19 30 2 12
30 57 5 23
2 5 38 47

12 23 47 68

T
� � LL¿ � ±

si i = hi
2

+ ci , i = 1, 2, Á , p

hi
2

= /i 1
2

+ /i 2
2

+
Á

+ /i m
2

Var 1Xi2

ci/i 1
2

+ /i 2
2

+
Á

+ /i m
2si i

hi
2 ,

si iVar 1Xi2

LL¿ + ±

X2 - m2 = /2 1 F2 F3 + e2 ,/1 1 F1 F3 + e1 ,X1 - m1

LF + EX - M

Covariance Structure for the Orthogonal Factor Model

1.

or

(9-5)

2.

or

Cov 1Xi , Fj2 = /i j

Cov 1X, F2 = L

 Cov 1Xi , Xk2 = /i 1 /k 1 +
Á

+ /i m /k m

 Var 1Xi2 = /i 1
2

+
Á

+ /i m
2

+ ci

Cov 1X2 = LL¿ + ±
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The Orthogonal Factor Model

The equality

or

may be verified by matrix algebra. Therefore, has the structure produced by an
orthogonal factor model. Since

the communality of is, from (9-6),

and the variance of can be decomposed as

or

19 = ± 2 =

¯˘˙ ¯˘˙ ¯˘˙

variance = communality ± specific
variance

A similar breakdown occurs for the other variables. ■

The factor model assumes that the = variances and
covariances for X can be reproduced from the pm factor loadings and the p specif-
ic variances When any covariance matrix can be reproduced exactly as

[see (9-11)], so can be the zero matrix. However, it is when m is small relative
to p that factor analysis is most useful. In this case, the factor model provides a “sim-
ple” explanation of the covariation in X with fewer parameters than the 
parameters in For example, if X contains variables, and the factor model in
(9-4) with is appropriate, then the = elements of 

are described in terms of the = parameters and of
the factor model.

ci/i j12122 + 12 = 36mp + p�
121132>2 = 78p1p + 12>2m = 2

p = 12�.
p1p + 12>2

±LL¿

�m = p,ci .
/i j

p1p + 12>2p + p1p - 12>2

17 + 242
+ 12

+  c1 = h1
2

+ c11/1 1
2

+ /1 2
2 2s1 1 =

X1

h1
2

= /1 1
2

+ /1 2
2

= 42
+ 12

= 17

X1

 ± = Dc1 0 0 0
0 c2 0 0
0 0 c3 0
0 0 0 c4

T = D2 0 0 0
0 4 0 0
0 0 1 0
0 0 0 3

T
 L = D/1 1 /1 2

/2 1 /2 2

/3 1 /3 2

/4 1 /4 2

T = D 4 1
7 2

-1 6
1 8

T  ,

m = 2
�

� = LL¿ + ±

D19 30 2 12
30 57 5 23
2 5 38 47

12 23 47 68

T = D 4 1
7 2

-1 6
1 8

T   B4 7 -1 1
1 2 6 8

R + D2 0 0 0
0 4 0 0
0 0 1 0
0 0 0 3

T
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Chapter 9 Factor Analysis and Inference for Structured Covariance Matrices

Unfortunately for the factor analyst, most covariance matrices cannot be fac-
tored as where the number of factors m is much less than p.The following
example demonstrates one of the problems that can arise when attempting to deter-
mine the parameters and from the variances and covariances of the observable
variables.

Example 9.2 (Nonexistence of a proper solution) Let and and suppose
the random variables and have the positive definite covariance matrix

Using the factor model in (9-4), we obtain

The covariance structure in (9-5) implies that

or

The pair of equations

implies that

Substituting this result for in the equation

yields or Since (by assumption) and
= Now, a correlation coefficient

cannot be greater than unity (in absolute value), so, from this point of view,
is too large. Also, the equation

1 = /1 1
2

+ c1 , or c1 = 1 - /1 1
2

ƒ /1 1 ƒ = 1.255

Corr 1X1 , F12./1 1 = Cov 1X1 , F12Var 1X12 = 1,
Var 1F12 = 1/1 1 = ; 1.255./1 1

2
= 1.575,

.90 = /1 1 /2 1

/2 1

/2 1 = a
.40
.70
b  /1 1

.70 = /1 1 /3 1

.40 = /2 1 /3 1

    1 = /3 1
2

+ c3

   1 = /2 1
2

+ c2  .40 = /2 1 /3 1

 1 = /1 1
2

+ c1  .90 = /1 1 /2 1  .70 = /1 1 /3 1

� = LL¿ + ±

 X3 - m3 = /3 1 F1 + e3

 X2 - m2 = /2 1 F1 + e2

 X1 - m1 = /1 1 F1 + e1

� = C 1 .9 .7
.9 1 .4
.7 .4 1

S
X3X1 , X2 ,

m = 1,p = 3

ci/i j

LL¿ + ±,

486



The Orthogonal Factor Model

gives

which is unsatisfactory, since it gives a negative value for 
Thus, for this example with it is possible to get a unique numerical solu-

tion to the equations However, the solution is not consistent with
the statistical interpretation of the coefficients, so it is not a proper solution. ■

When there is always some inherent ambiguity associated with the factor
model. To see this, let T be any orthogonal matrix, so that =

Then the expression in (9-2) can be written

(9-7)

where

Since

and

it is impossible, on the basis of observations on X, to distinguish the loadings L from
the loadings That is, the factors F and have the same statistical prop-
erties, and even though the loadings are, in general, different from the loadings
L, they both generate the same covariance matrix That is,

(9-8)

This ambiguity provides the rationale for “factor rotation,” since orthogonal matrices
correspond to rotations (and reflections) of the coordinate system for X.

� = LL¿ + ± = LTT¿  L¿ + ± = 1L*2 1L*2œ + ±

�.
L*

F* = T¿  FL*.

Cov 1F*2 = T¿  Cov 1F2T = T¿  T = I
1m * m2

E1F*2 = T¿  E1F2 = 0

L* = LT and F* = T¿  F

X - M = LF + E = LTT¿  F + E = L* F* + E

T¿T = I.TT¿m * m
m 7 1,

� = LL¿ + ±.
m = 1,

Var 1e12 = c1 .

c1 = 1 - 1.575 = - .575

The analysis of the factor model proceeds by imposing conditions that allow
one to uniquely estimate L and The loading matrix is then rotated (multiplied
by an orthogonal matrix), where the rotation is determined by some “ease-of-
interpretation” criterion. Once the loadings and specific variances are obtained, fac-
tors are identified, and estimated values for the factors themselves (called factor
scores) are frequently constructed.

±.

Factor loadings L are determined only up to an orthogonal matrix T. Thus, the
loadings

(9-9)

both give the same representation. The communalities, given by the diagonal
elements of = are also unaffected by the choice of T.1L*2 1L*2œLL¿

L* = LT and L
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9.3 Methods of Estimation
Given observations on p generally correlated variables, factor analysis
seeks to answer the question, Does the factor model of (9-4), with a small number of
factors, adequately represent the data? In essence, we tackle this statistical model-
building problem by trying to verify the covariance relationship in (9-5).

The sample covariance matrix S is an estimator of the unknown population
covariance matrix If the off-diagonal elements of S are small or those of the sample
correlation matrix R essentially zero, the variables are not related, and a factor
analysis will not prove useful. In these circumstances, the specific factors play the
dominant role, whereas the major aim of factor analysis is to determine a few
important common factors.

If appears to deviate significantly from a diagonal matrix, then a factor model
can be entertained, and the initial problem is one of estimating the factor loadings 
and specific variances We shall consider two of the most popular methods of para-
meter estimation, the principal component (and the related principal factor) method
and the maximum likelihood method.The solution from either method can be rotated
in order to simplify the interpretation of factors, as described in Section 9.4. It is
always prudent to try more than one method of solution; if the factor model is appro-
priate for the problem at hand, the solutions should be consistent with one another.

Current estimation and rotation methods require iterative calculations that must
be done on a computer. Several computer programs are now available for this purpose.

The Principal Component (and Principal Factor) Method
The spectral decomposition of (2-16) provides us with one factoring of the covariance ma-
trix Let have eigenvalue–eigenvector pairs with 
Then

(9-10)

This fits the prescribed covariance structure for the factor analysis model having as
many factors as variables and specific variances for all i. The load-
ing matrix has jth column given by That is, we can write

(9-11)

Apart from the scale factor the factor loadings on the jth factor are the coeffi-
cients for the jth principal component of the population.

Although the factor analysis representation of in (9-11) is exact, it is not par-
ticularly useful: It employs as many common factors as there are variables and does
not allow for any variation in the specific factors in (9-4). We prefer models that
explain the covariance structure in terms of just a few common factors. One

E

�

1lj ,

�
1p * p2

= L
1p * p2

 Lœ

 

 

1p * p2
+ 0
1p * p2

= LL¿

1lj ej .
ci = 01m = p2

 = 71l1 e1 �1l2 e2 � Á �1lp ep8  E 1l1 eœ

11l2 eœ

2

o1lp eœ

p

U
 � = l1 e1 eœ

1 + l2 e2 eœ

2 +
Á

+ lp ep eœ

p

lp Ú 0.l1 Ú l2 Ú
Á

Ú1li , ei2��.

ci .
/i j
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�.

x1 , x2 , Á , xn
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Methods of Estimation

approach, when the last eigenvalues are small, is to neglect the contribution
of ± to in (9-10). Neglecting this contribution, we
obtain the approximation

(9-12)

The approximate representation in (9-12) assumes that the specific factors in (9-4)
are of minor importance and can also be ignored in the factoring of If specific
factors are included in the model, their variances may be taken to be the diagonal
elements of where is as defined in (9-12).

Allowing for specific factors, we find that the approximation becomes

(9-13)

where – for 

To apply this approach to a data set it is customary first to center
the observations by subtracting the sample mean The centered observations

(9-14)

have the same sample covariance matrix S as the original observations.
In cases in which the units of the variables are not commensurate, it is usually

desirable to work with the standardized variables

whose sample covariance matrix is the sample correlation matrix R of the observa-
tions Standardization avoids the problems of having one variable with
large variance unduly influencing the determination of factor loadings.

x1 , x2 , Á , xn .

zj = H
1xj 1 - x–121s1 1

1xj 2 - x–221s2 2

o

1xj p - x–p21sp p

X j = 1, 2, Á , n

xj - x– = Dxj 1

xj 2

o

xj p

T - Dx–1

x–2

o

x–p

T = D xj 1 - x–1

xj 2 - x–2

o

xj p - x–p

T j = 1, 2, Á , n

x–.
x1 , x2 , Á , xn ,

i = 1, 2, Á , p.a
m

j = 1
 /i j

2ci = si i

 = 71l1 e1 �1l2 e2 � Á �1lm em8  E 1l1 eœ

11l2 eœ
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Á 0
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Chapter 9 Factor Analysis and Inference for Structured Covariance Matrices

The representation in (9-13), when applied to the sample covariance matrix S or
the sample correlation matrix R, is known as the principal component solution. The
name follows from the fact that the factor loadings are the scaled coefficients of the
first few sample principal components. (See Chapter 8.)

For the principal component solution, the estimated loadings for a given 
factor do not change as the number of factors is increased. For example, if 

and if where and 
are the first two eigenvalue–eigenvector pairs for S (or R).

By the definition of the diagonal elements of S are equal to the diagonal
elements of However, the off-diagonal elements of S are not usually
reproduced by How, then, do we select the number of factors m?

If the number of common factors is not determined by a priori considerations,
such as by theory or the work of other researchers, the choice of m can be based on
the estimated eigenvalues in much the same manner as with principal components.
Consider the residual matrix

(9-18)

resulting from the approximation of S by the principal component solution.The diago-
nal elements are zero, and if the other elements are also small, we may subjectively
take the m factor model to be appropriate.Analytically, we have (see Exercise 9.5)

(9-19)Sum of squared entries of 1S - 1L
'

L
'

¿ + ±

'

22 … lnm + 1
2

+
Á

+ lnp
2

S - 1L
'

L
'

¿ + ±

'

2

L
'

L
'

¿ + ±

'

.
L
'

L
'

¿ + ±

'

.
c
'

i ,

1ln2 , eN221ln1 , eN 12L
'

= C3ln1 eN1 �3ln2 eN 2 D ,m = 2,L
'

= C3ln1 eN1 D ,

m = 1,

Principal Component Solution of the Factor Model
The principal component factor analysis of the sample covariance matrix S is 
specified in terms of its eigenvalue–eigenvector pairs 

where Let be the number of common fac-
tors. Then the matrix of estimated factor loadings is given by

(9-15)

The estimated specific variances are provided by the diagonal elements of the
matrix so

(9-16)

Communalities are estimated as

(9-17)

The principal component factor analysis of the sample correlation matrix is
obtained by starting with R in place of S.
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Methods of Estimation

Consequently, a small value for the sum of the squares of the neglected eigenvalues
implies a small value for the sum of the squared errors of approximation.

Ideally, the contributions of the first few factors to the sample variances of the
variables should be large. The contribution to the sample variance from the
first common factor is The contribution to the total sample variance,

= from the first common factor is then

since the eigenvector has unit length. In general,

(9-20)

Criterion (9-20) is frequently used as a heuristic device for determining the appro-
priate number of common factors. The number of common factors retained in the
model is increased until a “suitable proportion” of the total sample variance has
been explained.

Another convention, frequently encountered in packaged computer programs,
is to set m equal to the number of eigenvalues of R greater than one if the sample
correlation matrix is factored, or equal to the number of positive eigenvalues of S if
the sample covariance matrix is factored. These rules of thumb should not be ap-
plied indiscriminately. For example, if the rule for S is obeyed, since all the
eigenvalues are expected to be positive for large sample sizes. The best approach is
to retain few rather than many factors, assuming that they provide a satisfactory in-
terpretation of the data and yield a satisfactory fit to S or R.

Example 9.3 (Factor analysis of consumer-preference data) In a consumer-preference
study, a random sample of customers were asked to rate several attributes of a new
product. The responses, on a 7-point semantic differential scale, were tabulated and
the attribute correlation matrix constructed.The correlation matrix is presented next:

It is clear from the circled entries in the correlation matrix that variables 1 and
3 and variables 2 and 5 form groups. Variable 4 is “closer” to the group than
the group. Given these results and the small number of variables, we might ex-
pect that the apparent linear relationships between the variables can be explained in
terms of, at most, two or three common factors.

11, 32
12, 52

Attribute 1Variable2  

Taste 1
Good buy for money 2
Flavor 3
Suitable for snack 4
Provides lots of energy 5

 E
1 2 3 4 5
1.00 .02 .96 .42 .01
.02 1.00 .13 .71 .85
.96 .13 1.00 .50 .11
.42 .71 .50 1.00 .79
.01 .85 .11 .79 1.00

U

m = p

£Proportion of total
sample variance
due to jth factor

≥ = e ln j

s1 1 + s2 2 +
Á

+ sp p
for a factor analysis of S

ln j

p
for a factor analysis of R
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1 1
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p 1
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The first two eigenvalues, and of R are the only eigenval-
ues greater than unity. Moreover, common factors will account for a cumula-
tive proportion

of the total (standardized) sample variance. The estimated factor loadings, commu-
nalities, and specific variances, obtained using (9-15), (9-16), and (9-17), are given in
Table 9.1.

ln1 + ln2

p
=

2.85 + 1.81
5

= .93

m = 2
ln2 = 1.81,ln1 = 2.85

Table 9.1

Estimated factor
loadings Specific

Communalities variances

Variable

1. Taste .56 .82 .98 .02
2. Good buy

for money .78 .88 .12
3. Flavor .65 .75 .98 .02
4. Suitable

for snack .94 .89 .11
5. Provides

lots of energy .80 .93 .07

Eigenvalues 2.85 1.81

Cumulative
proportion
of total
(standardized)
sample variance .571 .932

- .54

- .10

- .53

c
'

i = 1 - h
'

i
2h

'

i
2F2F1

/

'

i j = 3ln i eni j

Now,

+ E .02 0 0 0 0
0 .12 0 0 0
0 0 .02 0 0
0 0 0 .11 0
0 0 0 0 .07

U = E1.00 .01 .97 .44 .00
 1.00 .11 .79 .91
  1.00 .53 .11
   1.00 .81
    1.00

U

L
'

L
'

¿ + ±

'

= E .56 .82
.78 - .53
.65 .75
.94 - .10
.80 - .54

U   B .56 .78 .65 .94 .80
.82 - .53 .75 - .10 - .54

R
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nearly reproduces the correlation matrix R. Thus, on a purely descriptive basis, we
would judge a two-factor model with the factor loadings displayed in Table 9.1 as pro-
viding a good fit to the data.The communalities indicate that the
two factors account for a large percentage of the sample variance of each variable.

We shall not interpret the factors at this point. As we noted in Section 9.2, the
factors (and loadings) are unique up to an orthogonal rotation. A rotation of the
factors often reveals a simple structure and aids interpretation. We shall consider
this example again (see Example 9.9 and Panel 9.1) after factor rotation has been
discussed. ■

Example 9.4 (Factor analysis of stock-price data) Stock-price data consisting of
weekly rates of return on stocks were introduced in Example 8.5.

In that example, the first two sample principal components were obtained from R.
Taking and we can easily obtain principal component solutions to
the orthogonal factor model. Specifically, the estimated factor loadings are the
sample principal component coefficients (eigenvectors of R), scaled by the 
square root of the corresponding eigenvalues. The estimated factor loadings,
communalities, specific variances, and proportion of total (standardized) sample
variance explained by each factor for the and factor solutions are
available in Table 9.2. The communalities are given by (9-17). So, for example, with 

= = 1.73222 + 1- .43722 = .73./

'

1 1
2

+ /

'

1 2
2

h
'

1
2m = 2,

m = 2m = 1

m = 2,m = 1

p = 5n = 103

1.98, .88, .98, .89, .932

Table 9.2

One-factor solution Two-factor solution

Estimated factor Specific Estimated factor Specific
loadings variances loadings variances

Variable

1. J P Morgan .732 .46 .732 .27
2. Citibank .831 .31 .831 .23
3. Wells Fargo .726 .47 .726 .33
4. Royal Dutch Shell .605 .63 .605 .694 .15
5. ExxonMobil .563 .68 .563 .719 .17

Cumulative
proportion of total
(standardized)
sample variance
explained .487 .487 .769

- .374
- .280
- .437

c
'

i = 1 - h
'

i
2F2F1c

'

i = 1 - h
'

i
2F1

The residual matrix corresponding to the solution for factors is

R - L
'

L
'

¿ - ±

'

= E 0 - .099 - .185 - .025 .056
- .099 0 - .134 .014 - .054
- .185 - .134 0 .003 .006
- .025 .014 .003 0 - .156

.056 - .054 .006 - .156 0

U
m = 2
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The proportion of the total variance explained by the two-factor solution is appreciably 
larger than that for the one-factor solution. However, for produces
numbers that are, in general, larger than the sample correlations. This is particularly
true for 

It seems fairly clear that the first factor, represents general economic con-
ditions and might be called a market factor.All of the stocks load highly on this fac-
tor, and the loadings are about equal. The second factor contrasts the banking
stocks with the oil stocks. (The banks have relatively large negative loadings, and
the oils have large positive loadings, on the factor.) Thus, seems to differentiate
stocks in different industries and might be called an industry factor. To summarize,
rates of return appear to be determined by general market conditions and activities
that are unique to the different industries, as well as a residual or firm specific
factor. This is essentially the conclusion reached by an examination of the sample
principal components in Example 8.5. ■

A Modified Approach—the Principal Factor Solution

A modification of the principal component approach is sometimes considered. We
describe the reasoning in terms of a factor analysis of R, although the procedure is
also appropriate for S. If the factor model is correctly specified, the
m common factors should account for the off-diagonal elements of as well as
the communality portions of the diagonal elements

If the specific factor contribution is removed from the diagonal or, equivalently,
the 1 replaced by the resulting matrix is 

Suppose, now, that initial estimates of the specific variances are available.
Then replacing the ith diagonal element of R by we obtain a “reduced”
sample correlation matrix

Now, apart from sampling variation, all of the elements of the reduced sample cor-
relation matrix should be accounted for by the m common factors. In particular,

is factored as

(9-21)

where are the estimated loadings.
The principal factor method of factor analysis employs the estimates

(9-22)
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where are the (largest) eigenvalue-eigenvector pairs deter-
mined from In turn, the communalities would then be (re)estimated by

(9-23)

The principal factor solution can be obtained iteratively, with the communality esti-
mates of (9-23) becoming the initial estimates for the next stage.

In the spirit of the principal component solution, consideration of the estimated
eigenvalues helps determine the number of common factors to retain.
An added complication is that now some of the eigenvalues may be negative, due to
the use of initial communality estimates. Ideally, we should take the number of com-
mon factors equal to the rank of the reduced population matrix. Unfortunately, this
rank is not always well determined from and some judgment is necessary.

Although there are many choices for initial estimates of specific variances, the
most popular choice, when one is working with a correlation matrix, is
where is the ith diagonal element of The initial communality estimates then
become

(9-24)

which is equal to the square of the multiple correlation coefficient between and
the other variables. The relation to the multiple correlation coefficient means
that can be calculated even when R is not of full rank. For factoring S, the initial
specific variance estimates use the diagonal elements of Further discussion
of these and other initial estimates is contained in [6].

Although the principal component method for R can be regarded as a principal
factor method with initial communality estimates of unity, or specific variances
equal to zero, the two are philosophically and geometrically different. (See [6].) In
practice, however, the two frequently produce comparable factor loadings if the
number of variables is large and the number of common factors is small.

We do not pursue the principal factor solution, since, to our minds, the solution
methods that have the most to recommend them are the principal component
method and the maximum likelihood method, which we discuss next.

The Maximum Likelihood Method

If the common factors F and the specific factors can be assumed to be normally
distributed, then maximum likelihood estimates of the factor loadings and specific
variances may be obtained. When and are jointly normal, the observations

= are then normal, and from (4-16), the likelihood is

(9-25)
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which depends on L and through ± This model is still not well
defined, because of the multiplicity of choices for L made possible by orthogonal
transformations. It is desirable to make L well defined by imposing the computa-
tionally convenient uniqueness condition

(9-26)

The maximum likelihood estimates and must be obtained by numerical
maximization of (9-25). Fortunately, efficient computer programs now exist that en-
able one to get these estimates rather easily.

We summarize some facts about maximum likelihood estimators and, for now,
rely on a computer to perform the numerical details.

Result 9.1. Let be a random sample from where
± is the covariance matrix for the m common factor model of (9-4).

The maximum likelihood estimators and maximize (9-25) subject to
being diagonal.

The maximum likelihood estimates of the communalities are

(9-27)

so

(9-28)

Proof. By the invariance property of maximum likelihood estimates (see Section 4.3),
functions of L and are estimated by the same functions of and In particu-
lar, the communalities ± have maximum likelihood estimates

± �

If, as in (8-10), the variables are standardized so that = then
the covariance matrix of Z has the representation

(9-29)

Thus, has a factorization analogous to (9-5) with loading matrix = and
specific variance matrix = By the invariance property of maxi-
mum likelihood estimators, the maximum likelihood estimator of is

(9-30)

where and are the maximum likelihood estimators of and L, respec-
tively. (See Supplement 9A.)

As a consequence of the factorization of (9-30), whenever the maximum likeli-
hood analysis pertains to the correlation matrix, we call
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the maximum likelihood estimates of the communalities, and we evaluate the im-
portance of the factors on the basis of

(9-32)

To avoid more tedious notations, the preceding ’s denote the elements of 

Comment. Ordinarily, the observations are standardized, and a sample corre-
lation matrix is factor analyzed. The sample correlation matrix R is inserted for 

in the likelihood function of (9-25), and the maximum likelihood 
estimates and are obtained using a computer.Although the likelihood in (9-25) is
appropriate for S, not R, surprisingly, this practice is equivalent to obtaining the maxi-

mum likelihood estimates and based on the sample covariance matrix S, setting
= and = Here is the diagonal matrix with the recip-

rocal of the sample standard deviations (computed with the divisor ) on the main
diagonal.

Going in the other direction, given the estimated loadings and specific
variances obtained from R, we find that the resulting maximum likelihood
estimates for a factor analysis of the covariance matrix are

and or

where is the sample variance computed with divisor n. The distinction between
divisors can be ignored with principal component solutions. ■

The equivalency between factoring S and R has apparently been confused in
many published discussions of factor analysis. (See Supplement 9A.)

Example 9.5 (Factor analysis of stock-price data using the maximum likelihood
method) The stock-price data of Examples 8.5 and 9.4 were reanalyzed assuming
an factor model and using the maximum likelihood method. The estimated
factor loadings, communalities, specific variances, and proportion of total (stan-
dardized) sample variance explained by each factor are in Table 9.3.3 The corre-
sponding figures for the factor solution obtained by the principal component
method (see Example 9.4) are also provided. The communalities corresponding to 
the maximum likelihood factoring of R are of the form [see (9-31)] =

So, for example,
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3 The maximum likelihood solution leads to a Heywood case. For this example, the solution of the
likelihood equations give estimated loadings such that a specific variance is negative. The software pro-
gram obtains a feasible solution by slightly adjusting the loadings so that all specific variance estimates
are nonnegative. A Heywood case is suggested here by the .00 value for the specific variance of Royal
Dutch Shell.
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The residual matrix is

The elements of are much smaller than those of the residual matrix
corresponding to the principal component factoring of R presented in Example 9.4.
On this basis, we prefer the maximum likelihood approach and typically feature it in
subsequent examples.

The cumulative proportion of the total sample variance explained by the factors
is larger for principal component factoring than for maximum likelihood factoring.
It is not surprising that this criterion typically favors principal component factoring.
Loadings obtained by a principal component factor analysis are related to the prin-
cipal components, which have, by design, a variance optimizing property. [See the
discussion preceding (8-19).]

Focusing attention on the maximum likelihood solution, we see that all vari-
ables have positive loadings on We call this factor the market factor, as we did in
the principal component solution. The interpretation of the second factor is not as
clear as it appeared to be in the principal component solution.The bank stocks have
large positive loadings and the oil stocks have negligible loadings on the second fac-
tor From this perspective, the second factor differentiaties the bank stocks from
the oil stocks and might be called an industry factor. Alternatively, the second factor
might be simply called a banking factor.

F2 .

F1 .

R - LN LN ¿ - ±
N

R - LN LN ¿ - ±
N

= E 0 .001 - .002 .000 .052
.001 0 .002 .000 - .033

- .002 .002 0 .000 .001
.000 .000 .000 0 .000
.052 - .033 .001 .000 0

U

Table 9.3

Maximum likelihood Principal components

Estimated factor Specific Estimated factor Specific
loadings variances loadings variances

Variable

1. J P Morgan .115 .755 .42 .732 .27
2. Citibank .322 .788 .27 .831 .23
3. Wells Fargo .182 .652 .54 .726 .33
4. Royal Dutch Shell 1.000 .00 .605 .694 .15
5. Texaco .683 .53 .563 .719 .17

Cumulative
proportion of total
(standardized)
sample variance
explained .323 .647 .487 .769

- .032
- .000

- .374
- .280
- .437

c
'

i = 1 - h
'

i
2F2F1cn i = 1 - hn i

2F2F1
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The patterns of the initial factor loadings for the maximum likelihood solution
are constrained by the uniqueness condition that be a diagonal matrix.
Therefore, useful factor patterns are often not revealed until the factors are rotated
(see Section 9.4). ■

Example 9.6 (Factor analysis of Olympic decathlon data) Linden [11] originally con-
ducted a factor analytic study of Olympic decathlon results for all 160 complete
starts from the end of World War II until the mid-seventies. Following his approach
we examine the complete starts from 1960 through 2004. The recorded
values for each event were standardized and the signs of the timed events changed
so that large scores are good for all events. We, too, analyze the correlation matrix,
which based on all 280 cases, is

From a principal component factor analysis perspective, the first four eigen-
values, 4.21, 1.39, 1.06, .92, of R suggest a factor solution with or A
subsequent interpretation, much like Linden’s original analysis, reinforces the
choice

In this case, the two solution methods produced very different results. For the prin-
cipal component factorization, all events except the 1,500-meter run have large positive
loading on the first factor.This factor might be labeled general athletic ability. Factor 2,
which loads heavily on the 400-meter run and 1,500-meter run might be called a run-
ning endurance factor.The remaining factors cannot be easily interpreted to our minds.

For the maximum likelihood method, the first factor appears to be a general ath-
letic ability factor but the loading pattern is not as strong as with principal compo-
nent factor solution.The second factor is primarily a strength factor because shot put
and discus load highly on this factor. The third factor is running endurance since the
400-meter run and 1,500-meter run have large loadings. Again, the fourth factor is
not easily identified, although it may have something to do with jumping ability or
leg strength. We shall return to an interpretation of the factors in Example 9.11 after
a discussion of factor rotation.

The four-factor principal component solution accounts for much of the total
(standardized) sample variance, although the estimated specific variances are
large in some cases (for example, the javelin). This suggests that some events
might require unique or specific attributes not required for the other events. The
four-factor maximum likelihood solution accounts for less of the total sample

m = 4.

m = 4.m = 3

.3262 .3509 .4008 .1821 - .0352

.3520 .3998 .5167 .3102 .1012

.2812 .7926 .4728 .4682 - .0120

.3503 .3657 .6040 .2344 .2380

.1546 .2100 .4213 .2116 .4125
1.0000 .2553 .4163 .1712 .0002
.2553 1.0000 .4036 .4179 .0109
.4163 .4036 1.0000 .3151 .2395
.1712 .4179 .3151 1.0000 .0983
.0002 .0109 .2395 .0983 1.0000

1.000 .6386 .4752 .3227 .5520
.6386 1.0000 .4953 .5668 .4706
.4752 .4953 1.0000 .4357 .2539
.3227 .5668 .4357 1.0000 .3449
.5520 .4706 .2539 .3449 1.0000
.3262 .3520 .2812 .3503 .1546
.3509 .3998 .7926 .3657 .2100
.4008 .5167 .4728 .6040 .4213
.1821 .3102 .4682 .2344 .2116

- .0352 .1012 - .0120 .2380 .4125

R =

n = 280

LN ¿±
N -1LN
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Methods of Estimation

variance, but, as the following residual matrices indicate, the maximum likelihood
estimates and do a better job of reproducing R than the principal component
estimates and 

Principal component:

Maximum likelihood:

■

A Large Sample Test for the Number of Common Factors

The assumption of a normal population leads directly to a test of the adequacy of
the model. Suppose the m common factor model holds. In this case 
and testing the adequacy of the m common factor model is equivalent to testing

(9-33)

versus any other positive definite matrix. When does not have any special 
form, the maximum of the likelihood function [see (4-18) and Result 4.11 with =

= ] is proportional to
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0 .000 .000 .- .000 - .000
.000 0 - .002 .023 .005
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- .000 .023 .004 0 - .002
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.000 - .017 - .009 - .030 - .002
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Under is restricted to have the form of (9-33). In this case, the maximum of
the likelihood function [see (9-25) with and ± where and 
are the maximum likelihood estimates of L and respectively] is proportional to

(9-35)

Using Result 5.2, (9-34), and (9-35), we find that the likelihood ratio statistic for
testing is

(9-36)

with degrees of freedom,

(9-37)

Supplement 9A indicates that – provided that is
the maximum likelihood estimate of Thus, we have

(9-38)

Bartlett [3] has shown that the chi-square approximation to the sampling distri-
bution of can be improved by replacing n in (9-38) with the multiplicative
factor ±

Using Bartlett’s correction,4 we reject at the level of significance if

(9-39)

provided that n and are large. Since the number of degrees of freedom,
must be positive, it follows that

(9-40)

in order to apply the test (9-39).
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4 Many factor analysts obtain an approximate maximum likelihood estimate by replacing with
the unbiased estimate – and then minimizing ± The dual substitution
of S and the approximate maximum likelihood estimator into the test statistic of (9-39) does not affect its
large sample properties.
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Comment. In implementing the test in (9-39), we are testing for the adequacy
of the m common factor model by comparing the generalized variances 
and If n is large and m is small relative to p, the hypothesis will usually be
rejected, leading to a retention of more common factors. However,
may be close enough to so that adding more factors does not provide additional
insights, even though those factors are “significant.” Some judgment must be exer-
cised in the choice of m.

Example 9.7 (Testing for two common factors) The two-factor maximum likelihood
analysis of the stock-price data was presented in Example 9.5. The residual
matrix there suggests that a two-factor solution may be adequate.Test the hypothesis

= with at level
The test statistic in (9-39) is based on the ratio of generalized variances

Let be the diagonal matrix such that = By the properties of
determinants (see Result 2A.11),

and

Consequently,

(9-41)

by (9-30). From Example 9.5, we determine
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Using Bartlett’s correction, we evaluate the test statistic in (9-39):

Since = – the 5% critical value
is not exceeded, and we fail to reject We conclude that the data do

not contradict a two-factor model. In fact, the observed significance level, or P-value,
implies that would not be rejected at any reasonable level. ■

Large sample variances and covariances for the maximum likelihood estimates
have been derived when these estimates have been determined from the sample

covariance matrix S. (See [10].) The expressions are, in general, quite complicated.

9.4 Factor Rotation
As we indicated in Section 9.2, all factor loadings obtained from the initial loadings
by an orthogonal transformation have the same ability to reproduce the covariance
(or correlation) matrix. [See (9-8).] From matrix algebra, we know that an orthogo-
nal transformation corresponds to a rigid rotation (or reflection) of the coordinate
axes. For this reason, an orthogonal transformation of the factor loadings, as well as
the implied orthogonal transformation of the factors, is called factor rotation.

If is the matrix of estimated factor loadings obtained by any method
(principal component, maximum likelihood, and so forth) then

(9-42)

is a matrix of “rotated” loadings. Moreover, the estimated covariance (or
correlation) matrix remains unchanged, since

(9-43)

Equation (9-43) indicates that the residual matrix, = 

remains unchanged. Moreover, the specific variances and hence the communalities
are unaltered. Thus, from a mathematical viewpoint, it is immaterial whether 

or is obtained.
Since the original loadings may not be readily interpretable, it is usual practice

to rotate them until a “simpler structure” is achieved. The rationale is very much
akin to sharpening the focus of a microscope in order to see the detail more clearly.

Ideally, we should like to see a pattern of loadings such that each variable loads
highly on a single factor and has small to moderate loadings on the remaining factors.
However, it is not always possible to get this simple structure, although the rotated load-
ings for the decathlon data discussed in Example 9.11 provide a nearly ideal pattern.

We shall concentrate on graphical and analytical methods for determining an
orthogonal rotation to a simple structure. When or the common factors are
considered two at a time, the transformation to a simple structure can frequently be
determined graphically. The uncorrelated common factors are regarded as unit

m = 2,
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Factor Rotation

vectors along perpendicular coordinate axes. A plot of the pairs of factor loadings
yields p points, each point corresponding to a variable.The coordinate axes

can then be visually rotated through an angle—call it —and the new rotated load-
ings are determined from the relationships

(9-44)

The relationship in (9-44) is rarely implemented in a two-dimensional graphical
analysis. In this situation, clusters of variables are often apparent by eye, and these
clusters enable one to identify the common factors without having to inspect the mag-
nitudes of the rotated loadings. On the other hand, for orientations are not
easily visualized, and the magnitudes of the rotated loadings must be inspected to find
a meaningful interpretation of the original data.The choice of an orthogonal matrix T
that satisfies an analytical measure of simple structure will be considered shortly.

Example 9.8 (A first look at factor rotation) Lawley and Maxwell [10] present the
sample correlation matrix of examination scores in subject areas for

male students. The correlation matrix is

and a maximum likelihood solution for common factors yields the estimates
in Table 9.5.

m = 2

R = F
Gaelic English History Arithmetic Algebra Geometry

1.0 .439 .410 .288 .329 .248
1.0 .351 .354 .320 .329

1.0 .164 .190 .181
1.0 .595 .470

1.0 .464
1.0

V
n = 220

p = 6

m 7 2,

where  e T = B cos f

-sin f
  

sin f

cos f
R clockwise

rotation
  

T = B cos f

sin f
  

-sin f

cos f
R counterclockwise

rotation

LN … 

 

1p * 22
= LN  

 

 

1p * 22
 T
12 * 22

/
n

i j
…

f

1/ni 1 , /ni 22

Table 9.5

Estimated
factor loadings Communalities

Variable

1. Gaelic .553 .429 .490
2. English .568 .288 .406
3. History .392 .450 .356
4. Arithmetic .740 .623
5. Algebra .724 .569
6. Geometry .595 .372- .132

- .211
- .273

hn i
2F2F1
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Chapter 9 Factor Analysis and Inference for Structured Covariance Matrices

All the variables have positive loadings on the first factor. Lawley and
Maxwell suggest that this factor reflects the overall response of the students to in-
struction and might be labeled a general intelligence factor. Half the loadings are
positive and half are negative on the second factor. A factor with this pattern of
loadings is called a bipolar factor. (The assignment of negative and positive poles
is arbitrary, because the signs of the loadings on a factor can be reversed without
affecting the analysis.) This factor is not easily identified, but is such that individu-
als who get above-average scores on the verbal tests get above-average scores on
the factor. Individuals with above-average scores on the mathematical tests get
below-average scores on the factor. Perhaps this factor can be classified as a
“math-nonmath” factor.

The factor loading pairs are plotted as points in Figure 9.1. The points
are labeled with the numbers of the corresponding variables. Also shown is a clock-
wise orthogonal rotation of the coordinate axes through an angle of This 
angle was chosen so that one of the new axes passes through When this is
done, all the points fall in the first quadrant (the factor loadings are all positive), and
the two distinct clusters of variables are more clearly revealed.

The mathematical test variables load highly on and have negligible load-
ings on The first factor might be called a mathematical-ability factor. Similarly,
the three verbal test variables have high loadings on and moderate to small
loadings on The second factor might be labeled a verbal-ability factor.
The general-intelligence factor identified initially is submerged in the factors 
and 

The rotated factor loadings obtained from (9-44) with and the
corresponding communality estimates are shown in Table 9.6. The magnitudes of
the rotated factor loadings reinforce the interpretation of the factors suggested by 
Figure 9.1.

The communality estimates are unchanged by the orthogonal rotation, since
= = and the communalities are the diagonal elements of these

matrices.
We point out that Figure 9.1 suggests an oblique rotation of the coordinates.

One new axis would pass through the cluster and the other through the
group. Oblique rotations are so named because they correspond to a 

nonrigid rotation of coordinate axes leading to new axes that are not perpendicular.
54, 5, 66

51, 2, 36
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Figure 9.1 Factor rotation for test
scores.
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It is apparent, however, that the interpretation of the oblique factors for this 
example would be much the same as that given previously for an orthogonal 
rotation. ■

Kaiser [9] has suggested an analytical measure of simple structure known as the
varimax (or normal varimax) criterion. Define = to be the rotated coeffi-
cients scaled by the square root of the communalities. Then the (normal) varimax
procedure selects the orthogonal transformation T that makes

(9-45)

as large as possible.
Scaling the rotated coefficients has the effect of giving variables with small

communalities relatively more weight in the determination of simple structure.
After the transformation T is determined, the loadings are multiplied by so
that the original communalities are preserved.

Although (9-45) looks rather forbidding, it has a simple interpretation. In
words,

(9-46)

Effectively, maximizing V corresponds to “spreading out” the squares of the load-
ings on each factor as much as possible. Therefore, we hope to find groups of large
and negligible coefficients in any column of the rotated loadings matrix 

Computing algorithms exist for maximizing V, and most popular factor analysis
computer programs (for example, the statistical software packages SAS, SPSS,
BMDP, and MINITAB) provide varimax rotations. As might be expected, varimax
rotations of factor loadings obtained by different solution methods (principal com-
ponents, maximum likelihood, and so forth) will not, in general, coincide. Also, the
pattern of rotated loadings may change considerably if additional common factors
are included in the rotation. If a dominant single factor exists, it will generally be ob-
scured by any orthogonal rotation. By contrast, it can always be held fixed and the
remaining factors rotated.
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Table 9.6

Estimated rotated
factor loadings Communalities

Variable

1. Gaelic .369 .594 .490
2. English .433 .467 .406
3. History .211 .558 .356
4. Arithmetic .789 .001 .623
5. Algebra .752 .054 .568
6. Geometry .604 .083 .372

hn i
…2

= hn i
2F2

…F1
…
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Chapter 9 Factor Analysis and Inference for Structured Covariance Matrices

Example 9.9 (Rotated loadings for the consumer-preference data) Let us return to
the marketing data discussed in Example 9.3. The original factor loadings (obtained
by the principal component method), the communalities, and the (varimax) rotated
factor loadings are shown in Table 9.7. (See the SAS statistical software output in
Panel 9.1.)

Table 9.7

Estimated Rotated
factor estimated factor

loadings loadings Communalities
Variable

1. Taste .56 .82 .02 .99 .98
2. Good buy for money .78 .94 .88
3. Flavor .65 .75 .13 .98 .98
4. Suitable for snack .94 .84 .43 .89
5. Provides lots of energy .80 .97 .93

Cumulative proportion
of total (standardized)
sample variance explained .571 .932 .507 .932

- .02- .54
- .10

- .01- .52

h
'

i
2F2

…F1
…F2F1

F2

F1

4

1
3

2
5

�.5

.5 1.0
0

.5

F*2

F*1
Figure 9.2 Factor rotation for
hypothetical marketing data.

It is clear that variables 2, 4, and 5 define factor 1 (high loadings on factor 1,
small or negligible loadings on factor 2), while variables 1 and 3 define factor 2 (high
loadings on factor 2, small or negligible loadings on factor 1). Variable 4 is most
closely aligned with factor 1, although it has aspects of the trait represented by
factor 2. We might call factor 1 a nutritional factor and factor 2 a taste factor.

The factor loadings for the variables are pictured with respect to the original
and (varimax) rotated factor axes in Figure 9.2. ■
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title ‘Factor Analysis’;
data consumer(type = corr);
_type_=’CORR’;
input _name_$ taste money flavor snack energy;
cards;
taste 1.00 . . . .
money .02 1.00 . . .
flavor .96 .13 1.00 . . PROGRAM COMMANDS
snack .42 .71 .50 1.00 .
energy .01 .85 .11 .79 1.00
;
proc factor res data=consumer

method=prin nfact=2rotate=varimax preplot plot;
var taste money flavor snack energy;

PANEL 9.1 SAS ANALYSIS FOR EXAMPLE 9.9 USING PROC FACTOR.

¯
˚

˚
˚

˚
˚

˘
˚

˚
˚

˚
˚

˚
˙

(continues on next page)

Initial Factor Method: Principal Components OUTPUT

Prior Communality Estimates: ONE

Eigenvalues of the Correlation Matrix: Total = 5 Average = 1

1 2 3 4 5
Eigenvalue 2.853090 1.806332 0.204490 0.102409 0.033677
Difference 1.046758 1.601842 0.102081 0.068732

Proportion 0.5706 0.3613 0.0409 0.0205 0.0067
Cumulative 0.5706 0.9319 0.9728 0.9933 1.0000

2 factors will be retained by the NFACTOR criterion.

Factor Pattern

FACTOR1 FACTOR2
TASTE 0.55986 0.81610
MONEY 0.77726 –0.52420
FLAVOR 0.64534 0.74795
SNACK 0.93911 –0.10492
ENERGY 0.79821 –0.54323

Final Communality Estimates: Total = 4.659423

TASTE MONEY FLAVOR SNACK ENERGY

0.97961 0.878920 0.975883 0.892928 0.932231
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Chapter 9 Factor Analysis and Inference for Structured Covariance Matrices

PANEL 9.1 (continued)

Rotation Method: Varimax

Rotated Factor Pattern

FACTOR1 FACTOR2
TASTE 0.01970 0.98948
MONEY 0.93744 –0.01123
FLAVOR 0.12856 0.97947
SNACK 0.84244 0.42805
ENERGY 0.96539 –0.01563

Variance explained by each factor

FACTOR1 FACTOR2
2.537396 2.122027

Table 9.8

Maximum likelihood
estimates of factor Rotated estimated Specific

loadings factor loadings variances
Variable

J P Morgan .115 .755 .763 .024 .42
Citibank .322 .788 .821 .227 .27
Wells Fargo .182 .652 .669 .104 .54
Royal Dutch Shell 1.000 .118 .993 .00
ExxonMobil .683 .113 .675 .53

Cumulative
proportion
of total
sample variance
explained .323 .647 .346 .647

.032
- .000

cn i
2

= 1 - hn i
2F2

…F1
…F2F1

Rotation of factor loadings is recommended particularly for loadings
obtained by maximum likelihood, since the initial values are constrained to satisfy
the uniqueness condition that be a diagonal matrix. This condition is
convenient for computational purposes, but may not lead to factors that can easily
be interpreted.

Example 9.10 (Rotated loadings for the stock-price data) Table 9.8 shows the initial
and rotated maximum likelihood estimates of the factor loadings for the stock-price
data of Examples 8.5 and 9.5. An factor model is assumed. The estimatedm = 2

LN ¿  ±
N -1

 LN
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specific variances and cumulative proportions of the total (standardized) sample vari-
ance explained by each factor are also given.

An interpretation of the factors suggested by the unrotated loadings was pre-
sented in Example 9.5. We identified market and industry factors.

The rotated loadings indicate that the bank stocks (JP Morgan, Citibank, and
Wells Fargo) load highly on the first factor, while the oil stocks (Royal Dutch 
Shell and ExxonMobil) load highly on the second factor. (Although the rotated
loadings obtained from the principal component solution are not displayed, the
same phenomenon is observed for them.) The two rotated factors, together,
differentiate the industries. It is difficult for us to label these factors intelligently.
Factor 1 represents those unique economic forces that cause bank stocks to
move together. Factor 2 appears to represent economic conditions affecting oil
stocks.

As we have noted, a general factor (that is, one on which all the variables load
highly) tends to be “destroyed after rotation.” For this reason, in cases where a gen-
eral factor is evident, an orthogonal rotation is sometimes performed with the gen-
eral factor loadings fixed.5 ■

Example 9.11 (Rotated loadings for the Olympic decathlon data) The estimated
factor loadings and specific variances for the Olympic decathlon data were
presented in Example 9.6. These quantities were derived for an factor
model, using both principal component and maximum likelihood solution
methods. The interpretation of all the underlying factors was not immediately
evident. A varimax rotation [see (9-45)] was performed to see whether the rotated
factor loadings would provide additional insights. The varimax rotated loadings
for the factor solutions are displayed in Table 9.9, along with the specific
variances. Apart from the estimated loadings, rotation will affect only the distribu-
tion of the proportions of the total sample variance explained by each factor. The
cumulative proportion of the total sample variance explained for all factors does
not change.

The rotated factor loadings for both methods of solution point to the same
underlying attributes, although factors 1 and 2 are not in the same order. We see
that shot put, discus, and javelin load highly on a factor, and, following Linden
[11], this factor might be called explosive arm strength. Similarly, high jump,
110-meter hurdles, pole vault, and—to some extent—long jump load highly on
another factor. Linden labeled this factor explosive leg strength. The 100-meter
run, 400-meter run, and—again to some extent—the long jump load highly on a
third factor. This factor could be called running speed. Finally, the 1500-meter run
loads heavily and the 400-meter run loads heavily on the fourth factor. Linden
called this factor running endurance. As he notes, “The basic functions indicated in
this study are mainly consistent with the traditional classification of track and
field athletics.”

m = 4

m = 4

5Some general-purpose factor analysis programs allow one to fix loadings associated with certain
factors and to rotate the remaining factors.
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Chapter 9 Factor Analysis and Inference for Structured Covariance Matrices

Table 9.9

Principal component Maximum likelihood

Estimated Estimated
rotated Specific rotated Specific

factor loadings, variances factor loadings, variances

Variable

100-m
run .182 .885 .205 .12 .204 .296 .928 .01

Long
jump .291 .664 .429 .055 .29 .280 .554 .451 .155 .39

Shot
put .819 .302 .252 .17 .883 .278 .228 .09

High
jump .267 .221 .683 .293 .33 .254 .739 .057 .242 .33

400-m
run .086 .747 .068 .507 .17 .142 .151 .519 .700 .20

110-m
hurdles .048 .108 .826 .28 .136 .465 .173 .73

Discus .832 .185 .204 .23 .793 .220 .133 .30

Pole
vault .324 .278 .656 .293 .30 .314 .613 .169 .279 .42

Javelin .754 .024 .054 .188 .39 .477 .160 .041 .139 .73

1500-m
run .019 .075 .921 .15 .001 .110 .619 .60

Cumulative
proportion
of total
sample
variance
explained .22 .43 .62 .76 .20 .37 .51 .62

- .070- .002

- .009- .076

- .033- .161

- .045- .097

- .005- .139
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Plots of rotated maximum likelihood loadings for factors pairs
and are displayed in Figure 9.3 on page 513. The points are generally
grouped along the factor axes. Plots of rotated principal component loadings are
very similar. ■

Oblique Rotations

Orthogonal rotations are appropriate for a factor model in which the common fac-
tors are assumed to be independent. Many investigators in social sciences consider
oblique (nonorthogonal) rotations, as well as orthogonal rotations. The former are

11, 32
11, 22
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often suggested after one views the estimated factor loadings and do not follow
from our postulated model. Nevertheless, an oblique rotation is frequently a useful
aid in factor analysis.

If we regard the m common factors as coordinate axes, the point with the m
coordinates represents the position of the ith variable in the factor
space. Assuming that the variables are grouped into nonoverlapping clusters, an or-
thogonal rotation to a simple structure corresponds to a rigid rotation of the coordi-
nate axes such that the axes, after rotation, pass as closely to the clusters as possible.
An oblique rotation to a simple structure corresponds to a nonrigid rotation of the
coordinate system such that the rotated axes (no longer perpendicular) pass (near-
ly) through the clusters. An oblique rotation seeks to express each variable in terms
of a minimum number of factors—preferably, a single factor. Oblique rotations are
discussed in several sources (see, for example, [6] or [10]) and will not be pursued in
this book.

9.5 Factor Scores
In factor analysis, interest is usually centered on the parameters in the factor model.
However, the estimated values of the common factors, called factor scores, may also
be required. These quantities are often used for diagnostic purposes, as well as in-
puts to a subsequent analysis.

Factor scores are not estimates of unknown parameters in the usual sense.
Rather, they are estimates of values for the unobserved random factor vectors 

That is, factor scores

fNj = estimate of the values fj attained by Fj 1jth case2

j = 1, 2, Á , n.
Fj ,

1/ni 1 , /ni 2 , Á , /ni m2

Figure 9.3 Rotated maximum likelihood loadings for factor pairs and —
decathlon data. (The numbers in the figures correspond to variables.)

11, 3211, 22

0.0 0.2 0.4 0.6 0.8

9

8

4

6

2
5

1

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ct

or
 3

Factor 1

10

3

7

0.0 0.2 0.4 0.6 0.8

9

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ct

or
 2

Factor 1

10
5

1

6

2
8

4

3
7

513



Chapter 9 Factor Analysis and Inference for Structured Covariance Matrices

The estimation situation is complicated by the fact that the unobserved quantities 
and outnumber the observed To overcome this difficulty, some rather heuris-
tic, but reasoned, approaches to the problem of estimating factor values have been
advanced. We describe two of these approaches.

Both of the factor score approaches have two elements in common:

1. They treat the estimated factor loadings and specific variances as if they
were the true values.

2. They involve linear transformations of the original data, perhaps centered 
or standardized. Typically, the estimated rotated loadings, rather than the
original estimated loadings, are used to compute factor scores. The com-
putational formulas, as given in this section, do not change when rotated load-
ings are substituted for unrotated loadings, so we will not differentiate
between them.

The Weighted Least Squares Method

Suppose first that the mean vector the factor loadings L, and the specific variance
are known for the factor model

Further, regard the specific factors as errors. Since
need not be equal, Bartlett [2] has suggested that

weighted least squares be used to estimate the common factor values.
The sum of the squares of the errors, weighted by the reciprocal of their

variances, is

(9-47)

Bartlett proposed choosing the estimates of f to minimize (9-47). The solution (see
Exercise 7.3) is

(9-48)

Motivated by (9-48), we take the estimates and as the true values and
obtain the factor scores for the jth case as

(9-49)

When and are determined by the maximum likelihood method, these estimates
must satisfy the uniqueness condition, a diagonal matrix. We then
have the following:
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The factor scores generated by (9-50) have sample mean vector 0 and zero sample
covariances. (See Exercise 9.16.)

If rotated loadings are used in place of the original loadings in (9-50),
the subsequent factor scores, are related to by 

Comment. If the factor loadings are estimated by the principal component
method, it is customary to generate factor scores using an unweighted (ordinary)
least squares procedure. Implicitly, this amounts to assuming that the are equal or
nearly equal. The factor scores are then

or

for standardized data. Since [see (9-15)],
we have

(9-51)

For these factor scores,
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Factor Scores Obtained by Weighted Least Squares 
from the Maximum Likelihood Estimates

or, if the correlation matrix is factored (9-50)
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Chapter 9 Factor Analysis and Inference for Structured Covariance Matrices

Comparing (9-51) with (8-21), we see that the are nothing more than the first m
(scaled) principal components, evaluated at 

The Regression Method

Starting again with the original factor model = we initially treat
the loadings matrix L and specific variance matrix as known. When the common
factors F and the specific factors (or errors) are jointly normally distributed with
means and covariances given by (9-3), the linear combination = has
an distribution. (See Result 4.3.) Moreover, the joint distribution
of and F is where

(9-52)

and 0 is an vector of zeros. Using Result 4.6, we find that the condi-
tional distribution of is multivariate normal with

(9-53)

and

(9-54)

The quantities in (9-53) are the coefficients in a (multivariate) re-
gression of the factors on the variables. Estimates of these coefficients produce
factor scores that are analogous to the estimates of the conditional mean values in
multivariate regression analysis. (See Chapter 7.) Consequently, given any vector of
observations and taking the maximum likelihood estimates and as the true val-
ues, we see that the jth factor score vector is given by

(9-55)

The calculation of in (9-55) can be simplified by using the matrix identity (see
Exercise 9.6)

(9-56)

This identity allows us to compare the factor scores in (9-55), generated by the re-
gression argument, with those generated by the weighted least squares procedure

[see (9-50)]. Temporarily, we denote the former by and the latter by Then,
using (9-56), we obtain

(9-57)

For maximum likelihood estimates = and if the elements of this
diagonal matrix are close to zero, the regression and generalized least squares
methods will give nearly the same factor scores.
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Factor Scores

In an attempt to reduce the effects of a (possibly) incorrect determination of
the number of factors, practitioners tend to calculate the factor scores in (9-55) by
using S (the original sample covariance matrix) instead of ± We then
have the following:

±
N .�N = LN LN ¿

Factor Scores Obtained by Regression

or, if a correlation matrix is factored, (9-58)

where, see (8-25),

zj = D-1>2
 1xj - x–2 and RN = LN z LN œ

z + ±
N

z

fNj = LN œ

z  R-1
 zj ,  j = 1, 2, Á , n

fNj = LN ¿  S-11xj - x–2,  j = 1, 2, Á , n

Again, if rotated loadings are used in place of the original loadings in

(9-58), the subsequent factor scores are related to by

A numerical measure of agreement between the factor scores generated from
two different calculation methods is provided by the sample correlation coefficient
between scores on the same factor. Of the methods presented, none is recommended
as uniformly superior.

Example 9.12 (Computing factor scores) We shall illustrate the computation of fac-
tor scores by the least squares and regression methods using the stock-price data
discussed in Example 9.10. A maximum likelihood solution from R gave the esti-
mated rotated loadings and specific variances

The vector of standardized observations,

yields the following scores on factors 1 and 2:

z¿ = 7.50, -1.40, - .20, - .70, 1.408

LN z* = E .763 .024
.821 .227
.669 .104
.118 .993
.113 .675

U and ±
N

z = E .42 0 0 0 0
0 .27 0 0 0
0 0 .54 0 0
0 0 0 .00 0
0 0 0 0 .53

U

fN j
…

= T¿  fNj ,  j = 1, 2, Á , n

fNjfN j
…

LN * = LN T
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Chapter 9 Factor Analysis and Inference for Structured Covariance Matrices

Weighted least squares (9-50):6

Regression (9-58):

In this case, the two methods produce very similar results. All of the regression
factor scores, obtained using (9-58), are plotted in Figure 9.4. ■

Comment. Factor scores with a rather pleasing intuitive property can be con-
structed very simply. Group the variables with high (say, greater than .40 in
absolute value) loadings on a factor. The scores for factor 1 are then formed by
summing the (standardized) observed values of the variables in the group, com-
bined according to the sign of the loadings. The factor scores for factor 2 are the
sums of the standardized observations corresponding to variables with high loadings

fN = LN z
…œ

 R-1
 z = B .331 .526 .221 - .137 .011

- .040 - .063 - .026 1.023 - .001
R   E .50

-1.40
- .20
- .70
1.40

U = B - .50
- .64

R

fN = 1LN z
…œ

 ±
N

z
-1

 LN z
…2-

1
 LN z

…œ

 ±
N

z
-1

 z = B - .61
- .61

R

6 In order to calculate the weighted least squares factor scores, .00 in the fourth diagonal position of
was set to .01 so that this matrix could be inverted.±

n
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�1
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1
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Factor 1
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Figure 9.4 Factor scores using (9-58) for factors 1 and 2 of the stock-price data
(maximum likelihood estimates of the factor loadings).
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Perspectives and a Strategy for Factor Analysis

on factor 2, and so forth. Data reduction is accomplished by replacing the stan-
dardized data by these simple factor scores. The simple factor scores are frequently
highly correlated with the factor scores obtained by the more complex least
squares and regression methods.

Example 9.13 (Creating simple summary scores from factor analysis groupings) The
principal component factor analysis of the stock price data in Example 9.4 produced
the estimated loadings

For each factor, take the loadings with largest absolute value in as equal in magni-
tude, and neglect the smaller loadings. Thus, we create the linear combinations

as a summary. In practice, we would standardize these new variables.
If, instead of we start with the varimax rotated loadings the simple factor

scores would be

The identification of high loadings and negligible loadings is really quite subjective.
Linear compounds that make subject-matter sense are preferable. ■

Although multivariate normality is often assumed for the variables in a factor
analysis, it is very difficult to justify the assumption for a large number of variables.
As we pointed out in Chapter 4, marginal transformations may help. Similarly, the
factor scores may or may not be normally distributed. Bivariate scatter plots of fac-
tor scores can produce all sorts of nonelliptical shapes. Plots of factor scores should
be examined prior to using these scores in other analyses. They can reveal outlying
values and the extent of the (possible) nonnormality.

9.6 Perspectives and a Strategy for Factor Analysis
There are many decisions that must be made in any factor analytic study. Probably
the most important decision is the choice of m, the number of common factors.
Although a large sample test of the adequacy of a model is available for a given m, it
is suitable only for data that are approximately normally distributed. Moreover, the
test will most assuredly reject the model for small m if the number of variables and
observations is large. Yet this is the situation when factor analysis provides a useful
approximation. Most often, the final choice of m is based on some combination of

 f
 
n

2 = x4 + x5

 f
 
n

1 = x1 + x2 + x3

L
'

*,L
'

,
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n

2 = x4 + x5 - x1

 f
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= E .732 - .437
.831 - .280
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.605 .694
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.133 .911
.084 .909
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Chapter 9 Factor Analysis and Inference for Structured Covariance Matrices

(1) the proportion of the sample variance explained, (2) subject-matter knowledge,
and (3) the “reasonableness” of the results.

The choice of the solution method and type of rotation is a less crucial deci-
sion. In fact, the most satisfactory factor analyses are those in which rotations are
tried with more than one method and all the results substantially confirm the same
factor structure.

At the present time, factor analysis still maintains the flavor of an art, and no
single strategy should yet be “chiseled into stone.” We suggest and illustrate one
reasonable option:

1. Perform a principal component factor analysis. This method is particularly
appropriate for a first pass through the data. (It is not required that R or S be
nonsingular.)

(a) Look for suspicious observations by plotting the factor scores. Also,
calculate standardized scores for each observation and squared distances as
described in Section 4.6.

(b) Try a varimax rotation.

2. Perform a maximum likelihood factor analysis, including a varimax rotation.

3. Compare the solutions obtained from the two factor analyses.

(a) Do the loadings group in the same manner?

(b) Plot factor scores obtained for principal components against scores from
the maximum likelihood analysis.

4. Repeat the first three steps for other numbers of common factors m. Do extra fac-
tors necessarily contribute to the understanding and interpretation of the data?

5. For large data sets, split them in half and perform a factor analysis on each part.
Compare the two results with each other and with that obtained from the com-
plete data set to check the stability of the solution. (The data might be divided
by placing the first half of the cases in one group and the second half of the
cases in the other group. This would reveal changes over time.)

Example 9.14 (Factor analysis of chicken-bone data) We present the results of sev-
eral factor analyses on bone and skull measurements of white leghorn fowl. The
original data were taken from Dunn [5]. Factor analysis of Dunn’s data was orig-
inally considered by Wright [15], who started his analysis from a different corre-
lation matrix than the one we use.

The full data set consists of measurements on bone dimensions:

Head:

Leg:

Wing: bX5 = humerus length
X6 = ulna length

bX3 = femur length
X4 = tibia length

bX1 = skull length
X2 = skull breadth

n = 276
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Perspectives and a Strategy for Factor Analysis

The sample correlation matrix

was factor analyzed by the principal component and maximum likelihood methods
for an factor model. The results are given in Table 9.10.7m = 3

R = F
1.000 .505 .569 .602 .621 .603
.505 1.000 .422 .467 .482 .450
.569 .422 1.000 .926 .877 .878
.602 .467 .926 1.000 .874 .894
.621 .482 .877 .874 1.000 .937
.603 .450 .878 .894 .937 1.000

V

7 Notice the estimated specific variance of .00 for tibia length in the maximum likelihood solution.
This suggests that maximizing the likelihood function may produce a Heywood case. Readers attempting
to replicate our results should try the Hey(wood) option if SAS or similar software is used.

Table 9.10 Factor Analysis of Chicken-Bone Data

Principal Component

Estimated factor loadings Rotated estimated loadings
Variable

1. Skull length .741 .350 .573 .355 .244 .902 .00
2. Skull breadth .604 .720 .235 .949 .211 .00
3. Femur length .929 .921 .164 .218 .08
4. Tibia length .943 .904 .212 .252 .08
5. Humerus length .948 .888 .228 .283 .08
6. Ulna length .945 .908 .192 .264 .07

Cumulative
proportion of
total (standardized)
sample variance
explained .743 .873 .950 .576 .763 .950

Maximum Likelihood

Estimated factor loadings Rotated estimated loadings
Variable

1. Skull length .602 .214 .286 .467 .506 .128 .51
2. Skull breadth .467 .177 .652 .211 .792 .050 .33
3. Femur length .926 .145 .890 .289 .084 .12
4. Tibia length 1.000 .000 .936 .345 .00
5. Humerus length .874 .463 .831 .362 .396 .02
6. Ulna length .894 .336 .857 .325 .272 .09

Cumulative
proportion of
total (standardized)
sample variance
explained .667 .738 .823 .559 .779 .823

- .039
- .012

- .073- .000
- .057

cniF3
…F2

…F1
…F3F2F1

- .047- .189
- .045- .143
- .067- .175
- .075- .233
- .340

c
'

iF3
…F2

…F1
…F3F2F1
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Chapter 9 Factor Analysis and Inference for Structured Covariance Matrices

After rotation, the two methods of solution appear to give somewhat different
results. Focusing our attention on the principal component method and the cumula-
tive proportion of the total sample variance explained, we see that a three-factor so-
lution appears to be warranted. The third factor explains a “significant” amount of
additional sample variation. The first factor appears to be a body-size factor domi-
nated by wing and leg dimensions. The second and third factors, collectively, repre-
sent skull dimensions and might be given the same names as the variables, skull
breadth and skull length, respectively.

The rotated maximum likelihood factor loadings are consistent with those gen-
erated by the principal component method for the first factor, but not for factors 2
and 3. For the maximum likelihood method, the second factor appears to represent
head size. The meaning of the third factor is unclear, and it is probably not needed.

Further support for retaining three or fewer factors is provided by the residual
matrix obtained from the maximum likelihood estimates:

All of the entries in this matrix are very small. We shall pursue the factor
model in this example. An factor model is considered in Exercise 9.10.

Factor scores for factors 1 and 2 produced from (9-58) with the rotated maxi-
mum likelihood estimates are plotted in Figure 9.5. Plots of this kind allow us to
identify observations that, for one reason or another, are not consistent with the
remaining observations. Potential outliers are circled in the figure.

It is also of interest to plot pairs of factor scores obtained using the principal
component and maximum likelihood estimates of factor loadings. For the chicken-
bone data, plots of pairs of factor scores are given in Figure 9.6 on pages 524–526. If
the loadings on a particular factor agree, the pairs of scores should cluster tightly
about the line through the origin. Sets of loadings that do not agree will produce
factor scores that deviate from this pattern. If the latter occurs, it is usually associat-
ed with the last factors and may suggest that the number of factors is too large. That
is, the last factors are not meaningful. This seems to be the case with the third factor
in the chicken-bone data, as indicated by Plot (c) in Figure 9.6.

Plots of pairs of factor scores using estimated loadings from two solution
methods are also good tools for detecting outliers. If the sets of loadings for a factor
tend to agree, outliers will appear as points in the neighborhood of the line, but
far from the origin and the cluster of the remaining points. It is clear from Plot (b) in
Figure 9.6 that one of the 276 observations is not consistent with the others. It has an
unusually large -score. When this point, was
removed and the analysis repeated, the loadings were not altered appreciably.

When the data set is large, it should be divided into two (roughly) equal sets,
and a factor analysis should be performed on each half.The results of these analyses
can be compared with each other and with the analysis for the full data set to 

339.1, 39.3, 75.7, 115, 73.4, 69.14,F2

45°

45°

m = 2
m = 3

R - LN z LN œ

z - ±
N

z = F
.000      

- .000 .000     

- .003 .001 .000    

.000 .000 .000 .000   

- .001 .000 .000 .000 .000  

.004 - .001 - .001 .000 - .000 .000

V
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Perspectives and a Strategy for Factor Analysis

test the stability of the solution. If the results are consistent with one another,
confidence in the solution is increased.

The chicken-bone data were divided into two sets of and
observations, respectively. The resulting sample correlation matrices were

and

R2 = F
1.000      

.366 1.000     

.572 .352 1.000    

.587 .406 .950 1.000   

.587 .420 .909 .911 1.000  

.598 .386 .894 .927 .940 1.000

V

R1 = F
1.000      

.696 1.000     

.588 .540 1.000    

.639 .575 .901 1.000   

.694 .606 .844 .835 1.000  

.660 .584 .866 .863 .931 1.000

V
n2 = 139n1 = 137
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Figure 9.5 Factor scores for the first two factors of chicken-bone data.
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Chapter 9 Factor Analysis and Inference for Structured Covariance Matrices

The rotated estimated loadings, specific variances, and proportion of the total
(standardized) sample variance explained for a principal component solution of an

factor model are given in Table 9.11 on page 525.
The results for the two halves of the chicken-bone measurements are very simi-

lar. Factors and interchange with respect to their labels, skull length and skull
breadth, but they collectively seem to represent head size. The first factor, again
appears to be a body-size factor dominated by leg and wing dimensions. These are
the same interpretations we gave to the results from a principal component factor
analysis of the entire set of data. The solution is remarkably stable, and we can be
fairly confident that the large loadings are “real.” As we have pointed out however,
three factors are probably too many. A one- or two-factor model is surely sufficient
for the chicken-bone data, and you are encouraged to repeat the analyses here with
fewer factors and alternative solution methods. (See Exercise 9.10.) ■
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Figure 9.6 Pairs of factor scores for the chicken-bone data. (Loadings are
estimated by principal component and maximum likelihood methods.)
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Figure 9.6
(continued)

Table 9.11

First set Second set
( observations) ( observations)

Rotated estimated factor loadings Rotated estimated factor loadings

Variable

1. Skull length .360 .361 .853 .01 .352 .921 .167 .00
2. Skull breadth .303 .899 .312 .00 .203 .145 .968 .00
3. Femur length .914 .238 .175 .08 .930 .239 .130 .06
4. Tibia length .877 .270 .242 .10 .925 .248 .187 .05
5. Humerus length .830 .247 .395 .11 .912 .252 .208 .06
6. Ulna length .871 .231 .332 .08 .914 .272 .168 .06

Cumulative proportion 
of total (standardized)
sample variance
explained .546 .743 .940 .593 .780 .962
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Chapter 9 Factor Analysis and Inference for Structured Covariance Matrices

Factor analysis has a tremendous intuitive appeal for the behavioral and social
sciences. In these areas, it is natural to regard multivariate observations on animal
and human processes as manifestations of underlying unobservable “traits.” Factor
analysis provides a way of explaining the observed variability in behavior in terms
of these traits.

Still, when all is said and done, factor analysis remains very subjective. Our exam-
ples, in common with most published sources, consist of situations in which the factor
analysis model provides reasonable explanations in terms of a few interpretable fac-
tors. In practice, the vast majority of attempted factor analyses do not yield such clear-
cut results. Unfortunately, the criterion for judging the quality of any factor analysis
has not been well quantified. Rather, that quality seems to depend on a

WOW criterion

If, while scrutinizing the factor analysis, the investigator can shout “Wow, I under-
stand these factors,” the application is deemed successful.
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SOME COMPUTATIONAL DETAILS
FOR MAXIMUM LIKELIHOOD
ESTIMATION

Although a simple analytical expression cannot be obtained for the maximum
likelihood estimators and they can be shown to satisfy certain equations. Not
surprisingly, the conditions are stated in terms of the maximum likelihood estimator 

= of an unstructured covariance matrix. Some

factor analysts employ the usual sample covariance S, but still use the title maximum
likelihood to refer to resulting estimates. This modification, referenced in Footnote 4
of this chapter, amounts to employing the likelihood obtained from the Wishart 

distribution of and ignoring the minor contribution due to 

the normal density for The factor analysis of R is, of course, unaffected by the
choice of or S, since they both produce the same correlation matrix.

Result 9A.1. Let be a random sample from a normal population.
The maximum likelihood estimates and are obtained by maximizing (9-25)
subject to the uniqueness condition in (9-26). They satisfy

(9A-1)

so the jth column of is the (nonnormalized) eigenvector of 
corresponding to eigenvalue Here

Sn = n-1 a
n
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Chapter 9 Factor Analysis and Inference for Structured Covariance Matrices

Also, at convergence,

(9A-2)

and

We avoid the details of the proof. However, it is evident that and a consideration
of the log-likelihood leads to the maximization of ± over L
and Equivalently, since and p are constant with respect to the maximization, we
minimize

(9A-3)

subject to a diagonal matrix. �

Comment. Lawley and Maxwell [10], along with many others who do factor
analysis, use the unbiased estimate S of the covariance matrix instead of the maxi-
mum likelihood estimate Now, has, for normal data, a Wishart distrib-
ution. [See (4-21) and (4-23).] If we ignore the contribution to the likelihood in
(9-25) from the second term involving then maximizing the reduced likeli-
hood over L and is equivalent to maximizing the Wishart likelihood

over L and Equivalently, we can minimize

or, as in (9A-3),

Under these conditions, Result (9A-1) holds with S in place of Also, for large n,
S and are almost identical, and the corresponding maximum likelihood estimates,

and would be similar. For testing the factor model [see (9-39)],
should be compared with if the actual likelihood of (9-25) is employed, and 

should be compared with if the foregoing Wishart likelihood is used
to derive and 

Recommended Computational Scheme

For the condition effectively imposes constraints
on the elements of L and and the likelihood equations are solved, subject to
these contraints, in an iterative fashion. One procedure is the following:

1. Compute initial estimates of the specific variances Jöreskog [8]
suggests setting

(9A-4)
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Some Computational Details for Maximum Likelihood Estimation

2. Given compute the first m distinct eigenvalues, 7 and
corresponding eigenvectors, of the “uniqueness-rescaled” covari-
ance matrix

(9A-5)

Let = be the matrix of normalized eigenvectors
and = be the diagonal matrix of eigenvalues.
From (9A-1), = and = Thus, we obtain the estimates

(9A-6)

3. Substitute obtained in (9A-6) into the likelihood function (9A-3), and
minimize the result with respect to A numerical search routine
must be used. The values obtained from this minimization are 
employed at Step (2) to create a new Steps (2) and (3) are repeated until con-
vergence—that is, until the differences between successive values of and 
are negligible.

Comment. It often happens that the objective function in (9A-3) has a relative
minimum corresponding to negative values for some This solution is clearly 
inadmissible and is said to be improper, or a Heywood case. For most packaged
computer programs, negative if they occur on a particular iteration, are changed
to small positive numbers before proceeding with the next step.

Maximum Likelihood Estimators of 
When has the factor analysis structure can be factored as 

= = ± = ± The loading
matrix for the standardized variables is = and the corresponding specific
variance matrix is = where is the diagonal matrix with ith
diagonal element If R is substituted for in the objective function of (9A-3),
the investigator minimizes

(9A-7)

Introducing the diagonal matrix whose ith diagonal element is the square
root of the ith diagonal element of we can write the objective function in (9A-7) as
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The last inequality follows because the maximum likelihood estimates and 
minimize the objective function (9A-3). [Equality holds in (9A-8) for =

and = ] Therefore, minimizing (9A-7) over and is equivalent

to obtaining and from and estimating = by = and 
= by = The rationale for the latter procedure

comes from the invariance property of maximum likelihood estimators. [See (4-20).]

Exercises

9.1. Show that the covariance matrix

for the standardized random variables and can be generated by the
factor model

where and

That is, write in the form ±

9.2. Use the information in Exercise 9.1.

(a) Calculate communalities and interpret these quantities.

(b) Calculate for Which variable might carry the greatest
weight in “naming” the common factor? Why?

9.3. The eigenvalues and eigenvectors of the correlation matrix in Exercise 9.1 are

(a) Assuming an factor model, calculate the loading matrix L and matrix of
specific variances using the principal component solution method. Compare the
results with those in Exercise 9.1.

(b) What proportion of the total population variance is explained by the first common factor?
9.4. Given and in Exercise 9.1 and an factor model, calculate the reduced 

correlation matrix and the principal factor solution for the loading matrix L.
Is the result consistent with the information in Exercise 9.1? Should it be?

9.5. Establish the inequality (9-19).

Hint: Since has zeros on the diagonal,

… 1sum of squared entries of S - L
'

L
'

¿21sum of squared entries of S - L
'

L
'

¿ - ±

'

2

S - L
'

L
'

¿ - ±

'

R
'

= R - ±

m = 1±R

±

m = 1

 l3 =    

.36,  eœ

3 = 7.749, - .638, - .1778 l2 =    

.68,  eœ

2 = 7- .219, - .491, .8438 l1 = 1.96,  eœ

1 = 7.625, .593, .5078R
i = 1, 2, 3.Corr 1Zi , F12

i = 1, 2, 3,hi
2 ,

± .R = LL ¿R

± = Cov 1E2 = C .19 0 0
0 .51 0
0 0 .75

S
Cov 1E, F12 = 0,Var 1F12 = 1,

 Z3 = .5F1 + e3

 Z2 = .7F1 + e2

 Z1 = .9F1 + e1

m = 1
Z3Z1 , Z2 ,p = 3

R = C 1.0 .63 .45
.63 1.0 .35
.45 .35 1.0

S
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N VN -1>2 .±
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Exercises

Now, = ± = where =

and is the diagonal matrix with elements 

Use (sum of squared entries of A) = and =

9.6. Verify the following matrix identities.

(a) =

Hint: Premultiply both sides by 

(b) =

Hint: Postmultiply both sides by and use (a).

(c) =

Hint: Postmultiply the result in (b) by L, use (a), and take the transpose, noting that
and are symmetric matrices.

9.7. (The factor model parameterization need not be unique.) Let the factor model with
and prevail. Show that

and, for given and there is an infinity of choices for L and 

9.8. (Unique but improper solution: Heywood case.)
Consider an factor model for the population with covariance matrix

Show that there is a unique choice of L and with = but that so
the choice is not admissible.

9.9. In a study of liquor preference in France, Stoetzel [14] collected preference rankings of
liquor types from individuals. A factor analysis of the sample

correlation matrix of rank orderings gave the following estimated loadings:
9 * 9n = 1442p = 9

c3 6 0,LL ¿ + ± ,�±

� = C 1 .4 .9
.4 1 .7
.9 .7 1

S
m = 1

± .s1 2 ,s1 1 , s2 2 ,
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2
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-11LL ¿ + ±2
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 L2.
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-1

 L

tr 3∂N 122  ∂
N

1224.tr 3PN 122  ∂
N

122  ∂
N
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1224tr AA ¿

lnp .lnm + 1 , Á ,∂
N

122

3eN m+1�Á�eN p4PN 122PN 122  ∂
N

122  PN œ

122 ,Á
+lnp  eN p  eN œ

plnm + 1 eN m + 1 eN œ

m + 1S - L
'

L
'

¿

Estimated factor loadings
Variable 

Liquors .64 .02 .16
Kirsch .50
Mirabelle .46
Rum .17 .74 .97 *
Marc .66
Whiskey .09
Calvados .20
Cognac .42
Armagnac .14

*This figure is too high. It exceeds the maximum value of .64, as a result
of an approximation method for obtaining the estimated factor loadings
used by Stoetzel.

- .17- .60
- .03- .52

- .04- .49
- .08- .29

- .39- .29

- .19- .24
- .10- .06

F3F2F11X12
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Given these results, Stoetzel concluded the following:The major principle of liquor pref-
erence in France is the distinction between sweet and strong liquors. The second moti-
vating element is price, which can be understood by remembering that liquor is both an
expensive commodity and an item of conspicuous consumption. Except in the case of
the two most popular and least expensive items (rum and marc), this second factor plays
a much smaller role in producing preference judgments. The third factor concerns the
sociological and primarily the regional, variability of the judgments. (See [14], p. 11.)
(a) Given what you know about the various liquors involved, does Stoetzel’s interpreta-

tion seem reasonable?
(b) Plot the loading pairs for the first two factors. Conduct a graphical orthogonal rota-

tion of the factor axes. Generate approximate rotated loadings. Interpret the rotated
loadings for the first two factors. Does your interpretation agree with Stoetzel’s
interpretation of these factors from the unrotated loadings? Explain.

9.10. The correlation matrix for chicken-bone measurements (see Example 9.14) is

The following estimated factor loadings were extracted by the maximum likelihood
procedure:

F
1.000      

.505 1.000     

.569 .422 1.000    

.602 .467 .926 1.000   

.621 .482 .877 .874 1.000  

.603 .450 .878 .894 .937 1.000

V

Chapter 9 Factor Analysis and Inference for Structured Covariance Matrices

Varimax
Estimated rotated estimated

factor loadings factor loadings
Variable

1. Skull length .602 .200 .484 .411
2. Skull breadth .467 .154 .375 .319
3. Femur length .926 .143 .603 .717
4. Tibia length 1.000 .000 .519 .855
5. Humerus length .874 .476 .861 .499
6. Ulna length .894 .327 .744 .594

F2
…F1

…F2F1

Using the unrotated estimated factor loadings, obtain the maximum likelihood estimates
of the following.
(a) The specific variances.
(b) The communalities.
(c) The proportion of variance explained by each factor.
(d) The residual matrix 

9.11. Refer to Exercise 9.10. Compute the value of the varimax criterion using both unrotated
and rotated estimated factor loadings. Comment on the results.

9.12. The covariance matrix for the logarithms of turtle measurements (see Example 8.4) is

S = 10-3
 C 11.072   

8.019 6.417  

8.160 6.005 6.773
S

R - LN z  LN œ

z - ±
N

z .
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Exercises

The following maximum likelihood estimates of the factor loadings for an model
were obtained:

m = 1

Using the estimated factor loadings, obtain the maximum likelihood estimates of each of
the following.

(a) Specific variances.

(b) Communalities.

(c) Proportion of variance explained by the factor.

(d) The residual matrix 
Hint: Convert S to 

9.13. Refer to Exercise 9.12. Compute the test statistic in (9-39). Indicate why a test of 
= (with ) versus unrestricted cannot be carried out for

this example. [See (9-40).]

9.14. The maximum likelihood factor loading estimates are given in (9A-6) by

Verify, for this choice, that

where is a diagonal matrix.

9.15. Hirschey and Wichern [7] investigate the consistency, determinants, and uses of
accounting and market-value measures of profitability. As part of their study, a factor
analysis of accounting profit measures and market estimates of economic profits was
conducted. The correlation matrix of accounting historical, accounting replacement,
and market-value measures of profitability for a sample of firms operating in 1977 is as
follows:

≤
N

= ∂
N

- I

LN ¿  ±
N -1

 LN = ≤
N

LN = ±
N 1>2

 EN ≤
N 1>2

H1  : �m = 1LL ¿ + ±H0  : �

Sn .
Sn - LN LN ¿ - ±

N .

Estimated factor
loadings

Variable

1. ln(length) .1022
2. ln(width) .0752
3. ln(height) .0765

F1

Variable HRA HRE HRS RRA RRE RRS Q REV

Historical return on assets, HRA 1.000
Historical return on equity, HRE .738 1.000
Historical return on sales, HRS .731 .520 1.000
Replacement return on assets, RRA .828 .688 .652 1.000
Replacement return on equity, RRE .681 .831 .513 .887 1.000
Replacement return on sales, RRS .712 .543 .826 .867 .692 1.000
Market Q ratio, Q .625 .322 .579 .639 .419 .608 1.000
Market relative excess value, REV .604 .303 .617 .563 .352 .610 .937 1.000

O o
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The following rotated principal component estimates of factor loadings for an 
factor model were obtained:

m = 3

Chapter 9 Factor Analysis and Inference for Structured Covariance Matrices

(a) Using the estimated factor loadings, determine the specific variances and communalities.
(b) Determine the residual matrix, – Given this information and the

cumulative proportion of total variance explained in the preceding table, does an
factor model appear appropriate for these data?

(c) Assuming that estimated loadings less than .4 are small, interpret the three factors.
Does it appear, for example, that market-value measures provide evidence of
profitability distinct from that provided by accounting measures? Can you sepa-
rate accounting historical measures of profitability from accounting replacement
measures?

9.16. Verify that factor scores constructed according to (9-50) have sample mean vector 0 and
zero sample covariances.

9.17. Refer to Example 9.12. Using the information in this example, evaluate 

Note: Set the fourth diagonal element of to .01 so that can be determined.
Will the regression and generalized least squares methods for constructing factors scores
for standardized stock price observations give nearly the same results? Hint: See equation
(9-57) and the discussion following it.

The following exercises require the use of a computer.

9.18. Refer to Exercise 8.16 concerning the numbers of fish caught.
(a) Using only the measurements obtain the principal component solution for

factor models with and 
(b) Using only the measurements obtain the maximum likelihood solution for

factor models with and 
(c) Rotate your solutions in Parts (a) and (b). Compare the solutions and comment on

them. Interpret each factor.
(d) Perform a factor analysis using the measurements Determine a reasonable

number of factors m, and compare the principal component and maximum likeli-
hood solutions after rotation. Interpret the factors.

9.19. A firm is attempting to evaluate the quality of its sales staff and is trying to find an ex-
amination or series of tests that may reveal the potential for good performance in sales.

x1 - x6 .

m = 2.m = 1
x1 - x4 ,
m = 2.m = 1
x1 - x4 ,

±
n -1

z±
n

z

(Ln z¿±
n

z
-1Ln z)

-1.

m = 3

±
N

z .R - LN z  LN ¿z

Estimated factor loadings

Variable

Historical return on assets .433 .612 .499
Historical return on equity .125 .892 .234
Historical return on sales .296 .238 .887
Replacement return on assets .406 .708 .483
Replacement return on equity .198 .895 .283
Replacement return on sales .331 .414 .789
Market Q ratio .928 .160 .294
Market relative excess value .910 .079 .355

Cumulative proportion
of total variance explained .287 .628 .908

F3F2F1

534



Exercises

The firm has selected a random sample of 50 sales people and has evaluated each on 3
measures of performance: growth of sales, profitability of sales, and new-account sales.
These measures have been converted to a scale, on which 100 indicates “average” per-
formance. Each of the 50 individuals took each of 4 tests, which purported to measure
creativity, mechanical reasoning, abstract reasoning, and mathematical ability, respec-
tively. The observations on variables are listed in Table 9.12 on page 536.

(a) Assume an orthogonal factor model for the standardized variables =

Obtain either the principal component solution or
the maximum likelihood solution for and common factors.

(b) Given your solution in (a), obtain the rotated loadings for and Com-
pare the two sets of rotated loadings. Interpret the and factor solutions.

(c) List the estimated communalities, specific variances, and for the 
and solutions. Compare the results. Which choice of m do you prefer at this
point? Why?

(d) Conduct a test of ± versus ± for both and
at the level. With these results and those in Parts b and c, which

choice of m appears to be the best?

(e) Suppose a new salesperson, selected at random, obtains the test scores =

= Calculate the salesperson’s factor
score using the weighted least squares method and the regression method.

Note: The components of x must be standardized using the sample means and vari-
ances calculated from the original data.

9.20. Using the air-pollution variables and given in Table 1.5, generate the
sample covariance matrix.

(a) Obtain the principal component solution to a factor model with and 

(b) Find the maximum likelihood estimates of L and for and 

(c) Compare the factorization obtained by the principal component and maximum like-
lihood methods.

9.21. Perform a varimax rotation of both solutions in Exercise 9.20. Interpret the re-
sults. Are the principal component and maximum likelihood solutions consistent with
each other?

9.22. Refer to Exercise 9.20.

(a) Calculate the factor scores from the maximum likelihood estimates by
(i) weighted least squares in (9-50) and (ii) the regression approach of (9-58).

(b) Find the factor scores from the principal component solution, using (9-51).

(c) Compare the three sets of factor scores.

9.23. Repeat Exercise 9.20, starting from the sample correlation matrix. Interpret the factors
for the and solutions. Does it make a difference if R, rather than S, is
factored? Explain.

9.24. Perform a factor analysis of the census-tract data in Table 8.5. Start with R and obtain 
both the maximum likelihood and principal component solutions. Comment on your
choice of m. Your analysis should include factor rotation and the computation of factor
scores.

9.25. Perform a factor analysis of the “stiffness” measurements given in Table 4.3 and dis-
cussed in Example 4.14. Compute factor scores, and check for outliers in the data. Use
the sample covariance matrix S.

m = 2m = 1

m = 2

m = 2

m = 2.m = 1±

m = 2.m = 1

X6X1 , X2 , X5 ,

7110, 98, 105, 15, 18, 12, 358.7x1 , x2 , Á , x78 x ¿

a = .01m = 3
m = 2±H1  : � Z LL ¿±H0  : � = LL ¿

m = 3
m = 2LN LN ¿ + ±

N

m = 3m = 2
m = 3.m = 2

m = 3m = 2
i = 1, 2, Á , 7.1Xi - mi2>1si i ,

Zi

p = 7n = 50
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Table 9.12 Salespeople Data

Index of: Score on:

Sales New- Mechanical Abstract Mathe-
Sales profit- account Creativity reasoning reasoning matics

Salesperson growth ability sales test test test test 

1 93.0 96.0 97.8 09 12 09 20
2 88.8 91.8 96.8 07 10 10 15
3 95.0 100.3 99.0 08 12 09 26
4 101.3 103.8 106.8 13 14 12 29
5 102.0 107.8 103.0 10 15 12 32
6 95.8 97.5 99.3 10 14 11 21
7 95.5 99.5 99.0 09 12 09 25
8 110.8 122.0 115.3 18 20 15 51
9 102.8 108.3 103.8 10 17 13 31

10 106.8 120.5 102.0 14 18 11 39
11 103.3 109.8 104.0 12 17 12 32
12 99.5 111.8 100.3 10 18 08 31
13 103.5 112.5 107.0 16 17 11 34
14 99.5 105.5 102.3 08 10 11 34
15 100.0 107.0 102.8 13 10 08 34
16 81.5 93.5 95.0 07 09 05 16
17 101.3 105.3 102.8 11 12 11 32
18 103.3 110.8 103.5 11 14 11 35
19 95.3 104.3 103.0 05 14 13 30
20 99.5 105.3 106.3 17 17 11 27
21 88.5 95.3 95.8 10 12 07 15
22 99.3 115.0 104.3 05 11 11 42
23 87.5 92.5 95.8 09 09 07 16
24 105.3 114.0 105.3 12 15 12 37
25 107.0 121.0 109.0 16 19 12 39
26 93.3 102.0 97.8 10 15 07 23
27 106.8 118.0 107.3 14 16 12 39
28 106.8 120.0 104.8 10 16 11 49
29 92.3 90.8 99.8 08 10 13 17
30 106.3 121.0 104.5 09 17 11 44
31 106.0 119.5 110.5 18 15 10 43
32 88.3 92.8 96.8 13 11 08 10
33 96.0 103.3 100.5 07 15 11 27
34 94.3 94.5 99.0 10 12 11 19
35 106.5 121.5 110.5 18 17 10 42
36 106.5 115.5 107.0 08 13 14 47
37 92.0 99.5 103.5 18 16 08 18
38 102.0 99.8 103.3 13 12 14 28
39 108.3 122.3 108.5 15 19 12 41
40 106.8 119.0 106.8 14 20 12 37
41 102.5 109.3 103.8 09 17 13 32
42 92.5 102.5 99.3 13 15 06 23
43 102.8 113.8 106.8 17 20 10 32
44 83.3 87.3 96.3 01 05 09 15
45 94.8 101.8 99.8 07 16 11 24
46 103.5 112.0 110.8 18 13 12 37
47 89.5 96.0 97.3 07 15 11 14
48 84.3 89.8 94.3 08 08 08 09
49 104.3 109.5 106.5 14 12 12 36
50 106.0 118.5 105.0 12 16 11 39

1x721x621x521x421x321x221x12
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Exercises

9.26. Consider the mice-weight data in Example 8.6. Start with the sample covariance matrix.
(See Exercise 8.15 for )

(a) Obtain the principal component solution to the factor model with and

(b) Find the maximum likelihood estimates of the loadings and specific variances for
and 

(c) Perform a varimax rotation of the solutions in Parts a and b.

9.27. Repeat Exercise 9.26 by factoring R instead of the sample covariance matrix S. Also, for
the mouse with standardized weights obtain the factor scores using
the maximum likelihood estimates of the loadings and Equation (9-58).

9.28. Perform a factor analysis of the national track records for women given in Table 1.9. Use
the sample covariance matrix S and interpret the factors. Compute factor scores, and
check for outliers in the data. Repeat the analysis with the sample correlation matrix R.
Does it make a difference if R, rather than S, is factored? Explain.

9.29. Refer to Exercise 9.28. Convert the national track records for women to speeds mea-
sured in meters per second. (See Exercise 8.19.) Perform a factor analysis of the speed
data. Use the sample covariance matrix S and interpret the factors. Compute factor
scores, and check for outliers in the data. Repeat the analysis with the sample correlation
matrix R. Does it make a difference if R, rather than S, is factored? Explain. Compare
your results with the results in Exercise 9.28. Which analysis do you prefer? Why?

9.30. Perform a factor analysis of the national track records for men given in Table 8.6. Repeat
the steps given in Exercise 9.28. Is the appropriate factor model for the men’s data dif-
ferent from the one for the women’s data? If not, are the interpretations of the factors
roughly the same? If the models are different, explain the differences.

9.31. Refer to Exercise 9.30. Convert the national track records for men to speeds measured
in meters per second. (See Exercise 8.21.) Perform a factor analysis of the speed data.
Use the sample covariance matrix S and interpret the factors. Compute factor scores,
and check for outliers in the data. Repeat the analysis with the sample correlation matrix
R. Does it make a difference if R, rather than S, is factored? Explain. Compare your re-
sults with the results in Exercise 9.30. Which analysis do you prefer? Why?

9.32. Perform a factor analysis of the data on bulls given in Table 1.10. Use the seven variables
YrHgt, FtFrBody, PrctFFB, Frame, BkFat, SaleHt, and SaleWt. Factor the sample covari-
ance matrix S and interpret the factors. Compute factor scores, and check for outliers.
Repeat the analysis with the sample correlation matrix R. Compare the results obtained
from S with the results from R. Does it make a difference if R, rather than S, is factored?
Explain.

9.33. Perform a factor analysis of the psychological profile data in Table 4.6. Use the sample
correlation matrix R constructed from measurements on the five variables, Indep, Supp,
Benev, Conform and Leader. Obtain both the principal component and maximum likeli-
hood solutions for and factors. Can you interpret the factors? Your analy-
sis should include factor rotation and the computation of factor scores.

Note: Be aware that a maximum likelihood solution may result in a Heywood case.

9.34. The pulp and paper properties data are given in Table 7.7. Perform a factor analysis
using observations on the four paper property variables, BL, EM, SF, and BS and the
sample correlation matrix R. Can the information in these data be summarized by a
single factor? If so, can you interpret the factor? Try both the principal component and
maximum likelihood solution methods. Repeat this analysis with the sample covariance
matrix S. Does your interpretation of the factor(s) change if S rather than R is
factored?

m = 3m = 2

7.8, - .2, - .6, 1.58,
m = 2.m = 1

m = 2.
m = 1

1si i .
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9.35. Repeat Exercise 9.34 using observations on the pulp fiber characteristic variables AFL,
LFF, FFF, and ZST. Can these data be summarized by a single factor? Explain.

9.36. Factor analyze the Mali family farm data in Table 8.7. Use the sample correlation matrix
R. Try both the principal component and maximum likelihood solution methods for

, 4, and 5 factors. Can you interpret the factors? Justify your choice of m. Your
analysis should include factor rotation and the computation of factor scores. Can you
identify any outliers in these data?
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CANONICAL CORRELATION
ANALYSIS

10.1 Introduction
Canonical correlation analysis seeks to identify and quantify the associations
between two sets of variables. H. Hotelling ([5], [6]), who initially developed 
the technique, provided the example of relating arithmetic speed and arithmetic
power to reading speed and reading power. (See Exercise 10.9.) Other examples
include relating governmental policy variables with economic goal variables and
relating college “performance” variables with precollege “achievement” variables.

Canonical correlation analysis focuses on the correlation between a linear
combination of the variables in one set and a linear combination of the variables in
another set. The idea is first to determine the pair of linear combinations having
the largest correlation. Next, we determine the pair of linear combinations having
the largest correlation among all pairs uncorrelated with the initially selected pair,
and so on. The pairs of linear combinations are called the canonical variables, and
their correlations are called canonical correlations.

The canonical correlations measure the strength of association between the two
sets of variables. The maximization aspect of the technique represents an attempt to
concentrate a high-dimensional relationship between two sets of variables into a
few pairs of canonical variables.

10.2 Canonical Variates and Canonical Correlations
We shall be interested in measures of association between two groups of variables.
The first group, of p variables, is represented by the random vector The
second group, of q variables, is represented by the random vector We
assume, in the theoretical development, that represents the smaller set, so that
p … q.

X112
X122.1q * 12
X112.1p * 12

C h a p t e r

10
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Chapter 10 Canonical Correlation Analysis

For the random vectors and let

(10-1)

It will be convenient to consider and jointly, so, using results (2-38)
through (2-40) and (10-1), we find that the random vector

(10-2)

has mean vector

(10-3)

and covariance matrix

(10-4)

The covariances between pairs of variables from different sets—one variable
from one variable from —are contained in or, equivalently, in
That is, the pq elements of measure the association between the two sets. When
p and q are relatively large, interpreting the elements of collectively is ordinari-
ly hopeless. Moreover, it is often linear combinations of variables that are interest-
ing and useful for predictive or comparative purposes. The main task of canonical
correlation analysis is to summarize the associations between the and sets
in terms of a few carefully chosen covariances (or correlations) rather than the pq
covariances in �1 2 .

X122X112

�1 2

�1 2

�2 1 .�1 2X122X112,

�  

 1 2
1p * q2
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 2 2
1q * q2
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œ
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œ
R

 �
1p + q2*1p + q2

= E1X - M2 1X - M2¿

M
11p + q2* 12

= E1X2 = BE1X1122
E1X1222

R = BM112
M122
R

X
11p + q2* 12

= BX112

X122
R = I

X1
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X2
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o

Xp
112

X1
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X2
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X122X112

Cov 1X112 , X1222 = �1 2 = �œ

2 1

 E1X1222 = M122;  Cov 1X1222 = �2 2
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Canonical Variates and Canonical Correlations

Linear combinations provide simple summary measures of a set of variables. Set

(10-5)

for some pair of coefficient vectors a and b.Then, using (10-5) and (2–45), we obtain

(10-6)

We shall seek coefficient vectors a and b such that

(10-7)

is as large as possible.
We define the following:

The first pair of canonical variables, or first canonical variate pair, is the pair of linear
combinations having unit variances, which maximize the correlation (10-7);

The second pair of canonical variables, or second canonical variate pair, is the pair
of linear combinations having unit variances, which maximize the correla-
tion (10-7) among all choices that are uncorrelated with the first pair of canonical
variables.

At the kth step,

The kth pair of canonical variables, or kth canonical variate pair, is the pair of
linear combinations having unit variances, which maximize the correla-
tion (10-7) among all choices uncorrelated with the previous canonical
variable pairs.

The correlation between the kth pair of canonical variables is called the kth canonical
correlation.

The following result gives the necessary details for obtaining the canonical
variables and their correlations.

Result 10.1. Suppose and let the random vectors and have 

= = and = where has full 

rank. For coefficient vectors and form the linear combinations =

and = Then

attained by the linear combinations (first canonical variate pair)

and
¯˘˙ ¯˘˙

bœ

1aœ

1

V1 = f œ

1 �2 2
-1>2

 X122U1 = eœ

1   �1 1
-1>2

  X112

max
a, b

 Corr 1U, V2 = r1
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b¿  X122.V

a¿  X112Ub
1q * 12

,a
1p * 12

��  

 1 2
1p * q2

,Cov 1X112 , X1222�  

 2 2
1q * q2

Cov 1X1222�  

 1 1
1p * p2

,Cov 1X1122

X122 

 

1q * 12
X112 

 

1p * 12
p … q

k - 1
Uk , Vk

U2 , V2

U1 , V1

Corr 1U, V2 =

a¿  �1 2  b2a¿  �1 1  a 2b¿  �2 2  b

 Cov 1U, V2 = a¿ Cov 1X112 , X1222 b = a¿  �1 2  b
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 V = b¿  X122
 U = a¿  X112
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Chapter 10 Canonical Correlation Analysis

The kth pair of canonical variates,

maximizes

among those linear combinations uncorrelated with the preceding 
canonical variables.

Here are the eigenvalues of and
are the associated eigenvectors. [The quantities

are also the p largest eigenvalues of the matrix with correspond-
ing eigenvectors Each is proportional to ]

The canonical variates have the properties

for 

Proof. (See website: www.prenhall.com/statistics) �

If the original variables are standardized with = and
= from first principles, the canonical variates are of the form

(10-8)

Here, = = and 
and are the eigenvectors of and 
respectively. The canonical correlations, satisfy

(10-9)

where are the nonzero eigenvalues of the matrix
(or, equivalently, the largest eigenvalues of 

).
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Canonical Variates and Canonical Correlations

where Therefore, the canonical coefficients for the
standardized variables, – are simply related to the canon-
ical coefficients attached to the original variables Specifically, if is the coeffi-
cient vector for the kth canonical variate then is the coefficient vector for
the kth canonical variate constructed from the standardized variables Here 
is the diagonal matrix with ith diagonal element Similarly, is the coeffi-
cient vector for the canonical variate constructed from the set of standardized vari-
ables In this case is the diagonal matrix with ith diagonal element =

The canonical correlations are unchanged by the standardization.
However, the choice of the coefficient vectors will not be unique if =

The relationship between the canonical coefficients of the standardized vari-
ables and the canonical coefficients of the original variables follows from the special
structure of the matrix [see also (10–11)]

and, in this book, is unique to canonical correlation analysis. For example, in princi-
pal component analysis, if is the coefficient vector for the kth principal compo-
nent obtained from then = but we cannot infer that 
is the coefficient vector for the kth principal component derived from 

Example 10.1 (Calculating canonical variates and canonical correlations for stan-
dardized variables) Suppose = are standardized variables and

= are also standardized variables. Let and

Then

and

The eigenvalues, of are obtained from

 = l2
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Chapter 10 Canonical Correlation Analysis

yielding and The eigenvector follows from the vector
equation

Thus, = and

From Result 10.1, and = Consequently,

We must scale so that

The vector gives

Using we take

The first pair of canonical variates is

and their canonical correlation is

This is the largest correlation possible between linear combinations of variables
from the and sets.

The second canonical correlation, = is very small, and conse-
quently, the second pair of canonical variates, although uncorrelated with members of
the first pair, conveys very little information about the association between sets. (The
calculation of the second pair of canonical variates is considered in Exercise 10.5.)

We note that and apart from a scale change, are not much different from
the pair
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Interpreting the Population Canonical Variables

For these variates,

and

The correlation between the rather simple and, perhaps, easily interpretable linear
combinations is almost the maximum value �

The procedure for obtaining the canonical variates presented in Result 10.1 has
certain advantages. The symmetric matrices, whose eigenvectors determine the
canonical coefficients, are readily handled by computer routines. Moreover, writing
the coefficient vectors as = and = facilitates analytic descrip-
tions and their geometric interpretations. To ease the computational burden, many
people prefer to get the canonical correlations from the eigenvalue equation

(10-10)

The coefficient vectors a and b follow directly from the eigenvector equations

(10-11)

The matrices and are, in general, not symmetric. (See
Exercise 10.4 for more details.)

10.3 Interpreting the Population Canonical Variables
Canonical variables are, in general, artificial.That is, they have no physical meaning.
If the original variables and are used, the canonical coefficients a and b
have units proportional to those of the and sets. If the original variables
are standardized to have zero means and unit variances, the canonical coefficients
have no units of measurement, and they must be interpreted in terms of the stan-
dardized variables.

Result 10.1 gives the technical definitions of the canonical variables and canon-
ical correlations. In this section, we concentrate on interpreting these quantities.

Identifying the Canonical Variables

Even though the canonical variables are artificial, they can often be “identified”
in terms of the subject-matter variables. Many times this identification is aided 
by computing the correlations between the canonical variates and the original
variables. These correlations, however, must be interpreted with caution. They
provide only univariate information, in the sense that they do not indicate how the
original variables contribute jointly to the canonical analyses. (See, for example, [11].) 
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Chapter 10 Canonical Correlation Analysis

For this reason, many investigators prefer to assess the contributions of the original
variables directly from the standardized coefficients (10-8).

Let = and = so that the vectors of 

canonical variables are

(10-12)

where we are primarily interested in the first p canonical variables in V. Then

(10-13)

Because is obtained by dividing by 

= Equivalently, = Intro-
ducing the diagonal matrix with kth diagonal element 
we have, in matrix terms,

Similar calculations for the pairs and yield

(10-14)

where is the diagonal matrix with ith diagonal element 
Canonical variables derived from standardized variables are sometimes inter-

preted by computing the correlations. Thus,

(10-15)

where and are the matrices whose rows contain the canonical coefficients 

for the and sets, respectively. The correlations in the matrices displayed 
in (10–15) have the same numerical values as those appearing in (10–14); that is,

= and so forth. This follows because, for example, =

= = = The correlations are unaf-
fected by the standardization.

Example 10.2 (Computing correlations between canonical variates and their compo-
nent variables) Compute the correlations between the first pair of canonical variates
and their component variables for the situation considered in Example 10.1.

The variables in Example 10.1 are already standardized, so equation (10–15) is
applicable. For the standardized variables,
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Interpreting the Population Canonical Variables

and

With 

so

and

We conclude that, of the two variables in the set the first is most closely
associated with the canonical variate Of the two variables in the set 
the second is most closely associated with In this case, the correlations reinforce
the information supplied by the standardized coefficients and However, the 
correlations elevate the relative importance of in the first set and in 
the second set because they ignore the contribution of the remaining variable 
in each set.

From (10-15), we also obtain the correlations

and

Later, in our discussion of the sample canonical variates, we shall comment on
the interpretation of these last correlations. �

The correlations and can help supply meanings for the canonical
variates. The spirit is the same as in principal component analysis when the correla-
tions between the principal components and their associated variables may provide
subject-matter interpretations for the components.

Canonical Correlations as Generalizations 
of Other Correlation Coefficients

First, the canonical correlation generalizes the correlation between two variables.
When and each consist of a single variable, so that 
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Chapter 10 Canonical Correlation Analysis

Therefore, the “canonical variates” and have correlation 
= When and have more components, setting 
= with 1 in the ith position and =

with 1 in the kth position yields

(10-16)

That is, the first canonical correlation is larger than the absolute value of any entry
in =

Second, the multiple correlation coefficient [see (7-48)] is a special case
of a canonical correlation when has the single element Recall that

(10-17)

When is larger than each of the multiple correlations of with or
the multiple correlations of with 

Finally, we note that

(10-18)

from the proof of Result 10.1 (see website: www.prenhall.com/statistics). Similarly,

(10-19)

That is, the canonical correlations are also the multiple correlation coefficients of 
with or the multiple correlation coefficients of with 

Because of its multiple correlation coefficient interpretation, the kth squared
canonical correlation is the proportion of the variance of canonical variate 
“explained” by the set It is also the proportion of the variance of canonical
variate “explained” by the set Therefore, is often called the shared vari-
ance between the two sets and The largest value, is sometimes regard-
ed as a measure of set “overlap.”

The First r Canonical Variables as a Summary of Variability

The change of coordinates from to and from to is
chosen to maximize and, successively, where have
zero correlation with the previous pairs Cor-
relation between the sets and has been isolated in the pairs of canonical
variables

By design, the coefficient vectors are selected to maximize correlations,
not necessarily to provide variables that (approximately) account for the subset
covariances and When the first few pairs of canonical variables provide
poor summaries of the variability in and it is not clear how a high canonical
correlation should be interpreted.
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Interpreting the Population Canonical Variables

Example 10.3 (Canonical correlation as a poor summary of variability) Consider the
covariance matrix

The reader may verify (see Exercise 10.1) that the first pair of canonical variates
and has correlation

Yet provides a very poor summary of the variability in the first set. Most
of the variability in this set is in which is uncorrelated with The same situ-
ation is true for in the second set. �

A Geometrical Interpretation of the Population Canonical 
Correlation Analysis

A geometrical interpretation of the procedure for selecting canonical variables
provides some valuable insights into the nature of a canonical correlation analysis.

The transformation

from to U gives

From Result 10.1 and (2-22), = where is an orthogonal
matrix with row and = Now, is the set of principal compo-
nents derived from alone. The matrix has ith row 
which is the ith principal component scaled to have unit variance. That is,

Consequently, = can be interpreted as (1) a
transformation of to uncorrelated standardized principal components, fol-
lowed by (2) a rigid (orthogonal) rotation determined by and then (3) an-
other rotation determined from the full covariance matrix A similar
interpretation applies to V = BX122.

�.E¿

�1 1P1

X112
E¿  P1 ∂1

-1>2
  Pœ

1 X112U = AX112

 = ∂1
-1>2

 ∂1 ∂1
-1>2

= I

 Cov 1∂1
-1>2

 Pœ

1 X1122 = ∂1
-1>2

  Pœ

1 �1 1 P1 ∂1
-1>2

= ∂1
-1>2

  Pœ

1 P1 ∂1 Pœ

1 P1 ∂1
-1>2

11>1li2 pœ

i   X112,∂1
-1>2

  Pœ

1  X112X112
Pœ

1 X112P1 ∂1 Pœ

1 .�1 1eœ

i ,
EœE¿  P1∂1

-1/2
 Pœ

1A = E¿  �1 1
-1>2

Cov 1U2 = A�1 1 A¿ = I

X112
U = AX112

V1 = X1
122

U1 .X1
112 ,

U1 = X2
112

r1
…

= Corr 1U1 , V12 = .95

V1 = X1
122U1 = X2

112

Cov • EX1
112

X2
112

X1
122

X2
122

U µ = B�1 1 �1 2

�2 1 �2 2
R = D100 0 0 0

0 1 .95 0
0 .95 1 0
0 0 0 100

T
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Chapter 10 Canonical Correlation Analysis

10.4 The Sample Canonical Variates and Sample 
Canonical Correlations

A random sample of n observations on each of the variables can
be assembled into the data matrix

= (10-20)

The vector of sample means can be organized as

where

(10-21)

Similarly, the sample covariance matrix can be arranged analogous to the represen-
tation (10-4). Thus,

where

(10-22)

The linear combinations

(10-23)

have sample correlation [see (3-36)]

(10-24)

The first pair of sample canonical variates is the pair of linear combinations
having unit sample variances that maximize the ratio (10-24).

In general, the kth pair of sample canonical variates is the pair of linear combinations
having unit sample variances that maximize the ratio (10-24) among those linear

combinations uncorrelated with the previous sample canonical variates.
The sample correlation between and is called the kth sample canonical

correlation.
The sample canonical variates and the sample canonical correlations can be

obtained from the sample covariance matrices and in a manner
consistent with the population case described in Result 10.1.

S2 2S1 2 = Sœ

2 1 ,S1 1 ,

VnkUnk

k - 1
Unk , Vnk

Un1 , Vn1

=

aN ¿  S1 2   bN2aN ¿  S1 1   aN  3bN ¿  S2 2   bN
rUn , Vn

Un = aN ¿  x112;  Vn = bN ¿  x122

Sk l =

1
n - 1

 a
n

j = 1
 1xj
1k2

- x–1k22 1xj
1l2

- x–1l22œ,  k, l = 1, 2

S  

 1 2
1p * q2

 

S  

 2 2
1q * q2

 

TS
1p + q2*1p + q2

= D S  

 1 1
1p * p2

 

S  

 2 1
1q * p2

 

x–122 =

1
n

 a
n

j = 1
 xj
122

x–112 =

1
n

 a
n

j = 1
 xj
112

= Bx–112

x–122
R   x–

1p + q2* 1

Cx1
112

¿ x1
122

¿

o o

xn
112

¿ xn
122

¿

S = Dx1 1
112 x1 2

112
Á x1 p

112 x1 1
122 x1 2

122
Á x1 q

122

x2 1
112 x2 2

112
Á x2 p

112 x2 1
122 x2 2

122
Á x2 q

122

o o o o o o o o

xn 1
112 xn 2

112
Á xn p

112 xn 1
122 xn 2

122
Á xn q

122

T
 X = SX112� X122

 T

n * 1p + q2
X112 , X1221p + q2
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The Sample Canonical Variates and Sample Canonical Correlations

Result 10.2. Let be the p ordered eigenvalues of
with corresponding eigenvectors where the are

defined in (10-22) and Let be the eigenvectors of 

where the first p ’s may be obtained from =

Then the kth sample canonical variate pair1 is

= =
¯˘˙ ¯˘˙

where and are the values of the variables and for a particular
experimental unit. Also, the first sample canonical variate pair has the maximum
sample correlation

and for the kth pair,

is the largest possible correlation among linear combinations uncorrelated with the
preceding sample canonical variates.

The quantities are the sample canonical correlations.2

Proof. The proof of this result follows the proof of Result 10.1, with substituted
for �

The sample canonical variates have unit sample variances

(10-25)

and their sample correlations are

(10-26)

The interpretation of is often aided by computing the sample correlations be-
tween the canonical variates and the variables in the sets and We define
the matrices

(10-27)

whose rows are the coefficient vectors for the sample canonical variates.3 Analogous
to (10-12), we have

(10-28)UN  

 

 

1p * 12
= AN

 
x112  VN  

 

 

1q * 12
= BN

 
x122

AN  

 

 

1p * p2
= 7aN 1 , aN 2 , Á , aN p8œ  BN  

 

 

1q * q2
= 7bN 1 , bN 2 , Á , bN q8œ

X122.X112
Unk , Vnk

k Z /rUn k, Vn/

= 0,

k Z /rVn k, Vn/

= 0,rUn k, Un/

=

sVn k, Vnk
= 1sUn k, Unk

=

k, l = 1, 2.�k l ,
Sk l

rn1
… , rn2

…
 , Á , rnp

…
k - 1

= rnk
…rUn k, Vnk

= rn1
…rUn 1, Vn1

X122X112x122x112

bN œ

kaN œ

k

fN œ

k S2 2
-1>2

  x122VnkeN œ

k S1 1
-1>2

  x112Unk

k = 1, 2, Á , p.
11>rnk

…2 S2 2
-1>2

 S2 1 S1 1
-1>2

 eNk ,fNkfNS1 2 S2 2
-1>2 ,

S2 2
-1>2

 S2 1 S1 1
-1

 fNpfN1 , fN2 , Á ,p … q.
Sk leNp ,eN2 , Á ,eN1 ,S1 1

-1>2
 S1 2 S2 2

-1
 S2 1 S1 1

-1>2
rn1

…2
Ú rn2

…2
Ú

Á
Ú rnp

…2

1 When the distribution is normal, the maximum likelihood method can be employed using =

in place of S. The sample canonical correlations are, therefore, the maximum likelihood estimates of

and are the maximum likelihood estimates of and respectively.bk ,ak2n>1n - 12 bN k2n>1n - 12 aN k,rk
…

rnk
…

Sn�N

2 If the nonzero sample canonical correlations are rnp 1
… .rn1

…
 , Á ,p 7 rank1S1 22 = p1 ,

3 The vectors = = = are determined from a choice of

the last mutually orthogonal eigenvectors associated with the zero eigenvalue of S2 2
-1>2

 S2 1 S1 1
-1

 S1 2 S2 2
-1>2 .fNq - p1

S2 2
-1>2

  fNqS2 2
-1>2

  fNp1 + 2 , Á , bN qbN p1 + 2S2 2
-1>2

  fNp1 + 1 ,bN p1 + 1
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Chapter 10 Canonical Correlation Analysis

and we can define

Corresponding to (10-19), we have

(10-29)

where is the diagonal matrix with ith diagonal element (sample
and is the diagonal matrix with ith diagonal element

(sample

Comment. If the observations are standardized [see (8-25)], the data matrix
becomes

Z Z Z

and the sample canonical variates become

(10-30)

where = and = The sample canonical correlations are unaffect-
ed by the standardization. The correlations displayed in (10–29) remain unchanged 
and may be calculated, for standardized observations, by substituting for 

for and R for S. Note that = and = for standardized
observations.

Example 10.4 (Canonical correlation analysis of the chicken-bone data) In Example
9.14, data consisting of bone and skull measurements of white leghorn fowl were
described. From this example, the chicken-bone measurements for

Leg 1X1222:   bX1
122

= femur length
X2
122

= tibia length

Head 1X1122:  bX1
112

= skull length
X2
112

= skull breadth

I
1q * q2

D2 2
-1>2I

1p * p2
D1 1

-1>2BN ,AN , BN z

AN z

BN D2 2
1>2 .BN zAN D1 1

1>2AN z

UN
 

 

 

1p * 12
= AN z  z112  VN  

 

 

1q * 12
= BN z  z122

122
 T = C z1

112
¿ z1

122
¿

o o

zn
112

¿ zn
122

¿

S112�= S

var1xi
122
22-1>2.

1q * q2D2 2
-1>2var1xi

112
22

-1>2
1p * p2D1 1

-1>2

= BN S2 1 D1 1
-1>2RVn , x(1)

= AN S1 2 D2 2
-1>2RUn , x(2)

= BN S2 2 D2 2
-1>2RVn , x(2)

= AN S1 1 D1 1
-1>2RUn , x(1)

= matrix of sample correlations of VN  with x112RVn , x(1)

= matrix of sample correlations of UN  with x122RUn , x(2)

= matrix of sample correlations of VN  with x122RVn , x(2)

= matrix of sample correlations of UN  with x112RUn , x(1)
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The Sample Canonical Variates and Sample Canonical Correlations

have the sample correlation matrix

A canonical correlation analysis of the head and leg sets of variables 
using R produces the two canonical correlations and corresponding pairs of 
variables

and

Here and are the standardized data values for sets 1 and
2, respectively. The preceding results were taken from the SAS statistical software
output shown in Panel 10.1. In addition, the correlations of the original variables
with the canonical variables are highlighted in that panel. �

Example 10.5 (Canonical correlation analysis of job satisfaction) As part of a larger
study of the effects of organizational structure on “job satisfaction,” Dunham [4] in-
vestigated the extent to which measures of job satisfaction are related to job charac-
teristics. Using a survey instrument, Dunham obtained measurements of job
characteristics and job satisfaction variables for executives from the
corporate branch of a large retail merchandising corporation. Are measures of job
satisfaction associated with job characteristics? The answer may have implications
for job design.

n = 784q = 7
p = 5

i = 1, 2zi
122 ,i = 1, 2zi

112 ,

rn2
…

= .057  
Un2 = - .856z1

112
+ 1.106z2

112

Vn2 = -2.648z1
122

+ 2.475z2
122

rn1
…

= .631  
Un1 = .781z1

112
+ .345z2

112

Vn1 = .060z1
122

+ .944z2
122

R = BR1 1 R1 2

R2 1 R2 2
R = D1.0 .505 .569 .602

.505 1.0 .422 .467

.569 .422 1.0 .926

.602 .467 .926 1.0

T

title ‘Canonical Correlation Analysis’;
data skull (type = corr);
_type_ = ‘CORR’;
input _name_$ x1 x2 x3 x4;
cards;
x1 1.0 . . .
x2 .505 1.0 . . PROGRAM COMMANDS
x3 .569 .422 1.0 .
x4 .602 .467 .926 1.0
;
proc cancorr data = skull vprefix = head wprefix = leg;

var x1 x2; with x3 x4;

(continues on next page)

PANEL 10.1 SAS ANALYSIS FOR EXAMPLE 10.4 USING PROC CANCORR.

¯
˚

˚
˚

˚
˚

˘
˚

˚
˚

˚
˚

˚
˙
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Chapter 10 Canonical Correlation Analysis

Canonical Correlation Analysis
Adjusted Approx Squared

Canonical Canonical Standard Canonical
Correlation Correlation Error Correlation

1 0.631085 0.628291 0.036286 0.398268
2 0.056794 0.060108 0.003226

Raw Canonical Coefficient for the ‘VAR’ Variables

HEAD1 HEAD2 OUTPUT
X1 0.7807924389 –0.855973184
X2 0.3445068301 1.1061835145

Raw Canonical Coefficient for the ‘WITH’ Variables

LEG1 LEG2
X3 0.0602508775 –2.648156338
X4 0.943948961 2.4749388913

Canonical Structure

Correlations Between the ‘VAR’ Variables and Their Canonical Variables

HEAD1 HEAD2
X1 0.9548 –0.2974 (see 10-29)
X2 0.7388 0.6739

Correlations Between the ‘WITH’ Variables and Their Canonical Variables

LEG1 LEG2
X3 0.9343 –0.3564 (see 10-29)
X4 0.9997 0.0227

Correlations Between the ‘VAR’ Variables 
and the Canonical Variables of the ‘WITH’ Variables

LEG1 LEG2
X1 0.6025 –0.0169 (see 10-29)
X2 0.4663 0.0383

Correlations Between the ‘WITH’ Variables 
and the Canonical Variables of the ‘VAR’ Variables

HEAD1 HEAD2
X3 0.5897 –0.0202 (see 10-29)
X4 0.6309 0.0013

PANEL 10.1 (continued)
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The Sample Canonical Variates and Sample Canonical Correlations

The original job characteristic variables, , and job satisfaction variables,
were respectively defined as

Responses for variables and were recorded on a scale and then stan-
dardized. The sample correlation matrix based on 784 responses is

X122X112

 X122 = G
X1
122

X2
122

X3
122

X4
122

X5
122

X6
122

X7
122

W = G
supervisor satisfaction

career-future satisfaction
financial satisfaction
workload satisfaction

company identification
kind-of-work-satisfaction

general satisfaction

W

 X112 = EX1
112

X2
112

X3
112

X4
112

X5
112

U = E feedback
task significance

task variety
task identity
autonomy

U
X122,

X112

.33 .32 .20 .19 .30 .37 .21

.30 .21 .16 .08 .27 .35 .20

.31 .23 .14 .07 .24 .37 .18

.24 .22 .12 .19 .21 .29 .16

.38 .32 .17 .23 .32 .36 .27
1.0       

.43 1.0      

.27 .33 1.0     

.24 .26 .25 1.0    

.34 .54 .46 .28 1.0   

.37 .32 .29 .30 .35 1.0  

.40 .58 .45 .27 .59 .31 1.0

 =   

1.0     

.49 1.0    

.53 .57 1.0   

.49 .46 .48 1.0  

.51 .53 .57 .57 1.0

.33 .30 .31 .24 .38

.32 .21 .23 .22 .32

.20 .16 .14 .12 .17

.19 .08 .07 .19 .23

.30 .27 .24 .21 .32

.37 .35 .37 .29 .36

.21 .20 .18 .16 .27

 R = BR1 1 R1 2

R2 1 R2 2
R

The = sample canonical correlations and the sample
canonical variate coefficient vectors (from Dunham [4]) are displayed in the
following table:

min15, 72 = 5min1p, q2
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The Sample Canonical Variates and Sample Canonical Correlations

For example, the first sample canonical variate pair is

with sample canonical correlation 
According to the coefficients, is primarily a feedback and autonomy

variable, while represents supervisor, career-future, and kind-of-work satisfaction,
along with company identification.

To provide interpretations for and the sample correlations between
and its component variables and between and its component variables were com-
puted. Also, the following table shows the sample correlations between variables in
one set and the first sample canonical variate of the other set. These correlations can
be calculated using (10-29).

Vn1

Un1Vn1 ,Un1

Vn1

Un1

rn1
…

= .55.

 Vn1 = .42z1
122

+ .22z2
122

- .03z3
122

+ .01z4
122

+ .29z5
122

+ .52z6
122

- .12z7
122

 Un1 = .42z1
112

+ .21z2
112

+ .17z3
112

- .02z4
112

+ .44z5
112

All five job characteristic variables have roughly the same correlations with the 
first canonical variate From this standpoint, might be interpreted as a job
characteristic “index.” This differs from the preferred interpretation, based on
coefficients, where the task variables are not important.

The other member of the first canonical variate pair, seems to be represent-
ing, primarily, supervisor satisfaction, career-future satisfaction, company identifica-
tion, and kind-of-work satisfaction.As the variables suggest, might be regarded as
a job satisfaction–company identification index. This agrees with the preceding
interpretation based on the canonical coefficients of the ’s. The sample correla-
tion between the two indices and is There appears to be some over-
lap between job characteristics and job satisfaction. We explore this issue further in
Example 10.7. �

Scatter plots of the first pair may reveal atypical observations requir-
ing further study. If the canonical correlations are also moderately large,rn3

… , Árn2
… ,

xj1Un1 , Vn12

rn1
…

= .55.Vn1Un1

zi
122

Vn1

Vn1 ,

Un1Un1 .

Sample Correlations Between Original Variables and Canonical Variables

Sample Sample
canonical canonical
variates variates

variables variables

1. Feedback .83 .46 1. Supervisor satisfaction .42 .75
2. Task significance .74 .41 2. Career-future satisfaction .35 .65
3. Task variety .75 .42 3. Financial satisfaction .21 .39
4. Task identity .62 .34 4. Workload satisfaction .21 .37
5. Autonomy .85 .48 5. Company identification .36 .65

6. Kind-of-work satisfaction .44 .80
7. General satisfaction .28 .50

Vn1Un1X122Vn1Un1X112
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Chapter 10 Canonical Correlation Analysis

scatter plots of the pairs may also be helpful in this respect.
Many analysts suggest plotting “significant” canonical variates against their compo-
nent variables as an aid in subject-matter interpretation. These plots reinforce the
correlation coefficients in (10-29).

If the sample size is large, it is often desirable to split the sample in half. The
first half of the sample can be used to construct and evaluate the sample canoni-
cal variates and canonical correlations. The results can then be “validated” with
the remaining observations. The change (if any) in the nature of the canonical
analysis will provide an indication of the sampling variability and the stability of
the conclusions.

10.5 Additional Sample Descriptive Measures
If the canonical variates are “good” summaries of their respective sets of variables,
then the associations between variables can be described in terms of the canonical
variates and their correlations. It is useful to have summary measures of the extent
to which the canonical variates account for the variation in their respective sets. It is
also useful, on occasion, to calculate the proportion of variance in one set of vari-
ables explained by the canonical variates of the other set.

Matrices of Errors of Approximations

Given the matrices and defined in (10-27), let and denote the ith column
of and respectively. Since = and = we can write

(10-31)

Because sample = sample = = and
sample = =

(10-32)

Since = and has sample covariance I, the first r columns of 
contain the sample covariances of the first r canonical variates with
their component variables Similarly, the first r columns of 

contain the sample covariances of with their component variables.VnrVn2 , Á ,Vn1 ,

BN -1Xp
112 .X2

112
 , Á ,X1

112 ,
UnrUn2 , Á ,Un1 ,

AN -1UNAN -1
 UNx112

 S2 2 = 1BN -12 1BN -12
œ

= bN 112 bN 112¿ + bN 122 bN 122¿ +
Á

+ bN 1q2 bN 1q2¿

 S1 1 = 1AN -12 1AN -12
œ

= aN112 aN112¿ + aN122 aN122¿ +
Á

+ aN1p2 aN1p2¿

 aN1p2 bN 1p2¿rnp
…

+
Á

+

  aN122 bN 122¿+ rn2
… aN112 bN 112¿= rn1

…0T   1BN -12
œ

nr1
… 0 Á 0
0   nr2

… Á 0
o o ∞ o

0 0 Á   nrp
…

 S1 2 = AN -1D
I

1q * q2
,BN S2 2 BN œCov 1VN 2

I
1p * p2

,AN S1 1 AN œCov 1UN 2AN S1 2 BN œ,Cov 1UN , VN 2

x112 

 

1p * 12
=  AN -1

 

 

1p * p2  

UN
 

 

 

1p * 12
  x122 

 

1q * 12
=  BN -1

 

 

1q * q2
 VN  

 

 

1q * 12

BN x122VNAN x112UNBN -1 ,AN -1
bN 1i2aN1i2BNAN

1Un3 , Vn32, Á1Un2 , Vn22,
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Additional Sample Descriptive Measures

If only the first r canonical pairs are used, so that for instance,

and (10-33)

then is approximated by sample 
Continuing, we see that the matrices of errors of approximation are

(10-34)

The approximation error matrices (10-34) may be interpreted as descriptive
summaries of how well the first r sample canonical variates reproduce the sample
covariance matrices. Patterns of large entries in the rows and/or columns of the ap-
proximation error matrices indicate a poor “fit” to the corresponding variable(s).

Ordinarily, the first r variates do a better job of reproducing the elements of
= than the elements of or Mathematically, this occurs because the

residual matrix in the former case is directly related to the smallest sample
canonical correlations. These correlations are usually all close to zero. On the other
hand, the residual matrices associated with the approximations to the matrices and

depend only on the last and coefficient vectors. The elements in
these vectors may be relatively large, and hence, the residual matrices can have “large”
entries.

For standardized observations, replaces and replace
in (10-34).

Example 10.6 (Calculating matrices of errors of approximation) In Example 10.4, we
obtained the canonical correlations between the two head and the two leg variables
for white leghorn fowl. Starting with the sample correlation matrix

R = BR1 1 R1 2

R2 1 R2 2
R = D1.0 .505 .569 .602

.505 1.0 .422 .467

.569 .422 1.0 .926

.602 .467 .926 1.0

T

bN 1l2aN1k2 ,bN z
1l2aN z

1k2 ,Sk lRk l

q - rp - rS2 2

S1 1

p - r
S2 2 .S1 1Sœ

2 1S1 2

 = rnr + 1
…

  aN 1r + 12
 bN 1r + 12

¿ +
Á

+ rnp
…

  aN1p2 bN 1p2¿

S1 2 - 1rn1
…

  aN112 bN 112¿ + rn2
…

  aN122 bN 122¿ +
Á

+ rnr
…

  aN1r2 bN 1r2¿2

S2 2 - 1bN 112 bN 112¿ + bN 122 bN 122¿ +
Á

+ bN 1r2 bN 1r2¿2 = bN 1r + 12
 bN 1r + 12

¿ +
Á

+ bN 1q2 bN 1q2¿

S1 1 - 1aN112 aN112¿ + aN122 aN122¿ +
Á

+ aN1r2 aN1r2¿2  
= aN1r + 12

 aN1r + 12
¿ +

Á
+ aN1p2 aN1p2¿

Cov 1x
'112 , x

'1222.S1 2

x
'122

= 7bN 112� bN 122� Á � bN 1r28  DVn1

Vn2

o

Vnr

T
x
'112

= 7aN112� aN122� Á � aN1r28  DUn1

Un2

o

Unr

T
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we obtained the two sets of canonical correlations and variables

and

where and are the standardized data values for sets 1 and
2, respectively.

We first calculate (see Panel 10.1)

Consequently, the matrices of errors of approximation created by using only the
first canonical pair are

where are given by (10-33) with and replace 
respectively.

bN 112,aN112 ,bN z
112aN z

112 ,r = 1z
'112 , z

'122

 = B .127 - .008
- .008 .001

R
 R2 2 - sample Cov 1z

'1222 = B - .3564
.0227

R   7- .3564 .02278
 = B .088 - .200

- .200 .454
R

 R1 1 - sample Cov 1z
'1122 = B - .2974

.6739
R   7- .2974 .67398

 = B .006 - .000
- .014 .001

R
 R1 2 - sample Cov 1z

'112 , z
'1222 = 1.0572  B - .2974

.6739
R   7- .3564 .02278

 BN z
-1

= B .9343 - .3564
.9997 .0227

R
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122

560



Additional Sample Descriptive Measures

We see that the first pair of canonical variables effectively summarizes (repro-
duces) the intraset correlations in However, the individual variates are not
particularly effective summaries of the sampling variability in the original and

sets, respectively. This is especially true for �

Proportions of Explained Sample Variance

When the observations are standardized, the sample covariance matrices are
correlation matrices The canonical coefficient vectors are the rows of the
matrices and and the columns of and are the sample correlations
between the canonical variates and their component variables.

Specifically,

and

so

(10-35)

where and are the sample correlation coefficients between the quantities
with subscripts.

Using (10-32) with standardized observations, we obtain

Total (standardized) sample variance in first set

(10-36a)

Total (standardized) sample variance in second set

(10-36b)

Since the correlations in the first columns of and involve only the

sample canonical variates and respectively, we defineVnr ,Vn2 , Á ,Vn1 ,UnrUn2 , Á ,Un1 ,
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Chapter 10 Canonical Correlation Analysis

the contributions of the first r canonical variates to the total (standardized) sample
variances as

and

The proportions of total (standardized) sample variances “explained by” the first r
canonical variates then become

(10-37)

and

Descriptive measures (10-37) provide some indication of how well the canoni-
cal variates represent their respective sets. They provide single-number descriptions
of the matrices of errors. In particular,

according to (10-36) and (10-37).
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Large Sample Inferences

Example 10.7 (Calculating proportions of sample variance explained by canonical
variates) Consider the job characteristic–job satisfaction data discussed in
Example 10.5. Using the table of sample correlation coefficients presented in that
example, we find that

The first sample canonical variate of the job characteristics set accounts for 58%
of the set’s total sample variance. The first sample canonical variate of the job
satisfaction set explains 37% of the set’s total sample variance. We might thus infer
that is a “better” representative of its set than is of its set. The interested read-
er may wish to see how well and reproduce the correlation matrices and

respectively. [See (10-29).] �

10.6 Large Sample Inferences
When and have covariance for all vectors a and
b. Consequently, all the canonical correlations must be zero, and there is no point in
pursuing a canonical correlation analysis. The next result provides a way of testing

for large samples.

Result 10.3. Let

be a random sample from an population with

Then the likelihood ratio test of = versus rejects for
large values of

(10-38)-2 ln ¶ = n ln ¢ ƒ  S1 1 ƒ  ƒ  S2 2 ƒ
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Chapter 10 Canonical Correlation Analysis

where

is the unbiased estimator of For large n, the test statistic (10-38) is approximately
distributed as a chi-square random variable with pq d.f.

Proof. See Kshirsagar [8]. �

The likelihood ratio statistic (10-38) compares the sample generalized variance
under namely,

with the unrestricted generalized variance 
Bartlett [3] suggests replacing the multiplicative factor n in the likelihood

ratio statistic with the factor to improve the approxi-
mation to the sampling distribution of Thus, for n and 
large, we

(10-39)

where is the upper th percentile of a chi-square distribution with 
pq d.f.

If the null hypothesis = = is rejected, it is nat-
ural to examine the “significance” of the individual canonical correlations. Since the
canonical correlations are ordered from the largest to the smallest, we can begin by
assuming that the first canonical correlation is nonzero and the remaining 
canonical correlations are zero. If this hypothesis is rejected, we assume that the first
two canonical correlations are nonzero, but the remaining canonical correla-
tions are zero, and so forth.

Let the implied sequence of hypotheses be

(10-40)
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Large Sample Inferences

Bartlett [2] has argued that the kth hypothesis in (10-40) can be tested by the likeli-
hood ratio criterion. Specifically,

(10-41)

where is the upper th percentile of a chi-square distribution
with d.f. We point out that the test statistic in (10-41) involves 

the “residual” after the first k sample canonical correlations have

been removed from the total criterion =

If the members of the sequence and so forth, are tested one at
a time until is not rejected for some k, the overall significance level is not
and, in fact, would be difficult to determine. Another defect of this procedure is the
tendency it induces to conclude that a null hypothesis is correct simply because it is
not rejected.

To summarize, the overall test of significance in Result 10.3 is useful for multi-
variate normal data. The sequential tests implied by (10-41) should be interpreted
with caution and are, perhaps, best regarded as rough guides for selecting the num-
ber of important canonical variates.

Example 10.8 (Testing the significance of the canonical correlations for the job satis-
faction data) Test the significance of the canonical correlations exhibited by the job
characteristics–job satisfaction data introduced in Example 10.5.

All the test statistics of immediate interest are summarized in the table on
page 566. From Example 10.5,

and 
Assuming multivariate normal data, we find that the first two canonical correla-

tions, and appear to be nonzero, although with the very large sample size,
small deviations from zero will show up as statistically significant. From a practical
point of view, the second (and subsequent) sample canonical correlations can prob-
ably be ignored, since (1) they are reasonably small in magnitude and (2) the corre-
sponding canonical variates explain very little of the sample variation in the variable
sets and �

The distribution theory associated with the sample canonical correlations and
the sample canonical variate coefficients is extremely complex (apart from the

and situations), even in the null case, The reader interested in
the distribution theory is referred to Kshirsagar [8].
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Exercises

Exercises

10.1. Consider the covariance matrix given in Example 10.3:

Verify that the first pair of canonical variates are with canonical
correlation 

10.2. The random vectors and have the joint mean vector and joint covari-
ance matrix

(a) Calculate the canonical correlations 

(b) Determine the canonical variate pairs and 

(c) Let = and = From first principles, evaluate

Compare your results with the properties in Result 10.1.

10.3. Let = and = be two sets of standard-
ized variables. If are the canonical correlations for the sets and

= are the associated canonical variates, deter-
mine the canonical correlations and canonical variates for the sets. That is,
express the canonical correlations and canonical variate coefficient vectors for the

sets in terms of those for the sets.

10.4. (Alternative calculation of canonical correlations and variates.) Show that, if is an
eigenvalue of with associated eigenvector then is also an
eigenvalue of with eigenvector 
Hint: implies that

 = ƒ  �1 1
-1

 �1 2 �2 2
-1
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E  ¢ BU
V
R ≤ and Cov ¢ BU

V
R ≤ = B�U  U �U  V

�V  U �V  V
R

7V1 , V28¿.V7U1 , U28¿U
1U2 , V22.1U1 , V12

r1
… , r2

… .

 � = B�1 1 �1 2

�2 1 �2 2
R = D8 2 3 1

2 5 - 1 3
3 - 1 6 - 2
1 3 - 2 7

T
 M = BM112

M122
R = D - 3

2
0
1

T  ;

X122X11212 * 12

r1
…

= .95.
V1 = X1

122U1 = X2
112 ,

Cov § DX1
112

X2
112

X1
122

X2
122

T ¥ = B�1 1 �1 2

�2 1 �2 2
R = D100 0 0 0

0 1 .95 0
0 .95 1 0
0 0 0 100

T

567



Chapter 10 Canonical Correlation Analysis

10.5. Use the information in Example 10.1.

(a) Find the eigenvalues of and verify that these eigenvalues are the
same as the eigenvalues of 

(b) Determine the second pair of canonical variates and verify, from first princi-
ples, that their correlation is the second canonical correlation

10.6. Show that the canonical correlations are invariant under nonsingular linear transforma-
tions of the variables of the form and 

Hint: Consider = Consider any linear combi- 

nation = with = Similarly, consider = 

with The choices = and = give the maximum
correlation.

10.7. Let and = corresponding to the equal correlation

structure where and each have two components.

(a) Determine the canonical variates corresponding to the nonzero canonical correlation.

(b) Generalize the results in Part a to the case where has p components and 
has components.

Hint: where 1 is a column vector of 1’s and is a row

vector of 1’s. Note that = so 

10.8. (Correlation for angular measurement.) Some observations, such as wind direction, are in
the form of angles.An angle can be represented as the pair =

(a) Show that = where = and

=

Hint: = ±

(b) Let have a single component Show that the single canonical correlation is
= Selecting the canonical variable amounts to

selecting a new origin for the angle (See Johnson and Wehrly [7].)

(c) Let be ozone (in parts per million) and direction measured from the
north. Nineteen observations made in downtown Milwaukee, Wisconsin, give the
sample correlation matrix

=

Find the sample canonical correlation and the canonical variate representing

the new origin 

(d) Suppose is also angular measurements of the form =

Then = Show that

r1
…

= max
a, b
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Exercises

(e) Twenty-one observations on the 6:00 A.M. and noon wind directions give the correla-
tion matrix

Find the sample canonical correlation and 

The following exercises may require a computer.

10.9. H. Hotelling [5] reports that seventh-grade children received four tests
on = reading speed, = reading power, = arithmetic speed, and

= arithmetic power.The correlations for performance are

(a) Find all the sample canonical correlations and the sample canonical variates.

(b) Stating any assumptions you make, test the hypotheses

at the level of significance. If is rejected, test

with a significance level of Does reading ability (as measured by the two
tests) correlate with arithmetic ability (as measured by the two tests)? Discuss.

(c) Evaluate the matrices of approximation errors for and determined by
the first sample canonical variate pair 

10.10. In a study of poverty, crime, and deterrence, Parker and Smith [10] report certain sum-
mary crime statistics in various states for the years 1970 and 1973. A portion of their
sample correlation matrix is

The variables are

=1973 nonprimary homicides
=1973 primary homicides (homicides involving family or acquaintances)
=1970 severity of punishment (median months served)
=1970 certainty of punishment (number of admissions to prison divided by

number of homicides)
X2
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Chapter 10 Canonical Correlation Analysis

(a) Find the sample canonical correlations.

(b) Determine the first canonical pair and interpret these quantities.

10.11. Example 8.5 presents the correlation matrix obtained from successive 
weekly rates of return for five stocks. Perform a canonical correlation analysis with

= the rates of return for the banks, and 
the rates of return for the oil companies.

10.12. A random sample of families will be surveyed to determine the association
between certain “demographic” variables and certain “consumption” variables.
Let

Suppose 70 observations on the preceding variables give the sample correlation matrix

(a) Determine the sample canonical correlations, and test the hypothesis 
(or, equivalently, ) at the level. If is rejected, test for the signifi-
cance of the first canonical correlation.

(b) Using standardized variables, construct the canonical variates corresponding to the
“significant” canonical correlation(s).

(c) Using the results in Parts a and b, prepare a table showing the canonical variate co-
efficients (for “significant” canonical correlations) and the sample correlations of
the canonical variates with their component variables.

(d) Given the information in (c), interpret the canonical variates.

(e) Do the demographic variables have something to say about the consumption vari-
ables? Do the consumption variables provide much information about the demo-
graphic variables?

10.13. Waugh [12] provides information about samples of Canadian hard red spring
wheat and the flour made from the samples. The wheat measurements (in stan-
dardized form) were

 z5
112

= crude protein in the wheat

 z4
112

= foreign material

 z3
112

= damaged kernels

 z2
112

= test weight

 z1
112

= kernel texture
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  cX1
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X2
122
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X3
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Criterion
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  bX1
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= annual frequency of dining at a restaurant
X2
112

= annual frequency of attending movies

n = 70

X122 = 7X1
122 , X2

1228œ,7X1
112 , X2

112 , X3
1128œ,X112

n = 103

Vn1Un1 ,
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Exercises

The (standardized) flour measurements were

The sample correlation matrix was

(a) Find the sample canonical variates corresponding to significant (at the 
level) canonical correlations.

(b) Interpret the first sample canonical variates Do they in some sense represent
the overall quality of the wheat and flour, respectively?

(c) What proportion of the total sample variance of the first set is explained by the
canonical variate What proportion of the total sample variance of the set is

explained by the canonical variate Discuss your answers.

10.14. Consider the correlation matrix of profitability measures given in Exercise 9.15. Let 
= be the vector of variables representing accounting measures 
of profitability, and let = be the vector of variables representing the
two market measures of profitability. Partition the sample correlation matrix accordingly,
and perform a canonical correlation analysis. Specifically,

(a) Determine the first sample canonical variates and their correlation. Interpret
these canonical variates.

(b) Let and be the sets of standardized variables corresponding to and 
respectively. What proportion of the total sample variance of is explained by

the canonical variate What proportion of the total sample variance of is 

explained by the canonical variate Discuss your answers.

10.15. Observations on four measures of stiffness are given in Table 4.3 and discussed in Exam-
ple 4.14. Use the data in the table to construct the sample covariance matrix S. Let 
= be the vector of variables representing the dynamic measures of stiffness
(shock wave, vibration), and let = be the vector of variables represent-
ing the static measures of stiffness. Perform a canonical correlation analysis of these data.

7X1
122 , X2

1228œX122
7X1
112 , X2

1128œ X112

Vn1 ?

Z122Un1?

Z112
X122,X112Z122Z112

Vn1Un1 ,

7X1
122 , X2

1228œX122
7X1
112 , X2

112
 , Á , X6

1128œ X112
Vn1 ?

Z122Un1?
Z112

Vn1 .Un1 ,

a = .01

    

    

    

    

    

1.0    

.251 1.0   

- .490 - .434 1.0  

.250 - .079 - .163 1.0

Y = I
1.0     

.754 1.0    

- .690 - .712 1.0   

- .446 - .515 .323 1.0  

.692 .412 - .444 - .334 1.0
- .605 - .722 .737 .527 - .383
- .479 - .419 .361 .461 - .505

.780 .542 - .546 - .393 .737
- .152 - .102 .172 - .019 - .148

 R = BR1 1 R1 2

R2 1 R2 2
R

 z4
122

= gluten quality index

 z3
122

= crude protein in flour

 z2
122

= ash in flour

 z1
122

= wheat per barrel of flour

q = 4
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Chapter 10 Canonical Correlation Analysis

10.16. Andrews and Herzberg [1] give data obtained from a study of a comparison of nondia-
betic and diabetic patients. Three primary variables,

and two secondary variables,

were measured. The data for nondiabetic patients yield the covariance matrix

Determine the sample canonical variates and their correlations. Interpret these quantities.
Are the first canonical variates good summary measures of their respective sets of vari-
ables? Explain.Test for the significance of the canonical relations with 

10.17. Data concerning a person’s desire to smoke and psychological and physical state were
collected for subjects.The data were responses, coded 1 to 5, to each of 12 ques-
tions (variables).The four standardized measurements related to the desire to smoke are
defined as

The eight standardized measurements related to the psychological and physical state are
given by

The correlation matrix constructed from the data is

R = BR1 1 R1 2

R2 1 R2 2
R

 z8
122

= contentedness

 z7
122

= tiredness

 z6
122

= irritability

 z5
122

= alertness

 z4
122

= tenseness

 z3
122

= sleepiness

 z2
122

= annoyance

 z1
122

= concentration

 z4
112

= smoking 4 1fourth wording2

 z3
112

= smoking 3 1third wording2

 z2
112

= smoking 2 1second wording2

 z1
112

= smoking 1 1first wording2

n = 110

a = .05.

S = BS1 1 S1 2

S2 1 S2 2
R = E 1106.000 396.700 108.400 .787 26.230

396.700 2382.000 1143.000 - .214 - 23.960
108.400 1143.000 2136.000 2.189 - 20.840

.787 - .214 2.189 .016 .216
26.230 - 23.960 - 20.840 .216 70.560

U
n = 46

 X2
122

= fasting plasma glucose

 X1
122

= relative weight

 X3
112

= insulin resistance

 X2
112

= insulin response to oral glucose

 X1
112

= glucose intolerance
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Exercises

where

Determine the sample canonical variates and their correlations. Interpret these quanti-
ties. Are the first canonical variates good summary measures of their respective sets of
variables? Explain.

10.18. The data in Table 7.7 contain measurements on characteristics of pulp fibers and the
paper made from them. To correspond with the notation in this chapter, let the paper
characteristics be

and the pulp fiber characteristics be

Determine the sample canonical variates and their correlations. Are the first canonical
variates good summary measures of their respective sets of variables? Explain. Test for
the significance of the canonical relations with Interpret the significant canoni-
cal variables.

10.19. Refer to the correlation matrix for the Olympic decathlon results in Example 9.6. Obtain
the canonical correlations between the results for the running speed events (100-meter
run, 400-meter run, long jump) and the arm strength events (discus, javelin, shot put).
Recall that the signs of standardized running events values were reversed so that large
scores are best for all events.

a = .05.

 x(2)
4 = zero span tensile

 x(2)
3 = fine fiber fraction

 x(2)
2 = long fiber fraction

 x(2)
1 = arithmetic fiber length

 x(1)
4 = burst strength

 x(1)
3 = stress at failure

 x(1)
2 = elastic modulus

 x(1)
1 = breaking length

 R2 2 = H
1.000 .562 .457 .579 .802 .595 .512 .492

.562 1.000 .360 .705 .578 .796 .413 .739

.457 .360 1.000 .273 .606 .337 .798 .240

.579 .705 .273 1.000 .594 .725 .364 .711

.802 .578 .606 .594 1.000 .605 .698 .605

.595 .796 .337 .725 .605 1.000 .428 .697

.512 .413 .798 .364 .698 .428 1.000 .394

.492 .739 .240 .711 .605 .697 .394 1.000

X

 R1 2 = R œ

2 1 = D .086 .144 .140 .222 .101 .189 .199 .239
.200 .119 .211 .301 .223 .221 .274 .235
.041 .060 .126 .120 .039 .108 .139 .100
.228 .122 .277 .214 .201 .156 .271 .171

T
 R1 1 = D1.000 .785 .810 .775

.785 1.000 .816 .813

.810 .816 1.000 .845

.775 .813 .845 1.000

T
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DISCRIMINATION AND CLASSIFICATION

11.1 Introduction
Discrimination and classification are multivariate techniques concerned with
separating distinct sets of objects (or observations) and with allocating new objects
(observations) to previously defined groups. Discriminant analysis is rather
exploratory in nature. As a separative procedure, it is often employed on a one-time
basis in order to investigate observed differences when causal relationships are not
well understood. Classification procedures are less exploratory in the sense that
they lead to well-defined rules, which can be used for assigning new objects. Classi-
fication ordinarily requires more problem structure than discrimination does.

Thus, the immediate goals of discrimination and classification, respectively, are
as follows:

Goal 1. To describe, either graphically (in three or fewer dimensions) or alge-
braically, the differential features of objects (observations) from sever-
al known collections (populations). We try to find “discriminants”
whose numerical values are such that the collections are separated as
much as possible.

Goal 2. To sort objects (observations) into two or more labeled classes.The em-
phasis is on deriving a rule that can be used to optimally assign new ob-
jects to the labeled classes.

We shall follow convention and use the term discrimination to refer to Goal 1.
This terminology was introduced by R. A. Fisher [10] in the first modern treatment
of separative problems. A more descriptive term for this goal, however, is separa-
tion. We shall refer to the second goal as classification or allocation.

A function that separates objects may sometimes serve as an allocator, and,
conversely, a rule that allocates objects may suggest a discriminatory procedure. In
practice, Goals 1 and 2 frequently overlap, and the distinction between separation
and allocation becomes blurred.

C h a p t e r

11
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Chapter 11 Discrimination and Classification

11.2 Separation and Classification for Two Populations
To fix ideas, let us list situations in which one may be interested in (1) separating two
classes of objects or (2) assigning a new object to one of two classes (or both). It is
convenient to label the classes and The objects are ordinarily separated or
classified on the basis of measurements on, for instance, p associated random vari-
ables The observed values of X differ to some extent from
one class to the other.1 We can think of the totality of values from the first class as
being the population of x values for and those from the second class as the popu-
lation of x values for These two populations can then be described by probabili-
ty density functions and and consequently, we can talk of assigning
observations to populations or objects to classes interchangeably.

You may recall that some of the examples of the following separation–
classification situations were introduced in Chapter 1.

f21x2,f11x2
p2 .

p1

X¿ = 7X1 , X2 , Á , Xp8. p2 .p1

We see from item 5, for example, that objects (consumers) are to be separated
into two labeled classes (“purchasers” and “laggards”) on the basis of observed
values of presumably relevant variables (education, income, and so forth). In the
terminology of observation and population, we want to identify an observation of

1If the values of X were not very different for objects in and there would be no problem;
that is, the classes would be indistinguishable, and new objects could be assigned to either class
indiscriminately.

p2 ,p1

Populations and Measured variables X

1. Solvent and distressed property-liability Total assets, cost of stocks and bonds, market 
insurance companies. value of stocks and bonds, loss expenses,

surplus, amount of premiums written.
2. Nonulcer dyspeptics (those with upset Measures of anxiety, dependence, guilt,

stomach problems) and controls perfectionism.
(“normal”).

3. Federalist Papers written by James Frequencies of different words and lengths of 
Madison and those written by sentences.
Alexander Hamilton.

4. Two species of chickweed. Sepal and petal length, petal cleft depth, bract
length, scarious tip length, pollen diameter.

5. Purchasers of a new product and Education, income, family size, amount of 
laggards (those “slow” to purchase). previous brand switching.

6. Successful or unsuccessful (fail to Entrance examination scores, high school grade-
graduate) college students. point average, number of high school activities.

7. Males and females. Anthropological measurements, like 
circumference and volume on ancient skulls.

8. Good and poor credit risks. Income, age, number of credit cards, family size.
9. Alcoholics and nonalcoholics. Activity of monoamine oxidase enzyme, activity

of adenylate cyclase enzyme.

p2p1
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Separation and Classification for Two Populations

the form of brand
as population purchasers, or population laggards.

At this point, we shall concentrate on classification for two populations, return-
ing to separation in Section 11.3.

Allocation or classification rules are usually developed from “learning” sam-
ples. Measured characteristics of randomly selected objects known to come from
each of the two populations are examined for differences. Essentially, the set of all
possible sample outcomes is divided into two regions, and such that if a new
observation falls in it is allocated to population and if it falls in we allo-
cate it to population Thus, one set of observed values favors while the other
set of values favors 

You may wonder at this point how it is we know that some observations belong
to a particular population, but we are unsure about others. (This, of course, is what
makes classification a problem!) Several conditions can give rise to this apparent
anomaly (see [20]):

1. Incomplete knowledge of future performance.

Examples: In the past, extreme values of certain financial variables were ob-
served 2 years prior to a firm’s subsequent bankruptcy. Classifying another firm
as sound or distressed on the basis of observed values of these leading indicators
may allow the officers to take corrective action, if necessary, before it is too late.

A medical school applications office might want to classify an applicant as
likely to become M.D. or unlikely to become M.D. on the basis of test scores and
other college records. Here the actual determination can be made only at the
end of several years of training.

2. “Perfect” information requires destroying the object.

Example: The lifetime of a calculator battery is determined by using it until
it fails, and the strength of a piece of lumber is obtained by loading it until it
breaks. Failed products cannot be sold. One would like to classify products as
good or bad (not meeting specifications) on the basis of certain preliminary
measurements.

3. Unavailable or expensive information.

Examples: It is assumed that certain of the Federalist Papers were written by
James Madison or Alexander Hamilton because they signed them. Others of the
Papers, however, were unsigned and it is of interest to determine which of the
two men wrote the unsigned Papers. Clearly, we cannot ask them. Word fre-
quencies and sentence lengths may help classify the disputed Papers.

Many medical problems can be identified conclusively only by conducting
an expensive operation. Usually, one would like to diagnose an illness from eas-
ily observed, yet potentially fallible, external symptoms. This approach helps
avoid needless—and expensive—operations.

It should be clear from these examples that classification rules cannot usually
provide an error-free method of assignment. This is because there may not be a 
clear distinction between the measured characteristics of the populations; that is,
the groups may overlap. It is then possible, for example, to incorrectly classify a 
object as belonging to or a object as belonging to p2 .p1p1

p2

p2 .
p1 ,p2 .

R2 ,p1 ,R1 ,
R2 ,R1

p2 ,p1 ,switching28 x41amountx31family size2,x21income2,x¿ = 7x11education2,
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Chapter 11 Discrimination and Classification

Example 11.1 (Discriminating owners from nonowners of riding mowers) Consider
two groups in a city: riding-mower owners, and those without riding mowers—
that is, nonowners. In order to identify the best sales prospects for an intensive sales
campaign, a riding-mower manufacturer is interested in classifying families as
prospective owners or nonowners on the basis of and size.
Random samples of current owners and current nonowners yield
the values in Table 11.1.

n2 = 12n1 = 12
x2 = lotx1 = income

p2 ,p1 ,

Table 11.1

Riding-mower owners Nonowners

(Income (Lot size (Income (Lot size
in $1000s) in 1000 ) in $1000s) in 1000 )

90.0 18.4 105.0 19.6
115.5 16.8 82.8 20.8
94.8 21.6 94.8 17.2
91.5 20.8 73.2 20.4

117.0 23.6 114.0 17.6
140.1 19.2 79.2 17.6
138.0 17.6 89.4 16.0
112.8 22.4 96.0 18.4
99.0 20.0 77.4 16.4

123.0 20.8 63.0 18.8
81.0 22.0 81.0 14.0

111.0 20.0 93.0 14.8

ft2ft2
x2x1x2x1

p2 :p1 :

These data are plotted in Figure 11.1. We see that riding-mower owners tend to
have larger incomes and bigger lots than nonowners, although income seems to be a
better “discriminator” than lot size. On the other hand, there is some overlap be-
tween the two groups. If, for example, we were to allocate those values of 
that fall into region (as determined by the solid line in the figure) to mower
owners, and those values which fall into to nonowners, we would
make some mistakes. Some riding-mower owners would be incorrectly classified as
nonowners and, conversely, some nonowners as owners. The idea is to create a rule
(regions and ) that minimizes the chances of making these mistakes. (See
Exercise 11.2.) �

A good classification procedure should result in few misclassifications. In other
words, the chances, or probabilities, of misclassification should be small. As we shall
see, there are additional features that an “optimal” classification rule should possess.

It may be that one class or population has a greater likelihood of occurrence
than another because one of the two populations is relatively much larger than the
other. For example, there tend to be more financially sound firms than bankrupt
firms. As another example, one species of chickweed may be more prevalent than
another. An optimal classification rule should take these “prior probabilities of
occurrence” into account. If we really believe that the (prior) probability of a finan-
cially distressed and ultimately bankrupted firm is very small, then one should

R2R1

p2 ,R21x1 , x22
p1 ,R1

1x1 , x22
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Separation and Classification for Two Populations

classify a randomly selected firm as nonbankrupt unless the data overwhelmingly
favors bankruptcy.

Another aspect of classification is cost. Suppose that classifying a object as
belonging to represents a more serious error than classifying a object as be-
longing to Then one should be cautious about making the former assignment.As
an example, failing to diagnose a potentially fatal illness is substantially more “cost-
ly” than concluding that the disease is present when, in fact, it is not. An optimal
classification procedure should, whenever possible, account for the costs associated
with misclassification.

Let and be the probability density functions associated with the
vector random variable X for the populations and respectively.An ob-

ject with associated measurements x must be assigned to either or Let be
the sample space—that is, the collection of all possible observations x. Let be that
set of x values for which we classify objects as and be the remaining
x values for which we classify objects as Since every object must be assigned to
one and only one of the two populations, the sets and are mutually exclusive
and exhaustive. For we might have a case like the one pictured in Figure 11.2.

The conditional probability, of classifying an object as when, in fact,
it is from is

(11-1)

Similarly, the conditional probability, of classifying an object as when it
is really from is

(11-2)P11 | 22 = P1X H R1 |p22 =

L

 

R1

 f21x2 dx

p2

p1P11 ƒ  22,

P12 | 12 = P1X H R2 |p12 =

L

 

R2 = Æ-R1

 f11x2 dx

p1

p2P12 | 12,
p = 2,

R2R1

p2 .
R2 = Æ -R1p1

R1

Æp2 .p1

p2 ,p1p * 1
f21x2f11x2

p1 .
p2p2

p1
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Figure 11.1 Income and lot size
for riding-mower owners and
nonowners.
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Chapter 11 Discrimination and Classification

The integral sign in (11-1) represents the volume formed by the density function
over the region Similarly, the integral sign in (11-2) represents the volume

formed by over the region This is illustrated in Figure 11.3 for the univari-
ate case,

Let be the prior probability of and be the prior probability of 
where Then the overall probabilities of correctly or incorrectly clas-
sifying objects can be derived as the product of the prior and conditional classifi-
cation probabilities:

 = P1X H R2 |p22P1p22 = P12 | 22p2

 and is correctly classified as p22

 P1observation is correctly classified as p22 = P1observation comes from p2

 = P1X H R1 |p22P1p22 = P11 | 22p2

 and is misclassified as p12

 P1observation is misclassified as p12 = P1observation comes from p2

 = P1X H R1 |p12P1p12 = P11 | 12p1

 and is correctly classified as p12

 P1observation is correctly classified as p12 = P1observation comes from p1

p1 + p2 = 1.
p2 ,p2p1p1

p = 1.
R1 .f21x2

R2 .f11x2

x2

x1

R2

R1

� R1 ∪ R 2Ω

Figure 11.2 Classification regions
for two populations.

Classify as π1 Classify as π2

R1

R1

R2

R2

P(1  2) �    ƒ2 (x) dx ∫
P(2  1) �    ƒ1 (x ) dx ∫

ƒ2 (x)ƒ1 (x)

x

Figure 11.3 Misclassification probabilities for hypothetical classification regions 
when p = 1.
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Separation and Classification for Two Populations

(11-3)

Classification schemes are often evaluated in terms of their misclassification
probabilities (see Section 11.4), but this ignores misclassification cost. For example,
even a seemingly small probability such as may be too large if the cost
of making an incorrect assignment to is extremely high. A rule that ignores costs
may cause problems.

The costs of misclassification can be defined by a cost matrix:

Classify as:

True population:
0 (11-4)

0

The costs are (1) zero for correct classification, (2) when an observation from
is incorrectly classified as and (3) when a observation is incorrect-

ly classified as 
For any rule, the average, or expected cost of misclassification (ECM) is provid-

ed by multiplying the off-diagonal entries in (11-4) by their probabilities of occur-
rence, obtained from (11-3). Consequently,

(11-5)

A reasonable classification rule should have an ECM as small, or nearly as
small, as possible.

Result 11.1. The regions and that minimize the ECM are defined by the
values x for which the following inequalities hold:

(11-6)

Proof. See Exercise 11.3. �

It is clear from (11-6) that the implementation of the minimum ECM rule re-
quires (1) the density function ratio evaluated at a new observation (2) the cost
ratio, and (3) the prior probability ratio.The appearance of ratios in the definition of

x0 ,

 ¢density
ratio ≤ 6 ¢ cost

ratio≤ £ prior
probability

ratio
≥

 R2 : 
f11x2

f21x2
6 a

c11 | 22

c12 | 12
b ap2

p1
b

 ¢density
ratio ≤ Ú ¢ cost

ratio≤ £ prior
probability

ratio
≥

 R1 : 
f11x2

f21x2
Ú a

c11 | 22

c12 | 12
b ap2

p1
b

R2R1

ECM = c12 | 12P12 | 12p1 + c11 | 22P11 | 22p2

p2 .
p1c12 | 12p1 ,p2

c11 | 22

c11 | 22p2

c12 | 12p1

p2p1

p2

.06 = P12 | 12

 = P1X H R2 |p12P1p12 = P12 | 12p1

 and is misclassified as p22

 P1observation is misclassified as p22 = P1observation comes from p1
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Chapter 11 Discrimination and Classification

the optimal classification regions is significant. Often, it is much easier to specify the
ratios than their component parts.

For example, it may be difficult to specify the costs (in appropriate units) of
classifying a student as college material when, in fact, he or she is not and classifying
a student as not college material, when, in fact, he or she is. The cost to taxpayers of
educating a college dropout for 2 years, for instance, can be roughly assessed. The
cost to the university and society of not educating a capable student is more difficult
to determine. However, it may be that a realistic number for the ratio of these mis-
classification costs can be obtained. Whatever the units of measurement, not admit-
ting a prospective college graduate may be five times more costly, over a suitable
time horizon, than admitting an eventual dropout. In this case, the cost ratio is five.

It is interesting to consider the classification regions defined in (11-6) for some
special cases.

2This is the justification generally provided. It is also equivalent to assuming the prior probability
ratio to be the reciprocal of the misclassification cost ratio.

When the prior probabilities are unknown, they are often taken to be equal, and
the minimum ECM rule involves comparing the ratio of the population densities to
the ratio of the appropriate misclassification costs. If the misclassification cost ratio
is indeterminate, it is usually taken to be unity, and the population density ratio is
compared with the ratio of the prior probabilities. (Note that the prior probabilities
are in the reverse order of the densities.) Finally, when both the prior probabili-
ty and misclassification cost ratios are unity, or one ratio is the reciprocal of the
other, the optimal classification regions are determined simply by comparing the
values of the density functions. In this case, if is a new observation and

—that is, —we assign to On the other hand,
if or we assign to 

It is common practice to arbitrarily use case (c) in (11-7) for classification. This
is tantamount to assuming equal prior probabilities and equal misclassification costs
for the minimum ECM rule.2

p2 .x0f11x02 6 f21x02,f11x02>f21x02 6 1,
p1 .x0f11x02 Ú f21x02f11x02>f21x02 Ú 1

x0

Special Cases of Minimum Expected Cost Regions

(a) (equal prior probabilities)

(b) (equal misclassification costs)

(11-7)

(c) or 
(equal prior probabilities and equal misclassification costs)

R1 : 
f11x2

f21x2
Ú 1  R2 : 

f11x2

f21x2
6 1

p2 >p1 = 1>1c11 | 22>c12 | 122p2 >p1 = c11 | 22>c12 | 12 = 1

R1 : 
f11x2

f21x2
Ú

p2

p1
  R2 : 

f11x2

f21x2
6

p2

p1

c11 | 22>c12 | 12 = 1

R1 : 
f11x2

f21x2
Ú

c11 | 22

c12 | 12
  R2 :  

f11x2

f21x2
6

c11 | 22

c12 | 12

p2 >p1 = 1
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Separation and Classification for Two Populations

Example 11.2 (Classifying a new observation into one of the two populations) A re-
searcher has enough data available to estimate the density functions and 
associated with populations and respectively. Suppose units and

units. In addition, it is known that about 20% of all objects (for which
the measurements x can be recorded) belong to Thus, the prior probabilities are

and 
Given the prior probabilities and costs of misclassification, we can use (11-6) to

derive the classification regions and Specifically, we have

Suppose the density functions evaluated at a new observation give 
and Do we classify the new observation as or To answer the
question, we form the ratio

and compare it with .5 obtained before. Since

we find that and classify it as belonging to �

Criteria other than the expected cost of misclassification can be used to 
derive “optimal” classification procedures. For example, one might ignore the costs
of misclassification and choose and to minimize the total probability of
misclassification (TPM):

(11-8)

Mathematically, this problem is equivalent to minimizing the expected cost of
misclassification when the costs of misclassification are equal. Consequently, the
optimal regions in this case are given by (b) in (11-7).

 = p1 
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Chapter 11 Discrimination and Classification

We could also allocate a new observation to the population with the largest
“posterior” probability By Bayes’s rule, the posterior probabilities are

(11-9)

Classifying an observation as when 7 is equivalent to
using the (b) rule for total probability of misclassification in (11-7) because the de-
nominators in (11-9) are the same. However, computing the probabilities of the pop-
ulations and after observing (hence the name posterior probabilities) is
frequently useful for purposes of identifying the less clear-cut assignments.

11.3 Classification with Two Multivariate Normal Populations
Classification procedures based on normal populations predominate in statistical
practice because of their simplicity and reasonably high efficiency across a wide va-
riety of population models. We now assume that and are multivariate
normal densities, the first with mean vector and covariance matrix and the
second with mean vector and covariance matrix 

The special case of equal covariance matrices leads to a particularly simple lin-
ear classification statistic.

Classification of Normal Populations When 

Suppose that the joint densities of for populations and 
are given by

(11-10)

Suppose also that the population parameters and are known. Then, after
cancellation of the terms the minimum ECM regions in (11-6) become

(11-11)6 a
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1
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Ú a
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1
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1
2
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12p2p>2 
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1>2
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1
2
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Classification with Two Multivariate Normal Populations

Given these regions and we can construct the classification rule given in the
following result.

Result 11.2. Let the populations and be described by multivariate normal
densities of the form (11-10). Then the allocation rule that minimizes the ECM is as
follows:
Allocate to if

(11-12)

Allocate to otherwise.

Proof. Since the quantities in (11-11) are nonnegative for all x, we can take their
natural logarithms and preserve the order of the inequalities. Moreover (see
Exercise 11.5),

(11-13)

and, consequently,

(11-14)

The minimum ECM classification rule follows. �

In most practical situations, the population quantities and are un-
known, so the rule (11-12) must be modified. Wald [31] and Anderson [2] have sug-
gested replacing the population parameters by their sample counterparts.

Suppose, then, that we have observations of the multivariate random vari-
able from and measurements of this quantity from 
with Then the respective data matrices are

(11-15)
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From these data matrices, the sample mean vectors and covariance matrices are
determined by

(11-16)

Since it is assumed that the parent populations have the same covariance matrix 
the sample covariance matrices and are combined (pooled) to derive a single,
unbiased estimate of as in (6-21). In particular, the weighted average

(11-17)

is an unbiased estimate of if the data matrices and contain random sam-
ples from the populations and respectively.

Substituting for for and for in (11-12) gives the “sample”
classification rule:

�SpooledM2 ,x–2M1 ,x–1

p2 ,p1

X2X1�

Spooled = B n1 - 1
1n1 - 12 + 1n2 - 12

R  S1 + B n2 - 1
1n1 - 12 + 1n2 - 12

R  S2

�
S2S1

�,

  S2
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=

1
n2 - 1

 a

n2

j = 1
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œ x– 2
1p * 12

=

1
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 a

n2

j = 1
 x2 j ,

  S1
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=

1
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 a

n1

j = 1
 1x1 j - x–12 1x1 j - x–12

œ x– 1
1p * 12
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1
n1

 a

n1

j = 1
 x1 j ,

If, in (11-18),

then and the estimated minimum ECM rule for two normal populations
amounts to comparing the scalar variable

(11-19)

evaluated at with the number

(11-20)

where

and
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a
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b ap2
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The Estimated Minimum ECM Rule for Two Normal Populations

Allocate to if

(11-18)
Allocate to otherwise.p2x0
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Classification with Two Multivariate Normal Populations

That is, the estimated minimum ECM rule for two normal populations is tanta-
mount to creating two univariate populations for the y values by taking an appropri-
ate linear combination of the observations from populations and and then
assigning a new observation to or depending upon whether falls
to the right or left of the midpoint between the two univariate means and 

Once parameter estimates are inserted for the corresponding unknown popula-
tion quantities, there is no assurance that the resulting rule will minimize the ex-
pected cost of misclassification in a particular application. This is because the
optimal rule in (11-12) was derived assuming that the multivariate normal densities

and were known completely. Expression (11-18) is simply an estimate of
the optimal rule. However, it seems reasonable to expect that it should perform well
if the sample sizes are large.3

To summarize, if the data appear to be multivariate normal4, the classification
statistic to the left of the inequality in (11-18) can be calculated for each new obser-
vation These observations are classified by comparing the values of the statistic
with the value of 

Example 11.3 (Classification with two normal populations—common and equal
costs) This example is adapted from a study [4] concerned with the detection of
hemophilia A carriers. (See also Exercise 11.32.)

To construct a procedure for detecting potential hemophilia A carriers, blood
samples were assayed for two groups of women and measurements on the two
variables,

recorded. (“AHF” denotes antihemophilic factor.) The first group of 
women were selected from a population of women who did not carry the hemophilia
gene. This group was called the normal group. The second group of women
was selected from known hemophilia A carriers (daughters of hemophiliacs,
mothers with more than one hemophilic son, and mothers with one hemophilic son
and other hemophilic relatives). This group was called the obligatory carriers. The
pairs of observations for the two groups are plotted in Figure 11.4. Also
shown are estimated contours containing 50% and 95% of the probability for
bivariate normal distributions centered at and respectively. Their common
covariance matrix was taken as the pooled sample covariance matrix In this
example, bivariate normal distributions seem to fit the data fairly well.

The investigators (see [4]) provide the information

x–1 = B - .0065
- .0390

R , x–2 = B - .2483
.0262

R
Spooled .

x–2 ,x–1

1x1 , x22

n2 = 22

n1 = 30

 X2 = log101AHF-like antigen2

 X1 = log101AHF activity2

�

ln71c11 | 22>c12 | 1221p2>p128.x0 .

f21x2f11x2

y–2 .y–1mn
yN0 = aN ¿  x0p2 ,p1x0

p2p1

3As the sample sizes increase, and become, with probability approaching 1, indistin-
guishable from and respectively [see (4-26) and (4-27)].

4At the very least, the marginal frequency distributions of the observations on each variable can be
checked for normality. This must be done for the samples from both populations. Often, some variables
must be transformed in order to make them more “normal looking.” (See Sections 4.6 and 4.8.) 

�,M1 , M2 ,
Spooledx–1 , x–2 ,
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and

Therefore, the equal costs and equal priors discriminant function [see (11-19)] is

Moreover,

and the midpoint between these means [see (11-20)] is

Measurements of AHF activity and AHF-like antigen on a woman who may be
a hemophilia A carrier give and Should this woman be clas-
sified as (normal) or (obligatory carrier)?

Using (11-18) with equal costs and equal priors so that we obtain

 Allocate x0 to p2 if yn0 = aN ¿  x0 6 mn = -4.61

 Allocate x0 to p1 if yn0 = aN ¿  x0 Ú mn = -4.61

ln112 = 0,
p2p1

x2 = - .044.x1 = - .210

mn =
1
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1
2 1.88 - 10.102 = -4.61

 y–2 = aN ¿  x–2 = 737.61 -28.928 B - .2483
.0262

R = -10.10

 y–1 = aN ¿  x–1 = 737.61 -28.928 B - .0065
- .0390

R = .88

 = 37.61x1 - 28.92x2

 = 7.2418 - .06528 B 131.158 -90.423
-90.423 108.147

R Bx1
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  x

= B 131.158 -90.423
-90.423 108.147

RSpooled
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x2 = log10 (AHF-like antigen)
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x2 

x1 
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Figure 11.4 Scatter plots of [ (AHF activity), (AHF-like antigen)] for the
normal group and obligatory hemophilia A carriers.

log10log10
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where Since

we classify the woman as an obligatory carrier.The new observation is indicated
by a star in Figure 11.4. We see that it falls within the estimated .50 probability con-
tour of population and about on the estimated .95 probability contour of popula-
tion Thus, the classification is not clear cut.

Suppose now that the prior probabilities of group membership are known. For
example, suppose the blood yielding the foregoing and measurements is drawn
from the maternal first cousin of a hemophiliac. Then the genetic chance of being a
hemophilia A carrier in this case is .25. Consequently, the prior probabilities of
group membership are and Assuming, somewhat unrealistically,
that the costs of misclassification are equal, so that = and using the
classification statistic

or with and we
have

Applying (11-18), we see that

and we classify the woman as an obligatory carrier. �

Scaling

The coefficient vector is unique only up to a multiplicative
constant, so, for any vector will also serve as discriminant coefficients.

The vector is frequently “scaled” or “normalized” to ease the interpretation of
its elements. Two of the most commonly employed normalizations are

1. Set

(11-21)

so that has unit length.

2. Set

(11-22)

so that the first element of the new coefficient vector is 1.

In both cases, is of the form For normalization (1), and
for (2), c = an-1

1 .
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589



Chapter 11 Discrimination and Classification

The magnitudes of in (11-21) all lie in the interval In
(11-22), and are expressed as multiples of Constraining the 
to the interval usually facilitates a visual comparison of the coefficients. Sim-
ilarly, expressing the coefficients as multiples of allows one to readily assess the
relative importance (vis-à-vis ) of variables as discriminators.

Normalizing the ’s is recommended only if the X variables have been stan-
dardized. If this is not the case, a great deal of care must be exercised in interpreting
the results.

Fisher’s Approach to Classification with Two Populations

Fisher [10] actually arrived at the linear classification statistic (11-19) using an en-
tirely different argument. Fisher’s idea was to transform the multivariate observa-
tions x to univariate observations y such that the y’s derived from population and

were separated as much as possible. Fisher suggested taking linear combinations
of x to create y’s because they are simple enough functions of the x to be handled
easily. Fisher’s approach does not assume that the populations are normal. It does,
however, implicitly assume that the population covariance matrices are equal, be-
cause a pooled estimate of the common covariance matrix is used.

A fixed linear combination of the x’s takes the values for the
observations from the first population and the values for the obser-
vations from the second population. The separation of these two sets of univariate
y’s is assessed in terms of the difference between and expressed in standard
deviation units. That is,

is the pooled estimate of the variance. The objective is to select the linear combina-
tion of the x to achieve maximum separation of the sample means and 

Result 11.3. The linear combination maximizes the
ratio

(11-23)

over all possible coefficient vectors where The maximum of the
ratio (11-23) is D2
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œ
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Proof. The maximum of the ratio in (11-23) is given by applying (2-50) directly.
Thus, setting we have

where is the sample squared distance between the two means. �

Note that in (11-33) may be calculated as

(11-24)

with and 

Example 11.4 (Fisher’s linear discriminant for the hemophilia data) Consider the
detection of hemophilia A carriers introduced in Example 11.3. Recall that the equal
costs and equal priors linear discriminant function was

This linear discriminant function is Fisher’s linear function, which maximally
separates the two populations, and the maximum separation in the samples is

�

Fisher’s solution to the separation problem can also be used to classify new
observations.
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5We must have otherwise is singular, and the usual inverse, does
not exist.
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An Allocation Rule Based on Fisher’s Discriminant Function5

Allocate to if

or (11-25)
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Chapter 11 Discrimination and Classification

The procedure (11-23) is illustrated, schematically, for in Figure 11.5. All
points in the scatter plots are projected onto a line in the direction and this direc-
tion is varied until the samples are maximally separated.

Fisher’s linear discriminant function in (11-25) was developed under the as-
sumption that the two populations, whatever their form, have a common covariance
matrix. Consequently, it may not be surprising that Fisher’s method corresponds to
a particular case of the minimum expected-cost-of-misclassification rule. The first
term, in the classification rule (11-18) is the linear function
obtained by Fisher that maximizes the univariate “between” samples variability rel-
ative to the “within” samples variability. [See (11-23).] The entire expression

(11-26)

is frequently called Anderson’s classification function (statistic). Once again, if
= 1, so that = 0, Rule

(11-18) is comparable to Rule (11-26), based on Fisher’s linear discriminant func-
tion. Thus, provided that the two normal populations have the same covariance ma-
trix, Fisher’s classification rule is equivalent to the minimum ECM rule with equal
prior probabilities and equal costs of misclassification.

Is Classification a Good Idea?

For two populations, the maximum relative separation that can be obtained by
considering linear combinations of the multivariate observations is equal to the
distance This is convenient because can be used, in certain situations, to test
whether the population means and differ significantly. Consequently, a test
for differences in mean vectors can be viewed as a test for the “significance” of the
separation that can be achieved.
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Figure 11.5 A pictorial representation of Fisher’s procedure for two populations 
with p = 2.
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Suppose the populations and are multivariate normal with a common co-
variance matrix Then, as in Section 6.3, a test of versus 
is accomplished by referring

to an F-distribution with and ± d.f. If is rejected,
we can conclude that the separation between the two populations and is
significant.

Comment. Significant separation does not necessarily imply good classifica-
tion. As we shall see in Section 11.4, the efficacy of a classification procedure can be
evaluated independently of any test of separation. By contrast, if the separation is
not significant, the search for a useful classification rule will probably prove
fruitless.

Classification of Normal Populations When 

As might be expected, the classification rules are more complicated when the popu-
lation covariance matrices are unequal.

Consider the multivariate normal densities in (11-10) with replac-
ing Thus, the covariance matrices, as well as the mean vectors, are different from
one another for the two populations. As we have seen, the regions of minimum
ECM and minimum total probability of misclassification (TPM) depend on the
ratio of the densities, or, equivalently, the natural logarithm of the den-
sity ratio, = – When the multivariate normal
densities have different covariance structures, the terms in the density ratio involv-
ing do not cancel as they do when Moreover, the quadratic forms in
the exponents of and do not combine to give the rather simple result in
(11-13).

Substituting multivariate normal densities with different covariance matrices
into (11-6) gives, after taking natural logarithms and simplifying (see Exercise
11.15), the classification regions

(11-27)

where

(11-28)

The classification regions are defined by quadratic functions of x. When 
the quadratic term, disappears, and the regions defined by
(11-27) reduce to those defined by (11-14).
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The classification rule for general multivariate normal populations follows
directly from (11-27).

Result 11.4. Let the populations and be described by multivariate normal
densities with mean vectors and covariance matrices and respec-
tively. The allocation rule that minimizes the expected cost of misclassification is
given by

Allocate to if

Allocate to otherwise.

Here k is set out in (11-28). �

In practice, the classification rule in Result 11.5 is implemented by substituting
the sample quantities and (see (11-16)) for and 
respectively.6

�2 ,�1 ,M2 ,M1 ,S2S1 ,x–2 ,x–1 ,

p2x0

-  
1
2

 xœ

0 1�1
-1

- �2
-12 x0 + 1Mœ

1 �1
-1

- Mœ

2 �2
-12 x0 - k Ú ln B ¢ c11 | 22

c12 | 12
≤ ¢p2

p1
≤ Rp1x0

M2 , �2 ,M1 , �1

p2p1

Classification with quadratic functions is rather awkward in more than two di-
mensions and can lead to some strange results. This is particularly true when the
data are not (essentially) multivariate normal.

Figure 11.6(a) shows the equal costs and equal priors rule based on the ideal-
ized case of two normal distributions with different variances. This quadratic rule
leads to a region consisting of two disjoint sets of points.

In many applications, the lower tail for the distribution will be smaller 
than that prescribed by a normal distribution. Then, as shown in Figure 11.6(b),
the lower part of the region produced by the quadratic procedure, does not 
line up well with the population distributions and can lead to large error rates.
A serious weakness of the quadratic rule is that it is sensitive to departures from
normality.

R1 ,

p1

R1

Quadratic Classification Rule 
(Normal Populations with Unequal Covariance Matrices)

Allocate to if

(11-29)

Allocate to otherwise.p2x0

-  
1
2

 x0
œ

 1S1
-1

- S2
-12 x0 + 1x–1

œ

  S1
-1

- x–2
œ

  S2
-12 x0 - k Ú ln B ¢ c11 | 22

c12 | 12
≤ ¢p2

p1
≤ Rp1x0

6 The inequalities and must both hold for and to exist. These quantities are
used in place of and respectively, in the sample analog (11-29).�2

-1 ,�1
-1

S2
-1S1

-1n2 7 pn1 7 p
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Classification with Two Multivariate Normal Populations

If the data are not multivariate normal, two options are available. First, the non-
normal data can be transformed to data more nearly normal, and a test for the
equality of covariance matrices can be conducted (see Section 6.6) to see whether
the linear rule (11-18) or the quadratic rule (11-29) is appropriate. Transformations
are discussed in Chapter 4. (The usual tests for covariance homogeneity are greatly
affected by nonnormality. The conversion of nonnormal data to normal data must
be done before this testing is carried out.)

Second, we can use a linear (or quadratic) rule without worrying about the form
of the parent populations and hope that it will work reasonably well. Studies (see
[22] and [23]) have shown, however, that there are nonnormal cases where a linear
classification function performs poorly, even though the population covariance ma-
trices are the same. The moral is to always check the performance of any classifica-
tion procedure.At the very least, this should be done with the data sets used to build
the classifier. Ideally, there will be enough data available to provide for “training”
samples and “validation” samples. The training samples can be used to develop 
the classification function, and the validation samples can be used to evaluate its
performance.

ƒ2(x )

ƒ1(x )

R1R1

R2

(a)

ƒ2(x )

ƒ1(x )

R1R1

R2

(b)

x

x

Figure 11.6 Quadratic rules for (a) two normal distribution with unequal variances 
and (b) two distributions, one of which is nonnormal—rule not appropriate.
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11.4 Evaluating Classification Functions
One important way of judging the performance of any classification procedure is to
calculate its “error rates,” or misclassification probabilities. When the forms of the
parent populations are known completely, misclassification probabilities can be cal-
culated with relative ease, as we show in Example 11.5. Because parent populations
are rarely known, we shall concentrate on the error rates associated with the sample
classification function. Once this classification function is constructed, a measure of
its performance in future samples is of interest.

From (11-8), the total probability of misclassification is

The smallest value of this quantity, obtained by a judicious choice of and is
called the optimum error rate (OER).

R2 ,R1

TPM = p1 
L

 

R2

 f11x2 dx + p2 
L

 

R1

 f21x2 dx

Thus, the OER is the error rate for the minimum TPM classification rule.

Example 11.5 (Calculating misclassification probabilities) Let us derive an expres-
sion for the optimum error rate when = = and and are the mul-
tivariate normal densities in (11-10).

Now, the minimum ECM and minimum TPM classification rules coincide when
Because the prior probabilities are also equal, the minimum 

TPM classification regions are defined for normal populations by (11-12), with

We find that

These sets can be expressed in terms of as

But Y is a linear combination of normal random variables, so the probability densi-
ties of Y, and are univariate normal (see Result 4.2) with means and a
variance given by

 sY
2

= a¿  �a = 1M1 - M22¿  �-11M1 - M22 = ¢
2

 m2 Y = a¿  M2 = 1M1 - M22¿  �-1
 M2

 m1 Y = a¿  M1 = 1M1 - M22¿  �-1
 M1

f21y2,f11y2

 R21y2: y 6
1
2 1M1 - M22¿  �-11M1 + M22

 R11y2: y Ú
1
2 1M1 - M22¿  �-11M1 + M22

y = 1M1 - M22¿  �-1
 x = a¿  x

 R2 : 1M1 - M22¿  �-1
 x -

1
2 1M1 - M22¿  �-11M1 + M22 6 0

 R1 : 1M1 - M22¿  �-1
 x -

1
2 1M1 - M22¿  �-11M1 + M22 Ú 0

ln B ¢ c11 | 22

c12 | 12
≤ ¢p2

p1
≤ R = 0.

c11 | 22 = c12 | 12.

f21x2f11x2
1
2p2p1

(11-30)

where and are determined by case (b) in (11-7).R2R1

Optimum error rate 1OER2 = p1 
L

 

R2

 f11x2 dx + p2 
L

 

R1

 f21x2 dx
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Now,

But, as shown in Figure 11.7

where is the cumulative distribution function of a standard normal random
variable. Similarly,

Therefore, the optimum error rate is

(11-31)

If, for example, then and,
using Table 1 in the appendix, we obtain

The optimal classification rule here will incorrectly allocate about 21% of the items
to one population or the other. �

Example 11.5 illustrates how the optimum error rate can be calculated when the
population density functions are known. If, as is usually the case, certain population

Minimum TPM = £ a
-1.6

2
b = £1- .82 = .2119

¢ = 12.56 = 1.6,≤
2

= 1M1 - M22¿  �-11M1 - M22 = 2.56,

OER = minimum TPM =

1
2

 £ a
- ¢

2
b +

1
2

 £ a
- ¢

2
b = £ a

- ¢

2
b

  = P aZ Ú

¢

2
b = 1 - £ a

¢

2
b = £ a

- ¢

2
b

  = P11 | 22 = P7Y Ú
1
2 1M1 - M22¿  �-11M1 + M228P7misclassifying a p2 observation as p18

£ �

= P ¢Z 6

-  
1
2 ¢

2

¢

≤ = £ a
- ¢

2
≤= P ¢Y - m1 Y

sY
6

1
2 1M1 - M22¿  �-11M1 + M22 - 1M1 - M22¿  �-1

 M1

¢

≤= P7Y 6
1
2 1M1 - M22¿  �-11M1 + M228P7misclassifying a p1 observation as p28 = P12 | 12

+
1
2 P 7misclassifying a p2 observation as p18TPM =

1
2 P 7misclassifying a p1 observation as p28

P(2  1) P(1  2)

ƒ2( y) � N(   2y , ∆2)� ƒ1( y) � N(   1y , ∆2)�

∆2

2
∆2

2µ 2y µ 1y

y

Figure 11.7 The misclassification probabilities based on Y.
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parameters appearing in allocation rules must be estimated from the sample, then
the evaluation of error rates is not straightforward.

The performance of sample classification functions can, in principle, be evaluat-
ed by calculating the actual error rate (AER),

(11-32)

where and represent the classification regions determined by samples of size
and respectively. For example, if the classification function in (11-18) is

employed, the regions and are defined by the set of x’s for which the following
inequalities are satisfied.

The AER indicates how the sample classification function will perform in future
samples. Like the optimal error rate, it cannot, in general, be calculated, because it
depends on the unknown density functions and However, an estimate of
a quantity related to the actual error rate can be calculated, and this estimate will be
discussed shortly.

There is a measure of performance that does not depend on the form of the
parent populations and that can be calculated for any classification procedure. This
measure, called the apparent error rate (APER), is defined as the fraction of observa-
tions in the training sample that are misclassified by the sample classification function.

The apparent error rate can be easily calculated from the confusion matrix,
which shows actual versus predicted group membership. For observations from

and observations from the confusion matrix has the formp2 ,n2p1

n1

f21x2.f11x2

 Rn 2 : 1x–1 - x–22
œ

 Spooled
-1

  x -

1
2

 1x–1 - x–22
œ

 Spooled
-1

 1x–1 + x–22 6 ln B ¢ c11 | 22

c12 | 12
≤ ¢p2

p1
≤ R

 Rn 1 : 1x–1 - x–22
œ

 Spooled
-1

  x -

1
2

 1x–1 - x–22
œ

 Spooled
-1

 1x–1 + x–22 Ú ln B ¢ c11 | 22

c12 | 12
≤ ¢p2

p1
≤ R

Rn 2Rn 1

n2 ,n1

Rn 2Rn 1

AER = p1 
L

 

Rn 2

 f11x2 dx + p2
L

 

Rn 1

 f21x2 dx

where

The apparent error rate is then

(11-34)

which is recognized as the proportion of items in the training set that are misclassified.

APER =

n1 M + n2 M

n1 + n2

 n2 M = number of p2 items misclassified
 n2 C = number of p2 items correctly classified
 n1 M = number of p1 items misclassified as p2 items
 n1 C = number of p1 items correctly classified as p1 items

Predicted membership

Actual (11-33)
membership n2n2 Cn2 M = n2 - n2 Cp2

n1n1 M = n1 - n1 Cn1 Cp1

p2p1
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Example 11.6 (Calculating the apparent error rate) Consider the classification re-
gions and shown in Figure 11.1 for the riding-mower data. In this case, obser-
vations northeast of the solid line are classified as mower owners; observations
southwest of the solid line are classified as nonowners. Notice that some obser-
vations are misclassified. The confusion matrix is

p2 ,
p1 ,

R2R1

Predicted membership

riding-mower owners nonowners

riding-
mower

Actual owners
membership

nonowners n2 = 12n2 C = 10n2 M = 2p2 :

n1 = 12n1 M = 2n1 C = 10p1 :

p2 :p1 :

The apparent error rate, expressed as a percentage, is

�

The APER is intuitively appealing and easy to calculate. Unfortunately, it tends
to underestimate the AER, and the problem does not disappear unless the sample
sizes and are very large. Essentially, this optimistic estimate occurs because the
data used to build the classification function are also used to evaluate it.

Error-rate estimates can be constructed that are better than the apparent error
rate, remain relatively easy to calculate, and do not require distributional assump-
tions. One procedure is to split the total sample into a training sample and a valida-
tion sample. The training sample is used to construct the classification function, and
the validation sample is used to evaluate it. The error rate is determined by the pro-
portion misclassified in the validation sample. Although this method overcomes the
bias problem by not using the same data to both build and judge the classification
function, it suffers from two main defects:

(i) It requires large samples.

(ii) The function evaluated is not the function of interest. Ultimately, almost all of
the data must be used to construct the classification function. If not, valuable in-
formation may be lost.

A second approach that seems to work well is called Lachenbruch’s “holdout”
procedure7 (see also Lachenbruch and Mickey [24]):

1. Start with the group of observations. Omit one observation from this
group, and develop a classification function based on the remaining 
observations.

2. Classify the “holdout” observation, using the function constructed in Step 1.

n2n1 - 1,
p1

n2n1

APER = a
2 + 2

12 + 12
b  100% = a

4
24
b  100% = 16.7%

7Lachenbruch’s holdout procedure is sometimes referred to as jackknifing or cross-validation.
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3. Repeat Steps 1 and 2 until all of the observations are classified. Let be
the number of holdout (H) observations misclassified in this group.

4. Repeat Steps 1 through 3 for the observations. Let be the number of
holdout observations misclassified in this group.

Estimates and of the conditional misclassification probabilities
in (11-1) and (11-2) are then given by

(11-35)

and the total proportion misclassified, is, for moderate
samples, a nearly unbiased estimate of the expected actual error rate, E(AER).

1n1 M
1H2

+ n2 M
1H2
2>1n1 + n22,

 Pn 11 | 22 =

n2 M
1H2

n2

 Pn 12 | 12 =

n1 M
1H2

n1

Pn 11 | 22Pn 12 | 12

n2 M
1H2

p2

n1 M
1H2

p1

(11-36)E
 
n1AER2 =

n1 M
1H2

+ n2 M
1H2

n1 + n2

Lachenbruch’s holdout method is computationally feasible when used in con-
junction with the linear classification statistics in (11-18) or (11-19). It is offered as
an option in some readily available discriminant analysis computer programs.

Example 11.7 Calculating an estimate of the error rate using the holdout procedure)
We shall illustrate Lachenbruch’s holdout procedure and the calculation of error
rate estimates for the equal costs and equal priors version of (11-18). Consider the
following data matrices and descriptive statistics. (We shall assume that the

bivariate observations were selected randomly from two populations
and with a common covariance matrix.)

The pooled covariance matrix is

Using the rest of the data, and Rule (11-18) with equal costs and equal pri-
ors, we may classify the sample observations. You may then verify (see Exercise
11.19) that the confusion matrix is

Spooled ,

Spooled =

1
4

 12S1 + 2S22 = B 1 -1
-1 4

R
 X2 = C5 7

3 9
4 5

S  ;    x–2 = B4
7
R  ,   2S2 = B 2 -2

-2 8
R

 X1 = C2 12
4 10
3 8

S  ;   x–1 = B 3
10
R  ,  2S1 = B 2 -2

-2 8
R

p2p1

n1 = n2 = 3
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and consequently,

Holding out the first observation from we calculate

The new pooled covariance matrix, is

with inverse8

It is computationally quicker to classify the holdout observation on the basis
of its squared distances from the group means and This procedure is equivalent
to computing the value of the linear function =

and comparing it to the midpoint = [See
(11-19) and (11-20).]

Thus with we have

Since the distance from to is smaller than the distance from to we
classify as a observation. In this case, the classification is correct.

If is withheld, and become

x–1 H = B2.5
10
R and SH, pooled

-1
=

1
8

 B16 4
4 2.5

RSH, pooled
-1x–1 Hxœ

H = 74, 108p1xH

x–2 ,xHx–1 HxH

= 72 - 4 12 - 78 1
8

 B10 1
1 2.5

R B 2 -4
12 -7

R = 10.3

Squared distance from x–2 = 1xH - x–22
œ

 SH, pooled
-1

 1xH - x–22

= 72 - 3.5 12 - 98 1
8

 B10 1
1 2.5

R B 2  -3.5
12  -9

R = 4.5

Squared distance from x–1 H = 1xH - x–1 H2
œ

 SH, pooled
-1

 1xH - x–1 H2

xœ

H = 72, 128
1
2 1x–1 H - x–22

œ

 SH, pooled
-1

 1x–1 H + x–22.mn H

1x–1 H - x–22
œ

 SH, pooled
-1

  xHyn = aN œ

H xH

x–2 .x–1 H

x1 H

SH, pooled
-1

=

1
8

 B10 1
1 2.5

R
SH, pooled =

1
3

 71S1 H + 2S28 =

1
3

 B2.5 -1
-1 10

RSH, pooled ,

X1 H = B4 10
3 8

R ;  x–1 H = B3.5
9
R ; and 1S1 H = B .5 1

1 2
RX1 ,xœ

H = 72, 128APER1apparent error rate2 =

2
6

= .33

8A matrix identity due to Bartlett [3] allows for the quick calculation of directly from 
Thus one does not have to recompute the inverse after withholding each observation. (See Exercise 11.20.)

Spooled
-1 .SH, pooled

-1

Classify as:

True population:
2 1
1 2p2

p1

p2p1
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We find that

and consequently, we would incorrectly assign to Holding out
leads to incorrectly assigning this observation to as well. Thus,

Turning to the second group, suppose is withheld. Then

The new pooled covariance matrix is

with inverse

We find that

and is correctly assigned to 
When is withheld,

and is incorrectly assigned to Finally, withholding leads
to correctly classifying this observation as Thus, n2 M

1H2
= 1.p2 .

xœ

H = 74, 58p1 .xœ

H = 73, 98  = 4.5

 1xH - x–2 H2
œ

 SH, pooled
-1

 1xH - x–2 H2 = 73 - 4.5 9 - 68 3
24

 B10 1
1 2.5

R B3 - 4.5
9 - 6

R = .3

 1xH - x–12
œ

 SH, pooled
-1

 1xH - x–12 = 73 - 3 9 - 108 3
24

 B10 1
1 2.5

R B3 - 3
9 - 10

Rxœ

H = 73, 98 p2 .xœ

H = 75, 78  = 4.5

 1xH - x–2 H2
œ

 SH, pooled
-1

 1xH - x–2 H2 = 75 - 3.5 7 - 78 3
24

 B16 4
4 2.5

R B5 - 3.5
7 - 7

R = 4.8

 1xH - x–12
œ

 SH, pooled
-1

 1xH - x–12 = 75 - 3 7 - 108 3
24

 B16 4
4 2.5

R B 5 - 3
7 - 10

R
SH, pooled

-1
=

3
24

 B16 4
4 2.5

R
SH, pooled =

1
3

 72S1 + 1S2 H8 =

1
3

 B2.5 -4
-4 16

R
X2 H = B3 9

4 5
R ;  x–2 H = B3.5

7
R ; and 1S2 H = B .5 -2

-2 8
Rxœ

H = 75, 78n1 M
1H2

= 2.
p2xœ

H = 73, 88 p2 .xœ

H = 74, 108 = 2.8

 1xH - x–22
œ

 SH, pooled
-1

 1xH - x–22 = 74 - 4 10 - 78 1
8

 B16 4
4 2.5

R B 4 - 4
10 - 7

R = 4.5

 1xH - x–1 H2
œ

 SH, pooled
-1

 1xH - x–1 H2 = 74 - 2.5 10 - 108 1
8

 B16 4
4 2.5

R B 4 - 2.5
10 - 10

R

602



Evaluating Classification Functions

An estimate of the expected actual error rate is provided by

Hence, we see that the apparent error rate is an optimistic measure of
performance. Of course, in practice, sample sizes are larger than those we have
considered here, and the difference between APER and may not be as
large. �

If you are interested in pursuing the approaches to estimating classification
error rates, see [23].

The next example illustrates a difficulty that can arise when the variance of the
discriminant is not the same for both populations.

Example 11.8 (Classifying Alaskan and Canadian salmon) The salmon fishery is a
valuable resource for both the United States and Canada. Because it is a limited
resource, it must be managed efficiently. Moreover, since more than one country is
involved, problems must be solved equitably.That is,Alaskan commercial fishermen
cannot catch too many Canadian salmon and vice versa.

These fish have a remarkable life cycle. They are born in freshwater streams
and after a year or two swim into the ocean. After a couple of years in salt water,
they return to their place of birth to spawn and die. At the time they are about to
return as mature fish, they are harvested while still in the ocean. To help regulate
catches, samples of fish taken during the harvest must be identified as coming
from Alaskan or Canadian waters. The fish carry some information about their
birthplace in the growth rings on their scales. Typically, the rings associated with
freshwater growth are smaller for the Alaskan-born than for the Canadian-born
salmon. Table 11.2 gives the diameters of the growth ring regions, magnified 100
times, where

In addition, females are coded as 1 and males are coded as 2.
Training samples of sizes Alaskan-born and Canadian-born

salmon yield the summary statistics

 x–2 = B137.460
366.620

R ,  S2 = B326.090 133.505
133.505 893.261

R
 x–1 = B 98.380

429.660
R ,  S1 = B 260.608 -188.093

-188.093 1399.086
R

n2 = 50n1 = 50

 1hundredths of an inch2

 X2 = diameter of rings for the first-year marine growth

 1hundredths of an inch2

 X1 = diameter of rings for the first-year freshwater growth

E
 
n1AER2

APER = .33

E
 
n1AER2 =

n1 M
1H2

+ n2 M
1H2

n1 + n2
=

2 + 1
3 + 3

= .5
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Table 11.2 Salmon Data (Growth-Ring Diameters)

Alaskan Canadian

Gender Freshwater Marine Gender Freshwater Marine

2 108 368 1 129 420
1 131 355 1 148 371
1 105 469 1 179 407
2 86 506 2 152 381
1 99 402 2 166 377
2 87 423 2 124 389
1 94 440 1 156 419
2 117 489 2 131 345
2 79 432 1 140 362
1 99 403 2 144 345
1 114 428 2 149 393
2 123 372 1 108 330
1 123 372 1 135 355
2 109 420 2 170 386
2 112 394 1 152 301
1 104 407 1 153 397
2 111 422 1 152 301
2 126 423 2 136 438
2 105 434 2 122 306
1 119 474 1 148 383
1 114 396 2 90 385
2 100 470 1 145 337
2 84 399 1 123 364
2 102 429 2 145 376
2 101 469 2 115 354
2 85 444 2 134 383
1 109 397 1 117 355
2 106 442 2 126 345
1 82 431 1 118 379
2 118 381 2 120 369
1 105 388 1 153 403
1 121 403 2 150 354
1 85 451 1 154 390
1 83 453 1 155 349
1 53 427 2 109 325
1 95 411 2 117 344
1 76 442 1 128 400
1 95 426 1 144 403
2 87 402 2 163 370
1 70 397 2 145 355
2 84 511 1 133 375
2 91 469 1 128 383
1 74 451 2 123 349
2 101 474 1 144 373
1 80 398 2 140 388

(continues on next page)
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The data appear to satisfy the assumption of bivariate normal distributions (see
Exercise 11.31), but the covariance matrices may differ. However, to illustrate a point
concerning misclassification probabilities, we will use the linear classification procedure.

The classification procedure, using equal costs and equal prior probabilities,
yields the holdout estimated error rates

Table 11.2 (continued)

Alaskan Canadian

Gender Freshwater Marine Gender Freshwater Marine

1 95 433 2 150 339
2 92 404 2 124 341
1 99 481 1 125 346
2 94 491 1 153 352
1 87 480 1 108 339

Gender Key:
Source: Data courtesy of K.A. Jensen and B.Van Alen of the State of Alaska Department of Fish and Game.

1 = female; 2 = male.

Predicted membership

Alaskan Canadian

Actual Alaskan 44 6

membership Canadian 1 49p2 :

p1 :

p2 :p1 :

based on the linear classification function [see (11-19) and (11-20)]

There is some difference in the sample standard deviations of for the two
populations:

wn

wn = yn - mn = -5.54121 - .12839x1 + .05194x2

Although the overall error rate (7>100, or 7%) is quite low, there is an unfair-
ness here. It is less likely that a Canadian-born salmon will be misclassified as
Alaskan born, rather than vice versa. Figure 11.8, which shows the two normal
densities for the linear discriminant explains this phenomenon. Use of theyn ,

m̂y2 y1 
y

Figure 11.8 Schematic of normal densities for linear discriminant—salmon data.

Sample Sample
n Mean Standard Deviation

Alaskan 50 4.144 3.253
Canadian 50 �4.147 2.450
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midpoint between the two sample means does not make the two misclassification
probabilities equal. It clearly penalizes the population with the largest variance.
Thus, blind adherence to the linear classification procedure can be unwise. �

It should be intuitively clear that good classification (low error rates) will de-
pend upon the separation of the populations. The farther apart the groups, the more
likely it is that a useful classification rule can be developed. This separative goal, al-
luded to in Section 11.1, is explored further in Section 11.6.

As we shall see, allocation rules appropriate for the case involving equal prior
probabilities and equal misclassification costs correspond to functions designed to
maximally separate populations. It is in this situation that we begin to lose the dis-
tinction between classification and separation.

11.5 Classification with Several Populations
In theory, the generalization of classification procedures from 2 to groups is
straightforward. However, not much is known about the properties of the corre-
sponding sample classification functions, and in particular, their error rates have not
been fully investigated.

The “robustness” of the two group linear classification statistics to, for instance,
unequal covariances or nonnormal distributions can be studied with computer gen-
erated sampling experiments.9 For more than two populations, this approach does
not lead to general conclusions, because the properties depend on where the popu-
lations are located, and there are far too many configurations to study conveniently.

As before, our approach in this section will be to develop the theoretically opti-
mal rules and then indicate the modifications required for real-world applications.

The Minimum Expected Cost of Misclassification Method

Let be the density associated with population [For the most
part, we shall take to be a multivariate normal density, but this is unnecessary
for the development of the general theory.] Let

For Finally, let be the set of x’s classified as and

for with P1i | i2 = 1 - a
g

k = 1
k Z i

 P1k | i2.k, i = 1, 2, Á , g

P1k | i2 = P1classifying item as pk |pi2 =

L

 

Rk

fi1x2 dx

pkRkc1i | i2 = 0.k = i,

 to pi , for k, i = 1, 2, Á , g
 c1k | i2 = the cost of allocating an item to pk when, in fact, it belongs

 pi = the prior probability of population pi , i = 1, 2, Á , g

fi1x2
i = 1, 2, Á , g.pi ,fi1x2

g Ú 2

9Here robustness refers to the deterioration in error rates caused by using a classification procedure
with data that do not conform to the assumptions on which the procedure was based.

It is very difficult to study the robustness of classification procedures analytically. However, data
from a wide variety of distributions with different covariance structures can be easily generated
on a computer. The performance of various classification rules can then be evaluated using computer-
generated “samples” from these distributions.
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Classification with Several Populations

The conditional expected cost of misclassifying an x from into or 
or is

This conditional expected cost occurs with prior probability the probability of 
In a similar manner, we can obtain the conditional expected costs of misclassifi-

cation Multiplying each conditional ECM by its prior prob-
ability and summing gives the overall ECM:

(11-37)

Determining an optimal classification procedure amounts to choosing the mu-
tually exclusive and exhaustive classification regions such that
(11-37) is a minimum.

Result 11.5. The classification regions that minimize the ECM (11-37) are defined
by allocating x to that population = for which

(11-38)

is smallest. If a tie occurs, x can be assigned to any of the tied populations.

Proof. See Anderson [2]. �

Suppose all the misclassification costs are equal, in which case the minimum expected
cost of misclassification rule is the minimum total probability of misclassification
rule. (Without loss of generality, we can set all the misclassification costs equal to 1.)
Using the argument leading to (11-38), we would allocate x to that population 

= for which

(11-39)a
g

i = 1
i Z k

 pi  fi1x2

1, 2, Á , g,pk , k

a
g

i = 1
i Z k

 pi  fi1x2 c1k | i2

1, 2, Á , g,pk , k

R1 , R2 , Á , Rg

 = a
g

i = 1
 pi £ag

k = 1
k Z i

 P1k | i2c1k | i2≥
 +  Á + pg aa

g - 1

k = 1
 P1k | g2c1k | g2b

 = p1 aa
g

k = 2
 P1k | 12c1k | 12b + p2 £ag

k = 1
k Z 2

 P1k | 22c1k | 22≥
 ECM = p1 ECM112 + p2 ECM122 +

Á
+ pg ECM1g2

ECM1g2.Á ,ECM122,

p1 .p1 ,

 = a
g

k = 2
 P1k | 12c1k | 12

 ECM112 = P12 | 12c12 | 12 + P13 | 12c13 | 12 +
Á

+ P1g | 12c1g | 12

pg

p3 , Á ,p2 ,p1
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Chapter 11 Discrimination and Classification

is smallest. Now, (11-39) will be smallest when the omitted term, is largest.
Consequently, when the misclassification costs are the same, the minimum expected
cost of misclassification rule has the following rather simple form.

pk fk1x2,

We shall use the minimum ECM procedures.

True population

Classify as:

Prior probabilities:

Densities at f31x02 = 2f21x02 = .85f11x02 = .01x0 :

p3 = .35p2 = .60p1 = .05

c13 ƒ  32 = 0c13 ƒ  22 = 200c13 ƒ  12 = 50p3

c12 ƒ  32 = 50c12 ƒ  22 = 0c12 ƒ  12 = 10p2

c11 ƒ  32 = 100c11 ƒ  22 = 500c11 ƒ  12 = 0p1

p3p2p1

Minimum ECM Classification Rule 
with Equal Misclassification Costs

Allocate to if

(11-40)

or, equivalently,

Allocate to if

(11-41)ln pk  fk1x2 7 ln pi  fi1x2 for all i Z k

pkx0

pk  fk1x2 7 pi  fi1x2 for all i Z k

pkx0

It is interesting to note that the classification rule in (11-40) is identical to the
one that maximizes the “posterior” probability (x comes from 
given that x was observed), where

(11-42)

Equation (11-42) is the generalization of Equation (11-9) to groups.
You should keep in mind that, in general, the minimum ECM rules have three

components: prior probabilities, misclassification costs, and density functions. These
components must be specified (or estimated) before the rules can be implemented.

Example 11.9 (Classifying a new observation into one of three known populations)
Let us assign an observation to one of the populations or given
the following hypothetical prior probabilities, misclassification costs, and density
values:

p3 ,p1 , p2 ,g = 3x0

g Ú 2

P1pk | x2 =

pk  fk1x2

a
g

i = 1
 pi  fi1x2

=

1prior2 * 1likelihood2

a  71prior2 * 1likelihood28 for k = 1, 2, Á , g

pkP1pk | x2 = P
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Classification with Several Populations

The values of [see (11-38)] are

Since is smallest for we would allocate to 

If all costs of misclassification were equal, we would assign according to
(11-40), which requires only the products

Since

we should allocate to Equivalently, calculating the posterior probabilities [see
(11-42)], we obtain

We see that is allocated to the population with the largest posterior probability. �

Classification with Normal Populations

An important special case occurs when the

(11-43)i = 1, 2, Á , g

fi1x2 =

1

12p2p>2 
ƒ �i ƒ

1>2 exp c -  
1
2

 1x - Mi2
œ

 �i
-11x - Mi2 d ,

p3 ,x0

 P1p3 | x02 =

p3 f31x02

a
3

i = 1
 pi  fi1x02

=

1.352 122

1.2105
=

.700
1.2105

= .578

 P1p2 | x02 =

p2 f21x02

a
3

i = 1
 pi  fi1x02

=

1.602 1.852

1.2105
=

.510
1.2105

= .421

 =

1.052 1.012

1.052 1.012 + 1.602 1.852 + 1.352 122
=

.0005
1.2105

= .0004

 P1p1 | x02 =

p1 f11x02

a
3

i = 1
 pi  fi1x02

p3 .x0

p3 f31x02 = .700 Ú pi  fi1x02, i = 1, 2

 p3 f31x02 = 1.352 122 = .700

 p2 f21x02 = 1.602 1.852 = .510

 p1 f11x02 = 1.052 1.012 = .0005

x0

p2 .x0k = 2,a
3

i = 1
i Z k

 pi  fi1x02c1k | i2

 = 1.052 1.012 1502 + 1.602 1.852 12002 = 102.025

 k = 3: p1 f11x02c13 | 12 + p2 f21x02c13 | 22

 = 1.052 1.012 1102 + 1.352 122 1502 = 35.055

 k = 2: p1 f11x02c12 | 12 + p3 f31x02c12 | 32

 = 1.602 1.852 15002 + 1.352 122 11002 = 325

 k = 1: p2 f21x02c11 | 22 + p3 f31x02c11 | 32

a
3

i = 1
i Z k

 pi  fi1x02c1k | i2
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are multivariate normal densities with mean vectors and covariance matrices 
If, further, (or, equivalently, the misclassification costs
are all equal), then (11-41) becomes

Allocate x to if

(11-44)

The constant can be ignored in (11-44), since it is the same for all
populations. We therefore define the quadratic discrimination score for the ith
population to be

(11-45)

The quadratic score is composed of contributions from the generalized
variance the prior probability and the square of the distance from x to the
population mean Note, however, that a different distance function, with a 
different orientation and size of the constant-distance ellipsoid, must be used for
each population.

Using discriminant scores, we find that the classification rule (11-44) becomes
the following:

Mi .
pi ,ƒ �i ƒ ,

di
Q
1x2

i = 1, 2, Á , g

di
Q
1x2 = -  

1
2 ln ƒ �i ƒ -

1
2 1x - Mi2

œ

 �i
-11x - Mi2 + ln pi

1p>22 ln 12p2

 = max
i

 ln pi  fi1x2

 ln pk  fk1x2 = ln pk - a
p

2
b  ln 12p2 -

1
2

 ln ƒ �k ƒ -

1
2

 1x - Mk2
œ

 �k
-11x - Mk2

pk

k Z ic1k | i2 = 1,c1i | i2 = 0,
�i .Mi

Minimum Total Probability of Misclassification (TPM) Rule 
for Normal Populations—Unequal 

Allocate to if

(11-46)

where is given by (11-45).di
Q
1x2

the quadratic score dk
Q

 1x2 = largest of d1
Q
1x2, d2

Q
1x2, Á , dg

Q1x2

pkx

πi

In practice, the and are unknown, but a training set of correctly classified
observations is often available for the construction of estimates. The relevant sam-
ple quantities for population are

and

The estimate of the quadratic discrimination score is then

(11-47)

and the classification rule based on the sample is as follows:

d
 
n

i
Q
1x2 = -  

1
2 ln ƒ Si ƒ -

1
2 1x - x– i2

œ

 Si
-11x - x– i2 + ln pi , i = 1, 2, Á , g

d
 
n

i
Q
1x2

ni = sample size

 Si = sample covariance matrix

 x– i = sample mean vector

pi

�iMi
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Classification with Several Populations

A simplification is possible if the population covariance matrices, are equal.
When for the discriminant score in (11-45) becomes

The first two terms are the same for and, consequently,
they can be ignored for allocative purposes. The remaining terms consist of a con-
stant and a linear combination of the components of x.

Next, define the linear discriminant score

(11-49)

An estimate of the linear discriminant score is based on the pooled
estimate of 

(11-50)
and is given by

(11-51)

Consequently, we have the following:

for i = 1, 2, Á , g
d
 
n

i1x2 = x– œ

i  Spooled
-1

  x -
1
2 x– œ

i  Spooled
-1

  x– i + ln pi

Spooled =

1
n1 + n2 +

Á
+ ng - g

 11n1 - 12 S1 + 1n2 - 12 S2 +
Á

+ 1ng - 12 Sg2

�.
di1x2d

 
n

i1x2

for i = 1, 2, Á , g

di1x2 = Mœ

i  �-1
 x -

1
2 Mœ

i  �-1
 Mi + ln pi

ci = ln pi -
1
2 Mœ

i  �-1
 Mi

dg
Q1x2,d1

Q
1x2, d2

Q
1x2, Á ,

di
Q
1x2 = -  

1
2 ln ƒ � ƒ -

1
2 x¿  �-1

 x + Mœ

i  �-1
 x -

1
2 Mœ

i  �-1
 Mi + ln pi

i = 1, 2, Á , g,�i = �,
�i ,

Estimated Minimum (TPM) Rule 
for Several Normal Populations—Unequal 

Allocate x to if

(11-48)

where is given by (11-47).d
 
n

i
Q
1x2

the quadratic score d
 
n

k
Q
1x2 = largest of d

 
n

1
Q
1x2, d

 
n

2
Q
1x2, Á ,d

 
n

g
Q1x2

pk

πi

Estimated Minimum TPM Rule 
for Equal-Covariance Normal Populations

Allocate x to if

(11-52)
with given by (11-51).d

 
n

i1x2

the linear discriminant score d
 
n

k1x2 = the largest of d
 
n

11x2, d
 
n

2 1x2, Á , d
 
n

g1x2

pk

Comment. Expression (11-49) is a convenient linear function of x. An equivalent
classifier for the equal-covariance case can be obtained from (11-45) by ignoring the 

constant term, The result, with sample estimates inserted for unknown
population quantities, can then be interpreted in terms of the squared distances

(11-53)Di
21x2 = 1x - x– i2

œ

 Spooled
-1

 1x - x– i2

-  
1
2 ln ƒ � ƒ .
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from x to the sample mean vector The allocatory rule is then

(11-54)

We see that this rule—or, equivalently, (11-52)—assigns x to the “closest” popula-
tion. (The distance measure is penalized by )

If the prior probabilities are unknown, the usual procedure is to set =

An observation is then assigned to the closest population.

Example 11.10 (Calculating sample discriminant scores, assuming a common covari-
ance matrix) Let us calculate the linear discriminant scores based on data from 
populations assumed to be bivariate normal with a common covariance matrix.

Random samples from the populations and along with the sample
mean vectors and covariance matrices, are as follows:

Given that and let us classify the observation 
= = according to (11-52). From (11-50),

so

Next,

x– œ

1 Spooled
-1

= 7-1 38 1
35

 B36 3
3 9

R =

1
35

 7-27 248
Spooled

-1
=

9
35

 D 4
1
3

1
3

1
T =

1
35

 B36 3
3 9

R
 =

2
6

 B 1 + 1 + 1 -1 - 1 + 1
-1 - 1 + 1 4 + 4 + 4

R = D 1 -  
1
3

-  
1
3

4
T

 Spooled =

3 - 1
9 - 3

 B 1 -1
-1 4

R +

3 - 1
9 - 3

 B 1 -1
-1 4

R +

3 - 1
9 - 3

 B1 1
1 4

R7-2 -187x0 1 , x0 28xœ

0

p3 = .50,p1 = p2 = .25

 p3 : X3 = C 1 -2
0 0

-1 -4
S  ,  so n3 = 3, x–3 = B 0

-2
R  ,  and S3 = B1 1

1 4
R

 p2 : X2 = C0 6
2 4
1 2

S  ,  so n2 = 3, x–2 = B1
4
R  ,  and S2 = B 1 -1

-1 4
R

 p1 : X1 = C -2 5
0 3

-1 1
S  ,  so n1 = 3, x–1 = B -1

3
R  ,  and S1 = B 1 -1

-1 4
R

p3 ,p1 , p2 ,

g = 3

pg = 1>g.
p2 =

Áp1 =

ln pi .

Assign x to the population pi for which -  
1
2 Di

21x2 + ln pi is largest

x– i .
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and

so

Notice the linear form of ± ± In a
similar manner,

and

Finally,

and

Substituting the numerical values and gives

Since is the largest discriminant score, we allocate to �p3 .x0d
 
n

31x02 = - .350

d
 
n

11x02 =

d
 
n

21x02 =

d
 
n

31x02 =

-1.386

-1.386

- .693

+ a
-27
35
b  1-22

+ a
48
35
b  1-22

+ a
-6
35
b  1-22

+ a
24
35
b  1-12

+ a
39
35
b  1-12

+ a
-18
35
b  1-12

-

99
70

 =

-

204
70

=

-

36
70

 =

-1.943

-8.158

- .350

x0 2 = -1x0 1 = -2

d
 
n

31x02 = ln 1.502 + a
-6
35
b  x0 1 + a

-18
35
b  x0 2 -

1
2

 a
36
35
b

 x– œ

3 Spooled
-1

  x–3 =

1
35

 7-6 -188 B 0
-2
R =

36
35

 x– œ

3 Spooled
-1

= 70 -28 1
35

 B36 3
3 9

R =

1
35

 7-6 -188
d
 
n

21x02 = ln 1.252 + a
48
35
b  x0 1 + a

39
35
b  x0 2 -

1
2

 a
204
35
b

 x– œ

2 Spooled
-1

  x–2 =

1
35

 748 398 B1
4
R =

204
35

 x– œ

2 Spooled
-1

= 71 48 1
35

 B36 3
3 9

R =

1
35

 748 398
1constant2 x0 2 .1constant2 x0 1d

 
n

11x02 = constant

 = ln 1.252 + a
-27
35
b  x0 1 + a

24
35
b  x0 2 -

1
2

 a
99
35
b

 d
 
n

11x02 = ln p1 + x– œ

1 Spooled
-1

  x0 -

1
2

 x– œ

1 Spooled
-1

  x–1

x– œ

1 Spooled
-1

  x–1 =

1
35

 7-27 248 B -1
3
R =

99
35
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Chapter 11 Discrimination and Classification

Example 11.11 (Classifying a potential business-school graduate student) The ad-
mission officer of a business school has used an “index” of undergraduate 
grade point average (GPA) and graduate management aptitude test (GMAT)
scores to help decide which applicants should be admitted to the school’s gradu-
ate programs. Figure 11.9 shows pairs of values for 
groups of recent applicants who have been categorized as admit; do not 
admit; and borderline.10 The data pictured are listed in Table 11.6. (See
Exercise 11.29.) These data yield (see the SAS statistical software output in
Panel 11.1)

 x– = B 2.97
488.45

R   Spooled = B .0361 -2.0188
-2.0188 3655.9011

R
 x–1 = B 3.40

561.23
R   x–2 = B 2.48

447.07
R   x–3 = B 2.99

446.23
R n1 = 31   n2 = 28   n3 = 26

p3 :
p2 :p1 :

x2 = GMATx1 = GPA,

360

270

450

540

630

720

GMAT

2.10 2.40 2.70 3.00 3.30

A  :  Admit  ( π1)
B  :  Do not admit  (π2)
C  :  Borderline  (π3)

3.60 3.90
GPA

C

C
C

C
C
C

CCC

CCC
C

C

C

C
C

C

C

C

C
CC

C CC

A

A

A

A
A

A AA

AAAA A

A A

A

A

A

A
A

A A
A
A

A
A

A A A

A

A

B
BBB

BBBBB

B

B

BB

BB
BB

B

B

BB

B
B

BB

BB

B

10In this case, the populations are artificial in the sense that they have been created by the
admissions officer. On the other hand, experience has shown that applicants with high GPA and high
GMAT scores generally do well in a graduate program; those with low readings on these variables
generally experience difficulty.

Figure 11.9 Scatter plot of for applicants to a graduate
school of business who have been classified as admit, do not admit, or borderline.

1x1 = GPA, x2 = GMAT2
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Suppose a new applicant has an undergraduate GPA of and a GMAT
score of Let us classify this applicant using the rule in (11-54) with equal
prior probabilities.

With the sample squared distances are

Since the distance from to the group mean is smallest, we assign
this applicant to borderline. �

The linear discriminant scores (11-49) can be compared, two at a time. Using
these quantities, we see that the condition that is the largest linear discrimi-
nant score among is equivalent to

for all i = 1, 2, p , g.

 = 1Mk - Mi2¿  �-1
 x -

1
2

 1Mk - Mi2¿  �-11Mk + Mi2 + ln ¢pk

pi
≤ 0 … dk1x2 - di1x2

d11x2, d21x2, Á , dg1x2
dk1x2

p3 ,
x–3xœ

0 = 73.21, 4978 D3
21x02 = 1x0 - x–32

œ

 Spooled
-1

 1x0 - x–32 = 2.47

 D2
21x02 = 1x0 - x–22

œ

 Spooled
-1

 1x0 - x–22 = 17.10

 = 2.58

 = 73.21 - 3.40, 497 - 561.238 B28.6096 .0158
.0158 .0003

R B 3.21 - 3.40
497 - 561.23

R D1
21x02 = 1x0 - x–12

œ

 Spooled
-1

 1x0 - x–12

xœ

0 = 73.21, 4978,x2 = 497.
x1 = 3.21

title ‘Discriminant Analysis’;
data gpa;
infile ‘T11-6.dat’;
input gpa gmat admit $;

PROGRAM COMMANDS
proc discrim data = gpa
method = normal pool = yes manova wcov pcov listerr crosslisterr;
priors ‘admit’ = .3333 ‘notadmit’ = .3333 ‘border’ = .3333;
class admit; var gpa gmat;

DISCRIMINANT ANALYSIS
85 Observations 84 DF Total OUTPUT
2 Variables 82 DF Within Classes
3 Classes 2 DF Between Classes

Class Level Information

Prior
ADMIT Frequency Weight Proportion Probability
admit 31 31.0000 0.364706 0.333333
border 26 26.0000 0.305882 0.333333
notadmit 28 28.0000 0.329412 0.333333

(continues on next page)

PANEL 11.1 SAS ANALYSIS FOR ADMISSION DATA USING PROC DISCRIM.

¯
˚

˚
˚

˘
˚

˚
˚

˙
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PANEL 11.1 (continued)

DISCRIMINANT ANALYSIS WITHIN-CLASS COVARIANCE MATRICES
ADMIT = admit DF = 30

Variable GPA GMAT
GPA 0.043558 0.058097
GMAT 0.058097 4618.247312
– – – – – – – – – – – – – – – – – – – – – – – – – – – – –

ADMIT = border DF = 25
Variable GPA GMAT
GPA 0.029692 –5.403846
GMAT –5.403846 2246.904615
– – – – – – – – – – – – – – – – – – – – – – – – – – – – –

ADMIT = notadmit DF = 27
Variable GPA GMAT
GPA 0.033649 –1.192037
GMAT –1.192037 3891.253968

Pooled Within-Class Covariance Matrix DF = 82

Variable GPA GMAT

GPA 0.036068 –2.018759
GMAT –2.018759 3655.901121

Multivariate Statistics and F Approximations

S = 2 M = –0.5 N = 39.5
Statistic Value F Num DF Den DF Pr > F
Wilks’ Lambda 0.12637661 73.4257 4 162 0.0001
Pillai’s Trace 1.00963002 41.7973 4 164 0.0001
Hotelling-Lawley Trace 5.83665601 116.7331 4 160 0.0001
Roy’s Greatest Root 5.64604452 231.4878 2 82 0.0001

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

DISCRIMINANT ANALYSIS LINEAR DISCRIMINANT FUNCTION

Constant = Coefficient 
ADMIT

admit border notadmit

CONSTANT –241.47030 –178.41437 –134.99753
GPA 106.24991 92.66953 78.08637
GMAT 0.21218 0.17323 0.16541

Classification Results for Calibration Data: WORK.GPA
Resubstitution Results using Linear Discriminant Function

Generalized Squared Distance Function:

Posterior Probability of Membership in each ADMIT:

Pr1 j | X2 = exp1- .5Dj
21X22>SUM

k
 exp1- .5Dk

21X22

Dj
2
1X2 = 1X - Xq j2

œ

 cov-11X - Xq j2

Vector = COV-1 Xq  j- .5Xq œ

j COV-1 Xq j + ln PRIORj
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Posterior Probability of Membership in ADMIT:
Obs From Classified

ADMIT into ADMIT admit border notadmit
2 admit border * 0.1202 0.8778 0.0020
3 admit border * 0.3654 0.6342 0.0004

24 admit border * 0.4766 0.5234 0.0000
31 admit border * 0.2964 0.7032 0.0004
58 notadmit border * 0.0001 0.7550 0.2450
59 notadmit border * 0.0001 0.8673 0.1326
66 border admit * 0.5336 0.4664 0.0000

*Misclassified observation

Classification Summary for Calibration Data: WORK.GPA
Cross validation Summary using Linear Discriminant Function

Generalized Squared Distance Function:

Posterior Probability of Membership in each ADMIT:

Number of Observations and Percent Classified into ADMIT:

From ADMIT admit border notadmit Total

admit 26 5 0 31

83.87 16.13 0.00 100.00

border 1 24 1 26

3.85 92.31 3.85 100.00

notadmit 0 2 26 28

0.00 7.14 92.86 100.00
Total 27 31 27 85
Percent 31.76 36.47 31.76 100.00
Priors 0.3333 0.3333 0.3333

Error Count Estimates for ADMIT:
admit border notadmit Total

Rate 0.1613 0.0769 0.0714 0.1032
Priors 0.3333 0.3333 0.3333

Pr1 j | X2 = exp1- .5Dj
21X22>SUM

k
 exp1- .5Dk

21X22

Dj
21X2 = 1X - Xq 1X2j2

œ

 COV1X2
-1 1X - Xq 1X2j2

PANEL 11.1 (continued)

Adding = to both sides of the preceding inequality gives
the alternative form of the classification rule that minimizes the total probability of
misclassification. Thus, we

Allocate x to if

(11-55)

for all i = 1, 2, Á , g.

1Mk - Mi2¿  �-1
 x -

1
2

 1Mk - Mi2¿  �-11Mk + Mi2 Ú ln ¢ pi

pk
≤pk

ln 1pi >pk2- ln 1pk >pi2
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Now, denote the left-hand side of (11-55) by Then the conditions in
(11-55) define classification regions which are separated by (hyper)
planes. This follows because is a linear combination of the components of x.
For example, when the classification region consists of all x satisfying

That is, consists of those x for which

and, simultaneously,

Assuming that and do not lie along a straight line, the equations =

and = define two intersecting hyperplanes that delin-
eate in the p-dimensional variable space. The term places the plane
closer to than if is greater than The regions and are shown in
Figure 11.10 for the case of two variables.The picture is the same for more variables
if we graph the plane that contains the three mean vectors.

The sample version of the alternative form in (11-55) is obtained by substituting
for and inserting the pooled sample covariance matrix for When 

so that exists, this sample analog becomesSpooled
-1

a
g

i = 1
 1ni - 12 Ú p,

�.SpooledMix–i

R3R1 , R2 ,p1 .p2M2M1

ln 1p2 >p12R1

ln 1p3 >p12d1 31x2ln 1p2 >p12
d1 21x2M3M1 , M2 ,
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 x -

1
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Figure 11.10 The classification
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linear minimum TPM rule
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Classification with Several Populations

Allocate x to if

(11-56)

Given the fixed training set values and is a linear function of
the components of x. Therefore, the classification regions defined by (11-56)—or,
equivalently, by (11-52)—are also bounded by hyperplanes, as in Figure 11.10.

As with the sample linear discriminant rule of (11-52), if the prior probabilities
are difficult to assess, they are frequently all taken to be equal. In this case,

for all pairs.
Because they employ estimates of population parameters, the sample classifi-

cation rules (11-48) and (11-52) may no longer be optimal. Their performance,
however, can be evaluated using Lachenbruch’s holdout procedure. If is the
number of misclassified holdout observations in the ith group, then
an estimate of the expected actual error rate, is provided by

(11-57)

Example 11.12 (Effective classification with fewer variables) In his pioneering work
on discriminant functions, Fisher [9] presented an analysis of data collected by
Anderson [1] on three species of iris flowers. (See Table 11.5, Exercise 11.27.)

Let the classes be defined as

The following four variables were measured from 50 plants of each species.

Using all the data in Table 11.5, a linear discriminant analysis produced the confusion
matrix

 X3 = petal length,  X4 = petal width

 X1 = sepal length,  X2 = sepal width

p1 : Iris setosa; p2 : Iris versicolor; p3 : Iris virginica

E
 
n1AER2 =

a
g

i = 1
 ni M
1H2

a
g

i = 1
 ni

E1AER2,
i = 1, 2, Á , g,

ni M
1H2

ln 1pi >pk2 = 0

d
 
n

k i1x2Spooled ,x–i

 Ú ln ¢ pi

pk
≤ for all i Z k

 d
 
n

k i1x2 = 1x–k - x– i2
œ

 Spooled
-1

  x -

1
2

 1x–k - x– i2
œ

 Spooled
-1

 1x–k + x– i2

pk

Predicted membership

Percent
Setosa Versicolor Virginica correct

50 0 0 100
Actual

0 48 2 96membership
0 1 49 98p3 : Virginica

p2 : Versicolor

p1 : Setosa

p3 :p2 :p1 :
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Chapter 11 Discrimination and Classification

The elements in this matrix were generated using the holdout procedure, so
(see 11-57)

The error rate, 2%, is low.
Often, it is possible to achieve effective classification with fewer variables. It is

good practice to try all the variables one at a time, two at a time, three at a time, and
so forth, to see how well they classify compared to the discriminant function, which
uses all the variables.

If we adopt the holdout estimate of the expected AER as our criterion, we find
for the data on irises:

E
 
n1AER2 =

3
150

= .02

Single variable Misclassification rate

.253

.480

.053

.040

Pairs of variables Misclassification rate

.207

.040

.040

.047

.040

.040X3 , X4

X2 , X4

X2 , X3

X1 , X4

X1 , X3

X1 , X2

X4

X3

X2

X1

We see that the single variable width does a very good job of distin-
guishing the three species of iris. Moreover, very little is gained by including more
variables. Box plots of width are shown in Figure 11.11 for the three
species of iris. It is clear from the figure that petal width separates the three groups
quite well, with, for example, the petal widths for Iris setosa much smaller than the
petal widths for Iris virginica.

Darroch and Mosimann [6] have suggested that these species of iris may be dis-
criminated on the basis of “shape” or scale-free information alone. Let 
be the sepal shape and be the petal shape. The use of the variables 
and for discrimination is explored in Exercise 11.28.

The selection of appropriate variables to use in a discriminant analysis is often
difficult.A summary such as the one in this example allows the investigator to make
reasonable and simple choices based on the ultimate criteria of how well the proce-
dure classifies its target objects. �

Our discussion has tended to emphasize the linear discriminant rule of (11-52)
or (11-56), and many commercial computer programs are based upon it. Although
the linear discriminant rule has a simple structure, you must remember that it
was derived under the rather strong assumptions of multivariate normality and
equal covariances. Before implementing a linear classification rule, these tentative

Y2

Y1Y2 = X3 >X4

Y1 = X1 >X2

X4 = petal

X4 = petal
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Fisher’s Method for Discriminating among Several Populations

assumptions should be checked in the order multivariate normality and then equal-
ity of covariances. If one or both of these assumptions is violated, improved classifi-
cation may be possible if the data are first suitably transformed.

The quadratic rules are an alternative to classification with linear discriminant
functions. They are appropriate if normality appears to hold, but the assumption of
equal covariance matrices is seriously violated. However, the assumption of normal-
ity seems to be more critical for quadratic rules than linear rules. If doubt exists as to
the appropriateness of a linear or quadratic rule, both rules can be constructed and
their error rates examined using Lachenbruch’s holdout procedure.

11.6 Fisher’s Method for Discriminating 
among Several Populations

Fisher also proposed an extension of his discriminant method, discussed in 
Section 11.3, to several populations. The motivation behind the Fisher discriminant
analysis is the need to obtain a reasonable representation of the populations that in-
volves only a few linear combinations of the observations, such as and 
His approach has several advantages when one is interested in separating several
populations for (1) visual inspection or (2) graphical descriptive purposes. It allows
for the following:

1. Convenient representations of the g populations that reduce the dimension
from a very large number of characteristics to a relatively few linear combina-
tions. Of course, some information—needed for optimal classification—may be
lost, unless the population means lie completely in the lower dimensional space
selected.

aœ

3 x.aœ

2 x,aœ

1 x,

0.0

0.5

1.0

1.5

2.0

2.5

π2 π1 π3

**

Pe
ta

l w
id

th

Group

Figure 11.11 Box plots of petal width for the three species of iris.
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2. Plotting of the means of the first two or three linear combinations (discriminants).
This helps display the relationships and possible groupings of the populations.

3. Scatter plots of the sample values of the first two discriminants, which can indi-
cate outliers or other abnormalities in the data.

The primary purpose of Fisher’s discriminant analysis is to separate populations. It
can, however, also be used to classify, and we shall indicate this use. It is not neces-
sary to assume that the g populations are multivariate normal. However, we do
assume that the population covariance matrices are equal and of full rank.11

That is, =

Let denote the mean vector of the combined populations and the between
groups sums of cross products, so that

(11-58)

We consider the linear combination

which has expected value

and variance

Consequently, the expected value changes as the population from which
X is selected changes. We first define the overall mean

and form the ratio

or

(11-59)
a
g

i = 1
 1mi Y - m– Y2

2

sY
2 =

a¿  BM  a

a¿  �a

 =

a¿  aa
g

i = 1
 1Mi - M– 2 1Mi - M– 2œb  a

a¿  �a

 

a
sum of squared distances from 

populations to overall mean of Y
b

1variance of Y2
=

a
g

i = 1
 1mi Y - m– Y2

2

sY
2 =

a
g

i = 1
 1a¿  Mi - a¿  M– 2

2

a¿  �a

 = a¿  M–

 m– Y =

1
g

 a
g

i = 1
 mi Y =

1
g

 a
g

i = 1
 a¿  Mi = a¿  a

1
g

 a
g

i = 1
 Mib

mi Y = a¿  Mi

 Var (Y) = a¿ Cov 1X2a = a¿  �a  for all populations

 E1Y2 = a¿  E1X |pi2 = a¿  Mi    for population pi

Y = a¿  X

BM = a
g

i = 1
 1Mi - M– 2 1Mi - M– 2œ where M– =

1
g

 a
g

i = 1
 Mi

BMM–
�g = �.�1 = �2 =

Á

p * p

11If not, we let be the eigenvectors of corresponding to nonzero eigenvalues
Then we replace X by which has a full rank covariance matrix P¿  �P.P¿  X[l1 , Á , lq].

�P = 7e1 , Á , eq8
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Fisher’s Method for Discriminating among Several Populations

The ratio in (11-59) measures the variability between the groups of Y-values relative
to the common variability within groups.We can then select a to maximize this ratio.

Ordinarily, and the are unavailable, but we have a training set consisting of
correctly classified observations. Suppose the training set consists of a random sam-
ple of size from population Denote the data set, from
population by and its jth row by After first constructing the sample mean
vectors

and the covariance matrices we define the “overall average”
vector

which is the vector average of the individual sample averages.
Next, analagous to we define the sample between groups matrix B. Let

(11-60)

Also, an estimate of is based on the sample within groups matrix

(11-61)

Consequently, = is the estimate of Be-
fore presenting the sample discriminants, we note that W is the constant

times so the same that maximizes
also maximizes Moreover, we can present the optimiz-

ing in the more customary form as eigenvectors of because if
then = ln1n1 + n2 +

Á
+ ng - g2eN .Spooled

-1
  BeNW-1

 BeN = lneN
W-1

 B,eN iaN
aN ¿  BaN>aN ¿  WaN .aN ¿  BaN>aN ¿  Spooled  aN

aNSpooled ,1n1 + n2 +
Á

+ ng - g2

�.SpooledW>1n1 + n2 +
Á

+ ng - g2

W = a
g

i = 1
 1ni - 12 Si = a

g

i = 1
 a

ni

j = 1
 1xi j - x– i2 1xi j - x– i2

œ

�

B = a
g

i = 1
 1x– i - x–2 1x– i - x–2œ

BM
p * 1

x– =

1
g

 a
g

i = 1
 x– i

i = 1, 2, Á , g,Si ,

x– i =

1
ni

 a

ni

j = 1
 xi j

xœ

i j .Xipi ,
ni * pi = 1, 2, Á , g.pi ,ni

Mi�

Fisher’s Sample Linear Discriminants

Let denote the nonzero eigenvalues of
and be the corresponding eigenvectors (scaled so that

). Then the vector of coefficients that maximizes the ratio

(11-62)

is given by The linear combination is, called the sample first dis-
criminant.The choice produces the sample second discriminant, and
continuing, we obtain the sample kth discriminant, k … s.aN œ

k x = eN œ

k x,
aN œ

2 x,aN 2 = eN2

aN œ

1 xan1 = eN1.

aN ¿  BaN

aN ¿  WaN
=

aN ¿  aa

g

i = 1
 1x– i - x–2 1x– i - x–2œb  aN

aN ¿  ca

g

i = 1
 a

ni

j = 1
 1xi j - x– i2 1xi j - x– i2

œ

d  aN

aNeN ¿  Spooled  eN = 1
eN1 , Á , eN sW-1

 B
s … min 1g - 1, p2ln1 , ln2 , Á , lns 7 0
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Exercise 11.21 outlines the derivation of the Fisher discriminants.The discriminants
will not have zero covariance for each random sample Rather, the condition

(11-63)

will be satisfied. The use of is appropriate because we tentatively assumed
that the g population covariance matrices were equal.

Example 11.13 (Calculating Fisher’s sample discriminants for three populations)
Consider the observations on variables from populations given in
Example 11.10. Assuming that the populations have a common covariance matrix

let us obtain the Fisher discriminants. The data are

In Example 11.10, we found that

so

To solve for the = nonzero eigenvalues of 
we must solve

or

Using the quadratic formula, we find that and The nor-
malized eigenvectors and are obtained by solving

1W-1
 B - ln i  I2 aN i = 0  i = 1, 2

aN 2aN 1

ln2 = .3015.ln1 = .9556

1.3571 - l2 1.9000 - l2 - 1.46672 1.07142 = l2
- 1.2571l + .2881 = 0

ƒ  W-1
 B - lI ƒ = `  B .3571 - l .4667

.0714 .9000 - l
R  ` = 0

W-1
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1
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 B24 2
2 6
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Fisher’s Method for Discriminating among Several Populations

and scaling the results such that For example, the solution of

is, after the normalization 

Similarly,

The two discriminants are

�

Example 11.14 (Fisher’s discriminants for the crude-oil data) Gerrild and Lantz [13]
collected crude-oil samples from sandstone in the Elk Hills, California, petroleum
reserve. These crude oils can be assigned to one of the three stratigraphic units
(populations)

Wilhelm sandstone

Sub-Mulinia sandstone

Upper sandstone

on the basis of their chemistry. For illustrative purposes, we consider only the five
variables:

The first three variables are trace elements, and the last two are determined from
a segment of the curve produced by a gas chromatograph chemical analysis. Table
11.7 (see Exercise 11.30) gives the values of the five original variables (vanadium,
iron, beryllium, saturated hydrocarbons, and aromatic hydrocarbons) for 56 cases
whose population assignment was certain.

A computer calculation yields the summary statistics

x–1 = E 3.229
6.587
.303
.150

11.540

U  ,  x–2 = E4.445
5.667
.344
.157

5.484

U  ,  x–3 = E7.226
4.634
.598
.223

5.768

U  ,  x– = E6.180
5.081
.511
.201

6.434

U

 X5 = aromatic hydrocarbons 1in percent area2

 X4 = 1>7saturated hydrocarbons 1in percent area28 X3 = 2beryllium 1in percent ash2

 X2 = 2iron 1in percent ash2

 X1 = vanadium 1in percent ash2

p3 :

p2 :

p1 :

 yn2 = aN œ

2 x = 7.938 - .1128 Bx1

x2
R = .938x1 - .112x2

 yn1 = aN œ

1 x = 7.386 .4958 Bx1

x2
R = .386x1 + .495x2

aN œ

2 = 7.938 - .1128
aN œ

1 = 7.386 .4958aN œ

1 Spooled  aN 1 = 1,

1W-1
 B - ln1 I2 aN 1 = B .3571 - .9556 .4667

.0714 .9000 - .9556
R Ban1 1

an1 2
R = B0

0
RaN œ

i  Spooled  aN i = 1.
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and

There are at most = positive eigenvalues of
and they are 4.354 and .559. The centered Fisher linear discriminants are

The separation of the three group means is fully explained in the two-
dimensional “discriminant space.”The group means and the scatter of the individual
observations in the discriminant coordinate system are shown in Figure 11.12. The
separation is quite good. �

 -  24.4531x4 - .2012 - .3781x5 - 6.4342

 yn2 = .1691x1 - 6.1802 - .2451x2 - 5.0812 - 2.0461x3 - .5112

 +  11.8091x4 - .2012 - .2351x5 - 6.4342

 yn1 = .3121x1 - 6.1802 - .7101x2 - 5.0812 + 2.7641x3 - .5112

W-1
 B,

min 12, 52 = 2s = min 1g - 1, p2

 = W = E187.575     

1.957 41.789    

-4.031 2.128 3.580   

1.092 - .143 - .284 .077  

79.672 -28.243 2.559 - .996 338.023

U
 1n1 + n2 + n3 - 32 Spooled = 138 + 11 + 7 - 32 Spooled

�2
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0
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y2
ˆ

y1
ˆ

Figure 11.12 Crude-oil samples in discriminant space.
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Example 11.15 (Plotting sports data in two-dimensional discriminant space) Investi-
gators interested in sports psychology administered the Minnesota Multiphasic
Personality Inventory (MMPI) to 670 letter winners at the University of Wisconsin
in Madison. The sports involved and the coefficients in the two discriminant
functions are given in Table 11.3.

A plot of the group means using the first two discriminant scores is shown in
Figure 11.13. Here the separation on the basis of the MMPI scores is not good,
although a test for the equality of means is significant at the 5% level. (This is due to
the large sample sizes.)

While the discriminant coefficients suggest that the first discriminant is most
closely related to the L and Pa scales, and the second discriminant is most closely
associated with the D and Pt scales, we will give the interpretation provided by the
investigators.

The first discriminant, which accounted for 34.4% of the common variance, was
highly correlated with the Mf scale The second discriminant, which
accounted for an additional 18.3% of the variance, was most highly related to scores
on the Sc, F, and D scales ( .54, and .50, respectively). The investigators
suggest that the first discriminant best represents an interest dimension; the second
discriminant reflects psychological adjustment.

Ideally, the standardized discriminant function coefficients should be examined
to assess the importance of a variable in the presence of other variables. (See [29].)
Correlation coefficients indicate only how each variable by itself distinguishes the
groups, ignoring the contributions of the other variables. Unfortunately, in this case,
the standardized discriminant coefficients were unavailable.

In general, plots should also be made of other pairs of the first few discrimi-
nants. In addition, scatter plots of the discriminant scores for pairs of discriminants
can be made for each sport. Under the assumption of multivariate normality, the

r¿s = .66,

1r = - .782.

Table 11.3

MMPI First Second
Sport Sample size Scale discriminant discriminant

QE .055
Football 158 L .046
Basketball 42 F
Baseball 79 K .053
Crew 61 Hs .077
Fencing 50 D .049 .183
Golf 28 Hy .031
Gymnastics 26 Pd .001
Hockey 28 Mf
Swimming 51 Pa .189 .088
Tennis 31 Pt .025
Track 52 Sc .088
Wrestling 64 Ma .053

Si .041 .016

Source: W. Morgan and R. W. Johnson.

- .103
- .046

- .188

- .076- .074
- .069

- .028

- .076
- .017
- .099- .047

- .194
- .098
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Chapter 11 Discrimination and Classification

unit ellipse (circle) centered at the discriminant mean vector should contain
approximately a proportion

of the points when two discriminants are plotted. �

Using Fisher’s Discriminants to Classify Objects

Fisher’s discriminants were derived for the purpose of obtaining a low-dimensional
representation of the data that separates the populations as much as possible. Al-
though they were derived from considerations of separation, the discriminants also
provide the basis for a classification rule. We first explain the connection in terms of
the population discriminants 

Setting

(11-64)

we conclude that

under population and covariance matrix I, for all populations. (See Exercise 11.21.)pi

Y = DY1

Y2

o

Ys

T   has mean vector Mi Y = Cmi Y1

o

mi Ys

S = Caœ
1 Mi

o

aœ

s Mi
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Figure 11.13 The discriminant means for each sport.y– ¿ = 7y–1 , y–28
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Because the components of Y have unit variances and zero covariances, the
appropriate measure of squared distance from to is

A reasonable classification rule is one that assigns y to population if the square
of the distance from y to is smaller than the square of the distance from y to 
for 

If only r of the discriminants are used for allocation, the rule is 

Allocate x to if

(11-65)

Before relating this classification procedure to those of Section 11.5, we look
more closely at the restriction on the number of discriminants. From Exercise 11.21,

Now, is so Further, the g vectors

(11-66)

satisfy ± ± = That is, the first
difference can be written as a linear combination of the last differ-
ences. Linear combinations of the g vectors in (11-66) determine a hyperplane of di-
mension Taking any vector e perpendicular to every and hence
the hyperplane, gives

so

There are orthogonal eigenvectors corresponding to the zero eigenvalue.This
implies that there are q or fewer nonzero eigenvalues. Since it is always true that

the number of nonzero eigenvalues s must satisfy 
Thus, there is no loss of information for discrimination by plotting in two

dimensions if the following conditions hold.
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We now present an important relation between the classification rule (11-65)
and the “normal theory” discriminant scores [see (11-49)],

or, equivalently,

obtained by adding the same constant to each 

Result 11.6. Let where and is an eigenvector of 
Then

If = is constant for all popu-

lations so only the first s discriminants or con-

tribute to the classification.

Also, if the prior probabilities are such that = the rule
(11-65) with is equivalent to the population version of the minimum TPM
rule (11-52).

Proof. The squared distance =

= where is the orthogonal
matrix whose columns are eigenvectors of (See Exercise 11.21.)

Since or 

and

Next, each is an (unscaled) eigenvector of with eigen-
value zero.As shown in the discussion following (11-66), is perpendicular to every
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condition = implies that = so

is constant for all Therefore, only the first s dis-

criminants need to be used for classification. �

We now state the classification rule based on the first sample discriminants.r … s

yj

i = 1, 2, Á , g.a
p

j = s + 1
 1yj - mi Yj

22

yj - mi Yj
yj - mk Yj

mk Yj
- mi Yj

0 = aœ

j1Mk - Mi2

Fisher’s Classification Procedure Based 
on Sample Discriminants

Allocate x to if

(11-67)

where is defined in (11-62), and .r … sy–k j = aN œ

j  x–kaN j

a
r

j = 1
 1ynj - y–k j2

2
= a

r

j = 1
 7aN œ

j 1x - x–k282 … a
r

j = 1
 7aN œ

j 1x - x– i282  for all i Z k

pk

When the prior probabilities are such that = and 
rule (11-67) is equivalent to rule (11-52), which is based on the largest linear dis-
criminant score. In addition, if discriminants are used for classification, there 

is a loss of squared distance, or score, of for each population 

where is the part useful for classification.

Example 11.16 (Classifying a new observation with Fisher’s discriminants) Let us
use the Fisher discriminants

from Example 11.13 to classify the new observation in accordance with
(11-67).

Inserting = we have

Moreover, so that (see Example 11.13)

 y–1 2 = aN œ

2  x– 1 = 7.938 - .1128 B -1
3
R = -1.27

 y–1 1 = aN œ

1  x–1 = 7.386 .4958 B -1
3
R = 1.10

yqk j = aN œ

j xqk ,

 yn2 = .938x0 1 - .112x0 2 = .938 112 - .112 132 = .60

 yn1 = .386x0 1 + .495x0 2 = .386 112 + .495 132 = 1.87

71 38,xœ

0 = 7x0 1 , x0 28 xœ

0 = 71 38 yn2 = aN œ

2  x = .938x1 - .112x2

 yn1 = aN œ

1  x = .386x1 + .495x2

a
s

j = r + 1
 7aN œ

j1x - x– i282
pia

p

j = r + 1
 7aN œ

j1x - x–i282r 6 s

r = s,pg = 1>gp1 = p2 =
Á
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Similarly,

Finally, the smallest value of

for must be identified. Using the preceding numbers gives

Since the minimum of occurs when we allocate to

population The situation, in terms of the classifi0ers is illustrated schematical-

ly in Figure 11.14. �

ynj ,p2 .

x0k = 2,a
2

j = 1
 1ynj - yqk j2

2

 a
2

j = 1
 1ynj - y–3 j2

2
= 11.87 + .9922 + 1.60 - .2222 = 8.32

 a
2

j = 1
 1ynj - y–2 j2

2
= 11.87 - 2.3722 + 1.60 - .4922 = .26

 a
2

j = 1
 1ynj - y–1 j2

2
= 11.87 - 1.1022 + 1.60 + 1.2722 = 4.09

k = 1, 2, 3,

a
2

j = 1
 1ynj - y–k j2

2
= a

2

j = 1
 7aN œ

j 1x - x–k282
 y–3 2 = aN œ

2  x–3 = .22

 y–3 1 = aN œ

1  x–3 = - .99

 y–2 2 = aN œ

2  x–2 = .49

 y–2 1 = aN œ

1  x–2 = 2.37

�1

�1 1 2 3

1

2

2

y1

y3

y2
ŷ

Smallest distance

1

Figure 11.14
The points 

and in the
classification plane.

y– œ

3 = 7y–3 1 , y–3 28y– œ

2 = 7y–2 1 , y–2 28,y– œ

1 = 7y–1 1 , y–1 28,yn ¿ = 7yn1 , yn28,
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Fisher’s Method for Discriminating among Several Populations

Comment. When two linear discriminant functions are used for classification,
observations are assigned to populations based on Euclidean distances in the two-
dimensional discriminant space.

Up to this point, we have not shown why the first few discriminants are more
important than the last few. Their relative importance becomes apparent from their
contribution to a numerical measure of spread of the populations. Consider the sep-
aratory measure

(11-68)

where

and is the squared statistical distance from the ith 
population mean to the centroid It can be shown (see Exercise 11.22) that

± where the are the nonzero eigenvalues

of (or ) and are the zero eigenvalues.

The separation given by can be reproduced in terms of discriminant means.
The first discriminant, has means and the squared 

distance of the ’s from the central value is 

(See Exercise 11.22.) Since can also be written as

it follows that the first discriminant makes the largest single contribution, to the
separative measure In general, the rth discriminant, contributes

to If the next eigenvalues (recall that = = ) are
such that ± is small compared to ± then the
last discriminants can be neglected without appreciably decreasing
the amount of separation.12

Not much is known about the efficacy of the allocation rule (11-67). Some insight
is provided by computer-generated sampling experiments, and Lachenbruch [23]
summarizes its performance in particular cases.The development of the population re-
sult in (11-65) required a common covariance matrix If this is essentially true and
the samples are reasonably large, rule (11-67) should perform fairly well. In any event,
its performance can be checked by computing estimated error rates. Specifically,
Lachenbruch’s estimate of the expected actual error rate given by (11-57) should be
calculated.

�.

Yr + 2 , Á , YsYr + 1 ,
Á

+ lr ,l1 + l2
Á

+ lslr + 1 + lr + 2

lp = 0ls + 2 =
Áls + 1s - r¢S

2 .lr

Yr = eœ

r �-1>2
 X,¢S

2 .
l1 ,
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g
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 1mi Y1

- m– Y1
2

2
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g

i = 1
 1mi Y2

- m– Y2
2

2
+

Á
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 1mi Yp
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2

2
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g
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 1Mi Y - M– Y2

œ

 1Mi Y - M– Y2

 ¢S
2

= l1 + l2 +
Á
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¢S
2

l1 .m– Y1
= eœ

1 �-1>2
 M–mi Y1a

g
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 1mi Y1

- m– Y1
2

2

mi Y1
= eœ

1 �-1>2
 MiY1 = eœ

1 �-1>2
 X

¢S
2
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Á
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= l1 + l2

M– .Mi
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Mq =

1
g

 a
g

i = 1
 Mi

¢S
2

= a
g

i = 1
 1Mi - M– 2œ  �-11Mi - M– 2

12See [18] for further optimal dimension-reducing properties.
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Chapter 11 Discrimination and Classification

11.7 Logistic Regression and Classification

Introduction

The classification functions already discussed are based on quantitative variables.
Here we discuss an approach to classification where some or all of the variables are
qualitative. This approach is called logistic regression. In its simplest setting, the
response variable Y is restricted to two values. For example, Y may be recorded as
“male” or “female” or “employed” and “not employed.”

Even though the response may be a two outcome qualitative variable, we can
always code the two cases as 0 and 1. For instance, we can take male � 0 and 
female � 1. Then the probability p of 1 is a parameter of interest. It represents the
proportion in the population who are coded 1. The mean of the distribution of 0’s
and 1’s is also p since

The proportion of 0’s is which is sometimes denoted as q.
The variance of the distribution is

It is clear the variance is not constant. For , it equals while for
, it is . The variance approaches 0 as p approaches either 0 or 1.

Let the response Y be either 0 or 1. If we were to model the probability of 1 with
a single predictor linear model, we would write

and then add an error term But there are serious drawbacks to this model.

• The predicted values of the response Y could become greater than 1 or less than
0 because the linear expression for its expected value is unbounded.

• One of the assumptions of a regression analysis is that the variance of Y is con-
stant across all values of the predictor variable Z. We have shown this is not the
case. Of course, weighted least squares might improve the situation.

We need another approach to introduce predictor variables or covariates Z into
the model (see [26]). Throughout, if the covariates are not fixed by the investigator,
the approach is to make the models for p(z) conditional on the observed values
of the covariates .

The Logit Model

Instead of modeling the probability p directly with a linear model, we first consider
the odds ratio

which is the ratio of the probability of 1 to the probability of 0. Note, unlike proba-
bility, the odds ratio can be greater than 1. If a proportion .8 of persons will get

odds =

p

1 - p

Z = z

e.

p = E1Y ƒ  z2 = b0 + b1z

.8 * .2 = .16p = .8
.5 * .5 = .25p = .5

variance = 02
* 11 - p2 + 12

* p - p2
= p11 - p2

1 - p

mean = 0 * 11 - p2 + 1 * p = p
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Logistic Regression and Classification

through customs without their luggage being checked, then but the odds of
not getting checked is or 4 to 1 of not being checked. There is a lack of
symmetry here since the odds of being checked are . Taking the natural
logarithms, we find that and are exact opposites.

Consider the natural log function of the odds ratio that is displayed in
Figure 11.15. When the odds x are 1, so outcomes 0 and 1 are equally likely, the nat-
ural log of x is zero. When the odds x are greater than one, the natural log increases
slowly as x increases. However, when the odds x are less than one, the natural log de-
creases rapidly as x decreases toward zero.

In logistic regression for a binary variable, we model the natural log of the odds
ratio, which is called logit(p). Thus

(11-69)

The logit is a function of the probability p. In the simplest model, we assume that the
logit graphs as a straight line in the predictor variable Z so

(11-70)

In other words, the log odds are linear in the predictor variable.
Because it is easier for most people to think in terms of probabilities, we can

convert from the logit or log odds to the probability p. By first exponentiating

we obtain

u1z2 =

p1z2

1 - p1z2
= exp1b0 + b1z2

ln ¢ p

1 - p
≤ = b0 + b1z

logit1p2 = ln1odds2 = ln ¢ p

1 - p
≤ = b0 + b1z

logit1p2 = ln1odds2 = ln ¢ p

1 - p
≤

ln11/42 = -1.386ln142 = 1.386
.2/.8 = 1/4

.8/.2 = 4
p = .8

2

�3

�2

�1

0

1

2

3

4 6 8 10

odds x

ln
(o

dd
s)

Figure 11.15 Natural log of
odds ratio.
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where is the base of the natural logarithm. Next solving for ,
we obtain

(11-71)

which describes a logistic curve.The relation between p and the predictor z is not lin-
ear but has an S-shaped graph as illustrated in Figure 11.16 for the case and

. The value of gives the value for p when .
The parameter in the logistic curve determines how quickly p changes with z

but its interpretation is not as simple as in ordinary linear regression because the re-
lation is not linear, either in z or . However, we can exploit the linear relation for
log odds.

To summarize, the logistic curve can be written as

or

Logistic Regression Analysis

Consider the model with several predictor variables. Let ( , , . . . , ) be the val-
ues of the r predictors for the j-th observation. It is customary, as in normal theory
linear regression, to set the first entry equal to 1 and Con-
ditional on these values, we assume that the observation is Bernoulli with success
probability depending on the values of the covariates. Then

for 

so

and Var1Yj2 = p1zj211 - p1zj22E1Yj2 = p1zj2

yj = 0, 1P1Yj = yj2 = pyj1zj211 - p1zj22
1 - yj

p1zj2,
Yj

zj = 71, zj1 , zj2 , . . . , zjr8¿.zjrzj2zj1

p1z2 =

1
1 + exp1-b0 - b1z2

p1z2 =

exp1b0 + b1z2

1 + exp1b0 + b1z2

b1

b1

z = 0exp1b02/11 + exp(b022b0b1 = 2
b0 = -1

p1z2 =

exp1b0 + b1z2

1 + exp1b0 + b1z2

u1z2exp = e = 2.718

0.0 0.5 1.0
z

p

1.5 2.0

0.8

0.95
1.0

0.6

0.4

0.2
0.27

Figure 11.16 Logistic function
with and b1 = 2.b0 = - 1
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It is not the mean that follows a linear model but the natural log of the odds ratio. In
particular, we assume the model

(11-72)

where 

Maximum Likelihood Estimation. Estimates of the can be obtained by the
method of maximum likelihood. The likelihood L is given by the joint probability
distribution evaluated at the observed counts Hence

(11-73)

The values of the parameters that maximize the likelihood cannot be expressed
in a nice closed form solution as in the normal theory linear models case. Instead
they must be determined numerically by starting with an initial guess and iterating
to the maximum of the likelihood function. Technically, this procedure is called an
iteratively re-weighted least squares method (see [26]).

We denote the numerically obtained values of the maximum likelihood esti-
mates by the vector 

Confidence Intervals for Parameters. When the sample size is large, is approxi-
mately normal with mean the prevailing values of the parameters and approxi-
mate covariance matrix

(11-74)

The square roots of the diagonal elements of this matrix are the large sample esti-
mated standard deviations or standard errors (SE) of the estimators 
respectively. The large sample 95% confidence interval for is

(11-75)

The confidence intervals can be used to judge the significance of the individual
terms in the model for the logit. Large sample confidence intervals for the logit and
for the population proportion can be constructed as well. See [17] for details.

Likelihood Ratio Tests. For the model with r predictor variables plus the constant,
we denote the maximized likelihood by

Lmax = L1bn 0 , bn 1 , . . . , bn r2

p1zj2

bn k ; 1.96 SE1bn k2  k = 0, 1, . . . , r

bk

bn 0 , bn 1 , . . . , bn r

Cov1Bn 2 L Ban
j = 1

pn1z j211 - pn1z j22z j z j¿R-1

B,
Bn

Bn .

=

q
n
j = 1e

yj1b0 + b1zj1 +  . . . + brzjr2

q
n
j = 111 + eb0 + b1zj1 +  . . . + brzjr2

L1b0 , b1 , . . . , br2 = q
n

j = 1
pyj1zj211 - p1zj22

1 - yj

yj.

b’s

B = 7b0 , b1 , . . . , br8¿.
ln ¢ p1z2

1 - p1z2
≤ = b0 + b1z1 +

Á
+ brzr = b ¿zj

̂
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If the null hypothesis is numerical calculations again give the maximum
likelihood estimate of the reduced model and, in turn, the maximized value of the
likelihood

When doing logistic regression, it is common to test using minus twice the log-
likelihood ratio

(11-76)

which, in this context, is called the deviance. It is approximately distributed as chi-
square with 1 degree of freedom when the reduced model has one fewer predictor
variables. is rejected for a large value of the deviance.

An alternative test for the significance of an individual term in the model for the
logit is due to Wald (see [17]). The Wald test of uses the test statistic 

or its chi-square version with 1 degree of freedom. The likeli-
hood ratio test is preferable to the Wald test as the level of this test is typically clos-
er to the nominal 

Generally, if the null hypothesis specifies a subset of, say, m parameters are si-
multaneously 0, the deviance is constructed for the implied reduced model and re-
ferred to a chi-squared distribution with m degrees of freedom.

When working with individual binary observations the residuals

each can assume only two possible values and are not particularly useful. It is better
if they can be grouped into reasonable sets and a total residual calculated for each
set. If there are, say, t residuals in each group, sum these residuals and then divide by

to help keep the variances compatible.
We give additional details on logistic regression and model checking following

and application to classification.

Classification
Let the response variable Y be 1 if the observational unit belongs to population 1
and 0 if it belongs to population 2. (The choice of 1 and 0 for response outcomes is
arbitrary but convenient. In Example 11.17, we use 1 and 2 as outcomes.) Once a
logistic regression function has been established, and using training sets for each of
the two populations, we can proceed to classify. Priors and costs are difficult to
incorporate into the analysis, so the classification rule becomes

Assign z to population 1 if the estimated odds ratio is greater 
than 1 or

pn1z2

1 - pn1z2
= exp1bn 0 + bn 1z1 +

Á
+ bn rzr2 7 1

2 t 

Yj - pN 1zj22pN 1zj211 - pN 1zj2

Yi ,

a.

Z2Z = bn k/SE1bn k2

H0 : bk = 0

H0

-2 ln ¢Lmax, Reduced

Lmax
≤

H0

Lmax, Reduced = L1bn 0 , bn 1 , . . . , bn k - 1 , bn k + 1 , . . . , bn r2

H0 : bk = 0,

638



Logistic Regression and Classification

Equivalently, we have the simple linear discriminant rule

Assign z to population 1 if the linear discriminant is greater
than 0 or

(11-77)

Example 11.17 (Logistic regression with the salmon data) We introduced the salmon
data in Example 11.8 (see Table 11.2). In Example 11.8, we ignored the gender of the
salmon when considering the problem of classifying salmon as Alaskan or Canadian
based on growth ring measurements. Perhaps better classification is possible if gen-
der is included in the analysis. Panel 11.2 contains the SAS output from a logistic re-
gression analysis of the salmon data. Here the response Y is 1 if Alaskan salmon and
2 if Canadian salmon.The predictor variables (covariates) are gender (1 if female, 2 if
male), freshwater growth and marine growth. From the SAS output under Testing
the Global Null Hypothesis, the likelihood ratio test result (see 11–76) with the re-
duced model containing only a term) is significant at the At least
one covariate is required in the linear model for the logit. Examining the significance
of individual terms under the heading Analysis of Maximum Likelihood Estimates,
we see that the Wald test suggests gender is not significant On the
other hand, freshwater growth and marine are significant covariates. Gender can be
dropped from the model. It is not a useful variable for classification. The logistic re-
gression model can be re-estimated without gender and the resulting function used
to classify the salmon as Alaskan or Canadian using rule (11–77).

Turning to the classification problem, but retaining gender, we assign salmon j
to population 1, Alaskan, if the linear classifier

The observations that are misclassified are

B ¿z = 3.5054 + .2816 gender + .1264 freshwater + .0486 marine Ú 0

1p-value = .73562.

6 .0001 level.b0

ln 
pn  1z2

1 - p 
n1z2

= bn 0 + bn 1 

z1 +
Á

+ bn r 

zr 7 0

Predicted membership

Alaskan Canadian

Alaskan 46 4
Actual

Canadian 3 47p1 :

p1 :

p1 :p1 :

From these misclassifications, the confusion matrix is

Row Pop Gender Freshwater Marine Linear Classifier

2 1 1 131 355 3.093
12 1 2 123 372 1.537
13 1 1 123 372 1.255
30 1 2 118 381 0.467
51 2 1 129 420
68 2 2 136 438
71 2 2 90 385 -3.266

-0.028
-0.319
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and the apparent error rate, expressed as a percentage is

�

When performing a logistic classification, it would be preferable to have an estimate
of the misclassification probabilities using the jackknife (holdout) approach but this
is not currently available in the major statistical software packages.

We could have continued the analysis in Example 11.17 by dropping gender and
using just the freshwater and marine growth measurements. However, when normal
distributions with equal covariance matrices prevail, logistic classification can be
quite inefficient compared to the normal theory linear classifier (see [7]).

Logistic Regression with Binomial Responses

We now consider a slightly more general case where several runs are made at the
same values of the covariates and there are a total of m different sets where these
predictor variables are constant. When independent trials are conducted with 
the predictor variables the response is modeled as a binomial distribution 
with probability

Because the are assumed to be independent, the likelihood is the product

(11-78)

where the probabilities follow the logit model (11-72)p1zj2

L1b0 

, b1 

, . . . , br2 = q
m

j = 1
 a

nj

yj
bpy

j1zj211 - p 1zj22
nj - yj

Yj

p1zj2 = P1Success |  zj2.
Yjzj,
nj

zj

APER =

4 + 3
50 + 50

* 100 = 7%

title ‘Logistic Regression and Discrimination’;
data salmon;
infile ‘T11-2.dat’;
input country gender freshwater marine;

PROGRAM COMMANDS

proc logistic desc;
model country = gender freshwater marine / expb;

OUTPUT

Logistic Regression and Discrimination

The LOGISTIC procedure

Model Information

Model binary logit

Response Profile

Ordered Total
Value country Frequency

1 2 50
2 1 50

(continues on next page)

PANEL 11.2 SAS ANALYSIS FOR SALMON DATA USING PROC LOGISTIC.

¯
˚

˘
˚

˙
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The maximum likelihood estimates must be obtained numerically because
there is no closed form expression for their computation.When the total sample size
is large, the approximate covariance matrix is

(11-79)

and the i-th diagonal element is an estimate of the variance of It’s square root
is an estimate of the large sample standard error 

It can also be shown that a large sample estimate of the variance of the proba-
bility is given by

Consideration of the interval plus and minus two estimated standard deviations
from may suggest observations that are difficult to classify.pn1z j2

Var1pn1z k22 L 1pn1z k211 - pn1z k22
2 z j¿Bam

j = 1
njpn1z j211 - pn1zj22z j z j¿R-1

z k

pn(zj)

SE (bn i + 1).
bn i + 1.

Cov1Bn 2 L Bam
j = 1

nj pn 1z j211 - pn1z j22 z j z j¿R-1

Cov1B2n

Bn

Probability modeled is country = 2.
Model Fit Statistics

Intercept 
Intercept and

Criterion Only Covariates
AIC 140.629 46.674
SC 143.235 57.094

-2 Log L 138.629 38.674

Testing Global Null Hypothesis: BETA = 0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 99.9557 3 <.0001

Wald 19.4435 3 0.0002

The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSp Exp (Est)

Intercept 1 3.5054 6.3935 0.3006 0.5835 33.293
gender 1 0.2816 0.8338 0.1140 0.7356 1.325
freshwater 1 0.1264 0.0357 12.5423 0.0004 1.135
marine 1 –0.0486 0.0146 11.1460 0.0008 0.953

PANEL 11.2 (continued)

̂

̂

̂
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Model Checking. Once any model is fit to the data, it is good practice to investigate
the adequacy of the fit. The following questions must be addressed.

• Is there any systematic departure from the fitted logistic model?

• Are there any observations that are unusual in that they don’t fit the overall
pattern of the data (outliers)?

• Are there any observations that lead to important changes in the statistical
analysis when they are included or excluded (high influence)?

If there is no parametric structure to the single trial probabilities 
, each would be estimated using the observed number of successes

(1’s) in trials. Under this nonparametric model, or saturated model, the contri-
bution to the likelihood for the j-th case is

which is maximized by the choices Here 
The resulting value for minus twice the maximized nonparametric (NP) likelihood
is

(11-80)

The last term on the right hand side of (11-80) is common to all models.
We also define a deviance between the nonparametric model and a fitted model

having a constant and r�1 predicators as minus twice the log-likelihood ratio or

(11-81)

where is the fitted number of successes. This is the specific deviance
quantity that plays a role similar to that played by the residual (error) sum of
squares in the linear models setting.

For large sample sizes, has approximately a chi square distribution with f
degrees of freedom equal to the number of observations, m, minus the number of
parameters b estimated.

Notice the deviance for the full model, , and the deviance for a reduced

model, , lead to a contribution for the extra predictor terms

(11-82)

This difference is approximately with degrees of freedom 
A large value for the difference implies the full model is required.

When m is large, there are too many probabilities to estimate under the non-
parametic model and the chi-square approximation cannot be established by exist-
ing methods of proof. It is better to rely on likelihood ratio tests of logistic models
where a few terms are dropped.

df = dfRe duced - dfFull.x2

G2
Re duced - G2

Full = -2 ln ¢Lmax, Re duced

Lmax
≤G2

Re duced

G2
Full

G2

yNj = nj p1n z j2

G2
= 2a

m

j = 1
 cyj ln a

yj

yNj
b + 1nj - yj2 ln a

nj - yj

nj - yNj
b d

-2 ln Lmax, NP = -2a
m

j = 1
 Byj ln ¢ yj

nj
≤ + 1nj - yj2 ln ¢1 -

yj

nj
≤ R + 2 ln ¢qm

j = 1
¢nj

yj
≤ ≤

m = �nj.pn1z j2 = yj /nj for j = 1, 2, . . . , n.

¢nj

yj
≤pyj 1z j211 - p1z j22

nj - yj

niyi

P 1Success |  z j2

p1z j2 =

642



Logistic Regression and Classification

Residuals and Goodness-of-Fit Tests. Residuals can be inspected for patterns that
suggest lack of fit of the logit model form and the choice of predictor variables (co-
variates). In logistic regression residuals are not as well defined as in the multiple re-
gression models discussed in Chapter 7. Three different definitions of residuals are
available.

Deviance residuals :

where the sign of is the same as that of and,

(11-83)

Pearson residuals : (11-84)

Standardized Pearson residuals : (11-85)

where is the ( j, j )th element in the “hat” matrix H given by equation (11-87).
Values larger than about 2.5 suggest lack of fit at the particular .

An overall test of goodness of fit—preferred especially for smaller sample
sizes—is provided by Pearson’s chi square statistic

(11-86)

Notice that the chi square statistic, a single number summary of fit, is the sum of the
squares of the Pearson residuals. Inspecting the Pearson residuals themselves allows
us to examine the quality of fit over the entire pattern of covariates.

Another goodness-of-fit test due to Hosmer and Lemeshow [17] is only applic-
able when the proportion of observations with tied covariate patterns is small and
all the predictor variables (covariates) are continuous.

Leverage Points and Influential Observations. The logistic regression equivalent of
the hat matrix H contains the estimated probabilities The logistic regression
version of leverages are the diagonal elements of this hat matrix.

(11-87)

where is the diagonal matrix with ( j, j) element is the

diagonal matrix with ( j, j) element 
Besides the leverages given in (11–87), other measures are available. We de-

scribe the most common called the delta beta or deletion displacement. It helps iden-
tify observations that, by themselves, have a strong influence on the regression
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Chapter 11 Discrimination and Classification

estimates. This change in regression coefficients, when all observations with the
same covariate values as the j-th case are deleted, is quantified as

(11-88)

A plot of versus j can be inspected for influential cases.

11.8 Final Comments

Including Qualitative Variables

Our discussion in this chapter assumes that the discriminatory or classificatory vari-
ables, have natural units of measurement. That is, each variable can,
in principle, assume any real number, and these numbers can be recorded. Often, a
qualitative or categorical variable may be a useful discriminator (classifier). For ex-
ample, the presence or absence of a characteristic such as the color red may be a
worthwhile classifier. This situation is frequently handled by creating a variable X
whose numerical value is 1 if the object possesses the characteristic and zero if the
object does not possess the characteristic. The variable is then treated like the mea-
sured variables in the usual discrimination and classification procedures.

Except for logistic classification, there is very little theory available to handle the
case in which some variables are continuous and some qualitative. Computer simula-
tion experiments (see [22]) indicate that Fisher’s linear discriminant function can per-
form poorly or satisfactorily, depending upon the correlations between the qualitative
and continuous variables. As Krzanowski [22] notes, “A low correlation in one popu-
lation but a high correlation in the other, or a change in the sign of the correlations be-
tween the two populations could indicate conditions unfavorable to Fisher’s linear
discriminant function.” This is a troublesome area and one that needs further study.

Classification Trees
An approach to classification completely different from the methods discussed in
the previous sections of this chapter has been developed. (See [5].) It is very com-
puter intensive and its implementation is only now becoming widespread. The new
approach, called classification and regression trees (CART), is closely related to di-
visive clustering techniques. (See Chapter 12.)

Initially, all objects are considered as a single group. The group is split into two
subgroups using, say, high values of a variable for one group and low values for the
other. The two subgroups are then each split using the values of a second variable.
The splitting process continues until a suitable stopping point is reached. The values
of the splitting variables can be ordered or unordered categories. It is this feature
that makes the CART procedure so general.

For example, suppose subjects are to be classified as

heart-attack prone
not heart-attack prone

on the basis of age, weight, and exercise activity. In this case, the CART procedure
can be diagrammed as the tree shown in Figure 11.17.The branches of the tree actually

p2 :
p1 :

X1 , X2 , Á , Xp

¢bj

¢bj =

rsj
2   hjj

1 - hjj

z j
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correspond to divisions in the sample space.The region defined as being over 45,
being overweight, and undertaking no regular exercise, could be used to classify a
subject as heart-attack prone. The CART procedure would try splitting on
different ages, as well as first splitting on weight or on the amount of exercise.

The classification tree that results from using the CART methodology with the
Iris data (see Table 11.5), and variables length (PetLength) and

width (PetWidth), is shown in Figure 11.18.The binary splitting rules are
indicated in the figure. For example, the first split occurs at petal 
Flowers with petal lengths form one group (left), and those with petal 
lengths form the other group (right).7 2.45

… 2.45
length = 2.45.

X4 = petal
X3 = petal

p1 :

R1 ,

π 1 : Heart-attack prone
π 2 : Not heart-attack prone

π 2

π 2

π 2 π 1

Over 45

Overweight

Exercise
regularly

Yes

Yes

Yes

No

No

No

Figure 11.17 A classification tree.

Terminal
Node 1
N = 50

Node 1
PetLength
N = 150

Node 3
PetLength

N = 54

Node 2
PetWidth
N = 100

Terminal
Node 2
N = 48

Terminal
Node 3
N = 6

Terminal
Node 4
N = 46

2.45

4.95

1.75

Figure 11.18 A classification tree
for the Iris data.
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The next split occurs with the right-hand side group (petal length ) at
petal Flowers with petal widths are put in one group (left),
and those with petal widths form the other group (right). The process con-
tinues until there is no gain with additional splitting. In this case, the process stops
with four terminal nodes (TN).

The binary splits form terminal node rectangles (regions) in the positive
quadrant of the sample space as shown in Figure 11.19. For example, TN #2
contains those flowers with petal lengths and petal widths —
essentially the Iris Versicolor group.

Since the majority of the flowers in, for example, TN #3 are species Virginica, a
new item in this group would be classified as Virginica. That is, TN #3 and TN #4 are
both assigned to the Virginica population.We see that CART has correctly classified
50 of 50 of the Setosa flowers, 47 of 50 of the Versicolor flowers, and 49 of 50 of the 

Virginica flowers. The This result is comparable to the result 

obtained for the linear discriminant analysis using variables and discussed in
Example 11.12.

The CART methodology is not tied to an underlying population probability
distribution of characteristics. Nor is it tied to a particular optimality criterion. In
practice, the procedure requires hundreds of objects and, often, many variables.
The resulting tree is very complicated. Subjective judgments must be used to 
prune the tree so that it ends with groups of several objects rather than all 
single objects. Each terminal group is then assigned to the population holding the ma-
jority membership.A new object can then be classified according to its ultimate group.

Breiman, Friedman, Olshen, and Stone [5] have developed special-purpose
software for implementing a CART analysis. Also, Loh (see [21] and [25]) has de-
veloped improved classification tree software called QUEST13 and CRUISE.14

Their programs use several intelligent rules for splitting and usually produces a
tree that often separates groups well. CART has been very successful in data min-
ing applications (see Supplement 12A).

X4X3

APER =

4
150

= .027.

… 1.75… 4.952.45 6

X3 , X4

7 1.75
… 1.75width = 1.75.

7 2.45

1
2
3

Setosa

TN # 4

TN # 1

TN # 3

TN # 2

Versicolar
Virginica

4

1

2

3

6

7

5

Pe
tL

en
gt

h

1.5 2.52.00.0 0.5 1.0

PetWidth

Figure 11.19 Classification tree terminal nodes (regions) in the petal width, petal
length sample space.

13Available for download at www.stat.wisc.edu/~loh/quest.html
14Available for download at www.stat.wisc.edu/~loh/cruise.html
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Neural Networks
A neural network (NN) is a computer-intensive, algorithmic procedure for
transforming inputs into desired outputs using highly connected networks of
relatively simple processing units (neurons or nodes). Neural networks are modeled
after the neural activity in the human brain. The three essential features, then, of an
NN are the basic computing units (neurons or nodes), the network architecture
describing the connections between the computing units, and the training 
algorithm used to find values of the network parameters (weights) for performing a
particular task.

The computing units are connected to one another in the sense that the out-
put from one unit can serve as part of the input to another unit. Each computing
unit transforms an input to an output using some prespecified function that is
typically monotone, but otherwise arbitrary. This function depends on constants
(parameters) whose values must be determined with a training set of inputs and
outputs.

Network architecture is the organization of computing units and the types of
connections permitted. In statistical applications, the computing units are arranged
in a series of layers with connections between nodes in different layers, but not be-
tween nodes in the same layer. The layer receiving the initial inputs is called the
input layer. The final layer is called the output layer. Any layers between the input
and output layers are called hidden layers. A simple schematic representation of a
multilayer NN is shown in Figure 11.20.

Output

Input

Middle (hidden)

X1 X2 X3
X4

Figure 11.20 A neural network with one hidden layer.
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Neural networks can be used for discrimination and classification. When they
are so used, the input variables are the measured group characteristics 

and the output variables are categorical variables indicating group
membership. Current practical experience indicates that properly constructed neur-
al networks perform about as well as logistic regression and the discriminant func-
tions we have discussed in this chapter. Reference [30] contains a good discussion of
the use of neural networks in applied statistics.

Selection of Variables

In some applications of discriminant analysis, data are available on a large number
of variables. Mucciardi and Gose [27] discuss a discriminant analysis based on 157
variables.15 In this case, it would obviously be desirable to select a relatively small
subset of variables that would contain almost as much information as the original
collection.This is the objective of stepwise discriminant analysis, and several popular
commercial computer programs have such a capability.

If a stepwise discriminant analysis (or any variable selection method) is
employed, the results should be interpreted with caution. (See [28].) There is no
guarantee that the subset selected is “best,” regardless of the criterion used to make
the selection. For example, subsets selected on the basis of minimizing the apparent
error rate or maximizing “discriminatory power” may perform poorly in future
samples. Problems associated with variable-selection procedures are magnified if
there are large correlations among the variables or between linear combinations of
the variables.

Choosing a subset of variables that seems to be optimal for a given data set is
especially disturbing if classification is the objective. At the very least, the derived
classification function should be evaluated with a validation sample. As Murray [28]
suggests, a better idea might be to split the sample into a number of batches and
determine the “best” subset for each batch. The number of times a given variable
appears in the best subsets provides a measure of the worth of that variable for
future classification.

Testing for Group Differences

We have pointed out, in connection with two group classification, that effective allo-
cation is probably not possible unless the populations are well separated. The same
is true for the many group situation. Classification is ordinarily not attempted, un-
less the population mean vectors differ significantly from one another. Assuming
that the data are nearly multivariate normal, with a common covariance matrix,
MANOVA can be performed to test for differences in the population mean vectors.
Although apparent significant differences do not automatically imply effective clas-
sification, testing is a necessary first step. If no significant differences are found, con-
structing classification rules will probably be a waste of time.

X2 , Á , Xp ,
X1 ,

15Imagine the problems of verifying the assumption of 157-variate normality and simultaneously
estimating, for example, the 12,403 parameters of the presumed common covariance matrix!157 * 157
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Graphics
Sophisticated computer graphics now allow one visually to examine multivariate
data in two and three dimensions. Thus, groupings in the variable space for any
choice of two or three variables can often be discerned by eye. In this way, poten-
tially important classifying variables are often identified and outlying, or “atypical,”
observations revealed. Visual displays are important aids in discrimination and clas-
sification, and their use is likely to increase as the hardware and associated comput-
er programs become readily available. Frequently, as much can be learned from a
visual examination as by a complex numerical analysis.

Practical Considerations Regarding Multivariate Normality
The interplay between the choice of tentative assumptions and the form of the re-
sulting classifier is important. Consider Figure 11.21, which shows the kidney-
shaped density contours from two very nonnormal densities. In this case, the normal
theory linear (or even quadratic) classification rule will be inadequate compared to
another choice. That is, linear discrimination here is inappropriate.

Often discrimination is attempted with a large number of variables, some of
which are of the presence–absence, or 0–1, type. In these situations and in others
with restricted ranges for the variables, multivariate normality may not be a sensible
assumption. As we have seen, classification based on Fisher’s linear discriminants
can be optimal from a minimum ECM or minimum TPM point of view only when
multivariate normality holds. How are we to interpret these quantities when nor-
mality is clearly not viable?

In the absence of multivariate normality, Fisher’s linear discriminants can be
viewed as providing an approximation to the total sample information. The values
of the first few discriminants themselves can be checked for normality and rule
(11-67) employed. Since the discriminants are linear combinations of a large num-
ber of variables, they will often be nearly normal. Of course, one must keep in mind
that the first few discriminants are an incomplete summary of the original sample in-
formation. Classification rules based on this restricted set may perform poorly, while
optimal rules derived from all of the sample information may perform well.

x2

x1

R2 R1

Contour of
f2 (x )

Contour of  f1 (x )

“Good classification” boundary

“Linear classification” boundary

Figure 11.21 Two nonnormal
populations for which linear
discrimination is inappropriate.
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EXERCISES

11.1. Consider the two data sets

for which

and

(a) Calculate the linear discriminant function in (11-19).

(b) Classify the observation as population or population using Rule
(11-18) with equal priors and equal costs.

11.2. (a) Develop a linear classification function for the data in Example 11.1 using (11-19).

(b) Using the function in (a) and (11-20), construct the “confusion matrix” by classifying
the given observations. Compare your classification results with those of Figure 11.1,
where the classification regions were determined “by eye.” (See Example 11.6.)

(c) Given the results in (b), calculate the apparent error rate (APER).

(d) State any assumptions you make to justify the use of the method in Parts a and b.

11.3. Prove Result 11.1.
Hint: Substituting the integral expressions for and given by (11-1) and
(11-2), respectively, into (11-5) yields

Noting that so that the total probability

we can write

By the additive property of integrals (volumes),

Now, and are nonnegative. In addition, and are non-
negative for all x and are the only quantities in ECM that depend on x. Thus, ECM is
minimized if includes those values x for which the integrand

and excludes those x for which this quantity is positive.

7c11 | 22p2  f21x2 - c12 | 12p1  f11x28 … 0
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f21x2f11x2c12 | 12p1 , p2 , c11 | 22,
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11.4. A researcher wants to determine a procedure for discriminating between two multivari-
ate populations. The researcher has enough data available to estimate the density
functions and associated with populations and respectively. Let

(this is the cost of assigning items as given that is true) and 

In addition, it is known that about 20% of all possible items (for which the
measurements x can be recorded) belong to 

(a) Give the minimum ECM rule (in general form) for assigning a new item to one of
the two populations.

(b) Measurements recorded on a new item yield the density values and
Given the preceding information, assign this item to population or

population 

11.5. Show that

[see Equation (11-13).]

11.6. Consider the linear function Let and if X belongs
to population Let and if X belongs to population Let

Given that show each
of the following.

(a) =

(b) =

Hint: Recall that is of full rank and is positive definite, so exists and is positive
definite.

11.7. Let for and for 

(a) Sketch the two densities.

(b) Identify the classification regions when and 

(c) Identify the classification regions when and 

11.8. Refer to Exercise 11.7. Let be the same as in that exercise, but take
for 

(a) Sketch the two densities.

(b) Determine the classification regions when and 

11.9. For groups, show that the ratio in (11-59) is proportional to the ratio

where is the difference in mean vectors. This ratio is the population
counterpart of (11-23). Show that the ratio is maximized by the linear combination

for any c Z 0.

a = c�-1
 D = c�-11M1 - M22

D = 1M1 - M22
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=
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Hint: Note that = for where

11.10. Suppose that and observations are made on two random variables 
and where and are assumed to have a bivariate normal distribution with a
common covariance matrix but possibly different mean vectors and for the two
samples. The sample mean vectors and pooled covariance matrix are

(a) Test for the difference in population mean vectors using Hotelling’s two-sample 
-statistic. Let 

(b) Construct Fisher’s (sample) linear discriminant function. [See (11-19) and (11-25).]

(c) Assign the observation to either population or Assume equal
costs and equal prior probabilities.

11.11. Suppose a univariate random variable X has a normal distribution with variance 4. If X
is from population its mean is 10; if it is from population its mean is 14. Assume
equal prior probabilities for the events is from population and is
from population and assume that the misclassification costs and are
equal (for instance, $10).We decide that we shall allocate (classify) X to population if

for some c to be determined, and to population if Let be the
event X is classified into population and be the event X is classified into popula-
tion Make a table showing the following:

P(misclassification), and expected cost for various values of c. For what
choice of c is expected cost minimized? The table should take the following form:
P1A2 and B12,

P1A1 and B22,P1B2 ƒ A12,P1B1 ƒ A22,p2 .
B2p1

B1X 7 c.p2X … c,
p1

c11 | 22c12 | 12p2 ,
A2 = Xp1A1 = X

p2 ,p1 ,

p2 .p1x œ

0 = [0 1]

a = .10.T2

 Spooled = B 7.3 - 1.1
- 1.1 4.8

R
 x–1 = B - 1

- 1
R  ;  x–2 = B2

1
R M2M1�,

X2X1X2 ,
X1n2 = 12n1 = 11

M– =
1
2 1M1 + M22.

i = 1, 2,1
4 1M1 - M22 1M1 - M22

œ1M i - M– 2 1M i - M– 2œ

Expected
c P(error) cost

10

14
o

P1A2 and B12P1A1 and B22P1B2 | A12P1B1 | A22

What is the value of the minimum expected cost?

11.12. Repeat Exercise 11.11 if the prior probabilities of and are equal, but
and 

11.13. Repeat Exercise 11.11 if the prior probabilities of and are and
and the misclassification costs are as in Exercise 11.12.

11.14. Consider the discriminant functions derived in Example 11.3. Normalize using (11-21)
and (11-22). Compute the two midpoints and corresponding to the two choices of
normalized vectors, say, and Classify with the function

for the two cases. Are the results consistent with the classification obtained
for the case of equal prior probabilities in Example 11.3? Should they be?

11.15. Derive the expressions in (11-27) from (11-6) when and are multivariate
normal densities with means and covariances respectively.�1 , �2 ,M1 , M2

f21x2f11x2

yn 0
…

= aN …
¿  x0

x œ

0 = [- .210, - .044]aN 2
… .aN 1

…
mn 2

…mn 1
…

aN

P1A22 = .75
P1A12 = .25A2A1

c11 ƒ 22 = $15.c12 | 12 = $5
A2A1
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11.16. Suppose x comes from one of two populations:

Normal with mean and covariance matrix 

Normal with mean and covariance matrix 

If the respective density functions are denoted by and find the expression
for the quadratic discriminator

If for instance, verify that Q becomes

11.17. Suppose populations and are as follows:p2p1

1M1 - M22 ¿  �-1
 x -

1
2 1M1 - M22 ¿  �-11M1 + M22

�1 = �2 = �,

Q = ln B f11x2

f21x2
R

f21x2,f11x2

�2M2p2 :

�1M1p1 :

Population

Distribution Normal Normal

Mean 

Covariance B  20 -7
-7    5

RB18 12
12 32

R�

710, 258¿710, 158¿M

p2p1

Assume equal prior probabilities and misclassifications costs of = $10 and
= $73.89. Find the posterior probabilities of populations and 

and the value of the quadratic discriminator Q in Exercise 11.16, and the
classification for each value of x in the following table:

P1p2 | x2,
P1p1 | x2p2 ,p1c11 | 22

c12 | 12

x Q Classification

(Note: Use an increment of 2 in each coordinate—11 points in all.)

730, 358¿o

712, 178¿710, 158¿ P1p2 | x2P1p1 | x2

Show each of the following on a graph of the plane.

(a) The mean of each population

(b) The ellipse of minimal area with probability .95 of containing x for each population

(c) The region (for population ) and the region (for population )

(d) The 11 points classified in the table

11.18. If B is defined as for some constant c, verify that
is in fact an (unscaled) eigenvector of where is a covari-

ance matrix.

11.19. (a) Using the original data sets and given in Example 11.7, calculate 
and verifying the results provided for these quantities in the

example.
Spooled ,i = 1, 2,

Si ,x– i ,X2X1

��-1
 B,e = c�-11M1 - M22

c1M1 - M22 1M1 - M22 ¿

p2Æ - R1 = R2p1R1

x1 , x2
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(b) Using the calculations in Part a, compute Fisher’s linear discriminant function, and
use it to classify the sample observations according to Rule (11-25). Verify that the
confusion matrix given in Example 11.7 is correct.

(c) Classify the sample observations on the basis of smallest squared distance of
the observations from the group means and [See (11-54).] Compare the re-
sults with those in Part b. Comment.

11.20. The matrix identity (see Bartlett [3])

where

allows the calculation of from Verify this identity using the data from
Example 11.7. Specifically, set and Calculate

using the full data and and compare the result with in
Example 11.7.

11.21. Let denote the nonzero eigenvalues of
and the corresponding eigenvectors (scaled so that ).

Show that the vector of coefficients a that maximizes the ratio

is given by The linear combination is called the first discriminant. Show
that the value maximizes the ratio subject to The linear
combination is called the second discriminant. Continuing, maximizes the
ratio subject to and is called the kth discriminant.
Also, [See (11-62) for the sample equivalent.]
Hint: We first convert the maximization problem to one already solved. By the spectral
decomposition in (2-20), where is a diagonal matrix with positive
elements Let denote the diagonal matrix with elements By (2-22), the
symmetric square-root matrix and its inverse satisfy

= = and = Next, set

so = = and = =

Consequently, the problem reduces to maximizing

over u. From (2-51), the maximum of this ratio is the largest eigenvalue of
This maximum occurs when the normalized eigenvectoru = e1 ,�-1>2
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associated with Because or = =

= = By (2-52), maximizes the
preceding ratio when the normalized eigenvector corresponding to For this
choice, and = = =

since Similarly, = = Continue in this fashion for
the remaining discriminants. Note that if and e are an eigenvalue–eigenvector pair
of then

and multiplication on the left by gives

Thus, has the same eigenvalues as but the corresponding eigenvec-
tor is proportional to as asserted.

11.22. Show that ± = ± where are the

nonzero eigenvalues of (or ) and is given by (11-68). Also, show
that ± is the resulting separation when only the first r discriminants,

are used.
Hint: Let P be the orthogonal matrix whose ith row is the eigenvector of 
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Chapter 11 Discrimination and Classification

Thus,

since If only the first r discriminants are used, their contribution to
is 

The following exercises require the use of a computer.

11.23. Consider the data given in Exercise 1.14.
(a) Check the marginal distributions of the ’s in both the multiple-sclerosis (MS)

group and non-multiple-sclerosis (NMS) group for normality by graphing the
corresponding observations as normal probability plots. Suggest appropriate data
transformations if the normality assumption is suspect.

(b) Assume that Construct Fisher’s linear discriminant function. Do all
the variables in the discriminant function appear to be important? Discuss your
answer. Develop a classification rule assuming equal prior probabilities and equal
costs of misclassification.

(c) Using the results in (b), calculate the apparent error rate. If computing resources
allow, calculate an estimate of the expected actual error rate using Lachenbruch’s
holdout procedure. Compare the two error rates.

11.24. Annual financial data are collected for bankrupt firms approximately 2 years prior to their
bankruptcy and for financially sound firms at about the same time. The data on four vari-
ables, = (cash flow)>(total debt), = (net income)>(total as-
sets), = (current assets)>(current liabilities), and = (current
assets)>(net sales), are given in Table 11.4.
(a) Using a different symbol for each group, plot the data for the pairs of observations

and Does it appear as if the data are approximately
bivariate normal for any of these pairs of variables?

(b) Using the pairs of observations for bankrupt firms and the 
pairs of observations for nonbankrupt firms, calculate the sample mean vec-
tors and and the sample covariance matrices and 

(c) Using the results in (b) and assuming that both random samples are from bivariate
normal populations, construct the classification rule (11-29) with and

(d) Evaluate the performance of the classification rule developed in (c) by computing
the apparent error rate (APER) from (11-34) and the estimated expected actual
error rate (AER) from (11-36).

(e) Repeat Parts c and d, assuming that and = Is
this choice of prior probabilities reasonable? Explain.

(f) Using the results in (b), form the pooled covariance matrix and construct
Fisher’s sample linear discriminant function in (11-19). Use this function to classify
the sample observations and evaluate the APER. Is Fisher’s linear discriminant
function a sensible choice for a classifier in this case? Explain.

(g) Repeat Parts b–e using the observation pairs and Do some vari-
ables appear to be better classifiers than others? Explain.

(h) Repeat Parts b–e using observations on all four variables X42.X3 ,X2 ,1X1 ,

1x1 , x42.1x1 , x32

Spooled ,
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Table 11.4 Bankruptcy Data

Row

1 1.09 .45 0
2 1.51 .16 0
3 .06 .02 1.01 .40 0
4 1.45 .26 0
5 1.56 .67 0
6 .71 .28 0
7 .04 .01 1.50 .71 0
8 1.37 .40 0
9 .07 1.37 .34 0

10 1.42 .44 0
11 .33 .18 0
12 .07 .02 1.31 .25 0
13 .01 .00 2.15 .70 0
14 1.19 .66 0
15 .15 .05 1.88 .27 0
16 .37 .11 1.99 .38 0
17 1.51 .42 0
18 .05 .03 1.68 .95 0
19 .01 1.26 .60 0
20 .12 .11 1.14 .17 0
21 1.27 .51 0
1 .51 .10 2.49 .54 1
2 .08 .02 2.01 .53 1
3 .38 .11 3.27 .35 1
4 .19 .05 2.25 .33 1
5 .32 .07 4.24 .63 1
6 .31 .05 4.45 .69 1
7 .12 .05 2.52 .69 1
8 .02 2.05 .35 1
9 .22 .08 2.35 .40 1

10 .17 .07 1.80 .52 1
11 .15 .05 2.17 .55 1
12 2.50 .58 1
13 .14 .46 .26 1
14 .14 .07 2.61 .52 1
15 .15 .06 2.23 .56 1
16 .16 .05 2.31 .20 1
17 .29 .06 1.84 .38 1
18 .54 .11 2.33 .48 1
19 3.01 .47 1
20 .48 .09 1.24 .18 1
21 .56 .11 4.29 .45 1
22 .20 .08 1.99 .30 1
23 .47 .14 2.92 .45 1
24 .17 .04 2.45 .14 1
25 .58 .04 5.06 .13 1

Legend: bankrupt firms; nonbankrupt firms.
Source: 1968, 1969, 1970, 1971, 1972 Moody’s Industrial Manuals.

p2 = 1:p1 = 0:

- .09- .33

- .03
- .01- .10

- .02

- .27- .28

- .00

- .08- .08

- .23- .28

- .30- .23
- .14- .13
- .01
- .06- .06

- .07- .14
- .09- .10
- .09- .07

- .31- .56
- .41- .45

Population
pi , i = 1, 2

x4 =

CA
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x3 =
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CL

x2 =
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TA

x1 =

CF
TD
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Chapter 11 Discrimination and Classification

11.25. The annual financial data listed in Table 11.4 have been analyzed by Johnson [19] with a
view toward detecting influential observations in a discriminant analysis. Consider vari-
ables and 

(a) Using the data on variables and construct Fisher’s linear discriminant func-
tion. Use this function to classify the sample observations and evaluate the APER.
[See (11-25) and (11-34).] Plot the data and the discriminant line in the co-
ordinate system.

(b) Johnson [19] has argued that the multivariate observations in rows 16 for bankrupt
firms and 13 for sound firms are influential. Using the data, calculate Fisher’s
linear discriminant function with only data point 16 for bankrupt firms deleted. Re-
peat this procedure with only data point 13 for sound firms deleted. Plot the respec-
tive discriminant lines on the scatter in part a, and calculate the APERs, ignoring the
deleted point in each case. Does deleting either of these multivariate observations
make a difference? (Note that neither of the potentially influential data points is
particularly “distant” from the center of its respective scatter.)

11.26. Using the data in Table 11.4, define a binary response variable Z that assumes the value
0 if a firm is bankrupt and 1 if a firm is not bankrupt. Let and consider the
straight-line regression of Z on X.
(a) Although a binary response variable does not meet the standard regression assump-

tions, consider using least squares to determine the fitted straight line for the X, Z
data. Plot the fitted values for bankrupt firms as a dot diagram on the interval 
Repeat this procedure for nonbankrupt firms and overlay the two dot diagrams. A
reasonable discrimination rule is to predict that a firm will go bankrupt if its fitted
value is closer to 0 than to 1. That is, the fitted value is less than .5. Similarly, a firm is
predicted to be sound if its fitted value is greater than .5. Use this decision rule to
classify the sample firms. Calculate the APER.

(b) Repeat the analysis in Part a using all four variables, Is there any change
in the APER? Do data points 16 for bankrupt firms and 13 for nonbankrupt firms
stand out as influential?

(c) Perform a logistic regression using all four variables.

11.27. The data in Table 11.5 contain observations on width and width
for samples from three species of iris.There are = observations in each
sample.
(a) Plot the data in the variable space. Do the observations for the three groups

appear to be bivariate normal?
1x2 , x42

n3 = 50n1 = n2

X4 = petalX2 = sepal

X1 , Á , X4 .

[0, 1].

X = CA>CL,

X1 , X3

1x1 , x32

X3 ,X1

X3 = CA>CL.X1 = CF>TD

Table 11.5 Data on Irises

Iris setosa Iris versicolor Iris virginica

Sepal Sepal Petal Petal Sepal Sepal Petal Petal Sepal Sepal Petal Petal
length width length width length width length width length width length width

5.1 3.5 1.4 0.2 7.0 3.2 4.7 1.4 6.3 3.3 6.0 2.5
4.9 3.0 1.4 0.2 6.4 3.2 4.5 1.5 5.8 2.7 5.1 1.9
4.7 3.2 1.3 0.2 6.9 3.1 4.9 1.5 7.1 3.0 5.9 2.1
4.6 3.1 1.5 0.2 5.5 2.3 4.0 1.3 6.3 2.9 5.6 1.8
5.0 3.6 1.4 0.2 6.5 2.8 4.6 1.5 6.5 3.0 5.8 2.2
5.4 3.9 1.7 0.4 5.7 2.8 4.5 1.3 7.6 3.0 6.6 2.1

x4x3x2x1x4x3x2x1x4x3x2x1

p3 :p2 :p1 :

(continues on next page)
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Table 11.5 (continued)

Iris setosa Iris versicolor Iris virginica

Sepal Sepal Petal Petal Sepal Sepal Petal Petal Sepal Sepal Petal Petal
length width length width length width length width length width length width

4.6 3.4 1.4 0.3 6.3 3.3 4.7 1.6 4.9 2.5 4.5 1.7
5.0 3.4 1.5 0.2 4.9 2.4 3.3 1.0 7.3 2.9 6.3 1.8
4.4 2.9 1.4 0.2 6.6 2.9 4.6 1.3 6.7 2.5 5.8 1.8
4.9 3.1 1.5 0.1 5.2 2.7 3.9 1.4 7.2 3.6 6.1 2.5
5.4 3.7 1.5 0.2 5.0 2.0 3.5 1.0 6.5 3.2 5.1 2.0
4.8 3.4 1.6 0.2 5.9 3.0 4.2 1.5 6.4 2.7 5.3 1.9
4.8 3.0 1.4 0.1 6.0 2.2 4.0 1.0 6.8 3.0 5.5 2.1
4.3 3.0 1.1 0.1 6.1 2.9 4.7 1.4 5.7 2.5 5.0 2.0
5.8 4.0 1.2 0.2 5.6 2.9 3.6 1.3 5.8 2.8 5.1 2.4
5.7 4.4 1.5 0.4 6.7 3.1 4.4 1.4 6.4 3.2 5.3 2.3
5.4 3.9 1.3 0.4 5.6 3.0 4.5 1.5 6.5 3.0 5.5 1.8
5.1 3.5 1.4 0.3 5.8 2.7 4.1 1.0 7.7 3.8 6.7 2.2
5.7 3.8 1.7 0.3 6.2 2.2 4.5 1.5 7.7 2.6 6.9 2.3
5.1 3.8 1.5 0.3 5.6 2.5 3.9 1.1 6.0 2.2 5.0 1.5
5.4 3.4 1.7 0.2 5.9 3.2 4.8 1.8 6.9 3.2 5.7 2.3
5.1 3.7 1.5 0.4 6.1 2.8 4.0 1.3 5.6 2.8 4.9 2.0
4.6 3.6 1.0 0.2 6.3 2.5 4.9 1.5 7.7 2.8 6.7 2.0
5.1 3.3 1.7 0.5 6.1 2.8 4.7 1.2 6.3 2.7 4.9 1.8
4.8 3.4 1.9 0.2 6.4 2.9 4.3 1.3 6.7 3.3 5.7 2.1
5.0 3.0 1.6 0.2 6.6 3.0 4.4 1.4 7.2 3.2 6.0 1.8
5.0 3.4 1.6 0.4 6.8 2.8 4.8 1.4 6.2 2.8 4.8 1.8
5.2 3.5 1.5 0.2 6.7 3.0 5.0 1.7 6.1 3.0 4.9 1.8
5.2 3.4 1.4 0.2 6.0 2.9 4.5 1.5 6.4 2.8 5.6 2.1
4.7 3.2 1.6 0.2 5.7 2.6 3.5 1.0 7.2 3.0 5.8 1.6
4.8 3.1 1.6 0.2 5.5 2.4 3.8 1.1 7.4 2.8 6.1 1.9
5.4 3.4 1.5 0.4 5.5 2.4 3.7 1.0 7.9 3.8 6.4 2.0
5.2 4.1 1.5 0.1 5.8 2.7 3.9 1.2 6.4 2.8 5.6 2.2
5.5 4.2 1.4 0.2 6.0 2.7 5.1 1.6 6.3 2.8 5.1 1.5
4.9 3.1 1.5 0.2 5.4 3.0 4.5 1.5 6.1 2.6 5.6 1.4
5.0 3.2 1.2 0.2 6.0 3.4 4.5 1.6 7.7 3.0 6.1 2.3
5.5 3.5 1.3 0.2 6.7 3.1 4.7 1.5 6.3 3.4 5.6 2.4
4.9 3.6 1.4 0.1 6.3 2.3 4.4 1.3 6.4 3.1 5.5 1.8
4.4 3.0 1.3 0.2 5.6 3.0 4.1 1.3 6.0 3.0 4.8 1.8
5.1 3.4 1.5 0.2 5.5 2.5 4.0 1.3 6.9 3.1 5.4 2.1
5.0 3.5 1.3 0.3 5.5 2.6 4.4 1.2 6.7 3.1 5.6 2.4
4.5 2.3 1.3 0.3 6.1 3.0 4.6 1.4 6.9 3.1 5.1 2.3
4.4 3.2 1.3 0.2 5.8 2.6 4.0 1.2 5.8 2.7 5.1 1.9
5.0 3.5 1.6 0.6 5.0 2.3 3.3 1.0 6.8 3.2 5.9 2.3
5.1 3.8 1.9 0.4 5.6 2.7 4.2 1.3 6.7 3.3 5.7 2.5
4.8 3.0 1.4 0.3 5.7 3.0 4.2 1.2 6.7 3.0 5.2 2.3
5.1 3.8 1.6 0.2 5.7 2.9 4.2 1.3 6.3 2.5 5.0 1.9
4.6 3.2 1.4 0.2 6.2 2.9 4.3 1.3 6.5 3.0 5.2 2.0
5.3 3.7 1.5 0.2 5.1 2.5 3.0 1.1 6.2 3.4 5.4 2.3
5.0 3.3 1.4 0.2 5.7 2.8 4.1 1.3 5.9 3.0 5.1 1.8

Source: Anderson [1].

x4x3x2x1x4x3x2x1x4x3x2x1

p3 :p2 :p1 :
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(b) Assume that the samples are from bivariate normal populations with a common
covariance matrix. Test the hypothesis = versus at least one 
is different from the others at the significance level. Is the assumption of a
common covariance matrix reasonable in this case? Explain.

(c) Assuming that the populations are bivariate normal, construct the quadratic
discriminate scores given by (11-47) with = Using Rule
(11-48), classify the new observation into population or

(d) Assume that the covariance matrices are the same for all three bivariate normal
populations. Construct the linear discriminate score given by (11-51), and use
it to assign to one of the populations according to
(11-52). Take = Compare the results in Parts c and d. Which
approach do you prefer? Explain.

(e) Assuming equal covariance matrices and bivariate normal populations, and suppos-
ing that = allocate to or using Rule
(11-56). Compare the result with that in Part d. Delineate the classification regions

and on your graph from Part a determined by the linear functions
in (11-56).

(f) Using the linear discriminant scores from Part d, classify the sample observations.
Calculate the APER and (To calculate the latter, you should use Lachen-
bruch’s holdout procedure. [See (11-57).])

11.28. Darroch and Mosimann [6] have argued that the three species of iris indicated in
Table 11.5 can be discriminated on the basis of “shape” or scale-free information alone.
Let be sepal shape and be petal shape.
(a) Plot the data in the variable space. Do the observations for the three

groups appear to be bivariate normal?

(b) Assuming equal covariance matrices and bivariate normal populations, and 
supposing that = construct the linear discriminant scores 
given by (11-51) using both variables and each variable individually.
Calculate the APERs.

(c) Using the linear discriminant functions from Part b, calculate the holdout estimates
of the expected AERs, and fill in the following summary table:

log Y1 , log Y2

d
 
n
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1
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1log Y1 , log Y22
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3 .p1 = p2d

 
n

i
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M iH1  :M2 = M3H0  : M1

Compare the preceding misclassification rates with those in the summary tables in
Example 11.12. Does it appear as if information on shape alone is an effective dis-
criminator for these species of iris?

(d) Compare the corresponding error rates in Parts b and c. Given the scatter plot in
Part a, would you expect these rates to differ much? Explain.

11.29. The GPA and GMAT data alluded to in Example 11.11 are listed in Table 11.6.

(a) Using these data, calculate and and thus verify the results for
these quantities given in Example 11.11.

Spooledx–3 , x– ,x–1 , x–2 ,

Variable(s) Misclassification rate

log Y1 ,  log Y2

log Y2

log Y1
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(b) Calculate and B and the eigenvalues and eigenvectors of Use the linear
discriminants derived from these eigenvectors to classify the new observation

into one of the populations admit; not admit; and bor-
derline. Does the classification agree with that in Example 11.11? Should it? Explain.

11.30. Gerrild and Lantz [13] chemically analyzed crude-oil samples from three zones of sandstone:

Wilhelm
Sub-Mulinia
Upper

The values of the trace elements

(in percent ash)
(in percent ash)
(in percent ash)X3 = beryllium

X2 = iron
X1 = vanadium

p3 :
p2 :
p1 :

p3 :p2 :p1 :x œ

0 = [3.21 497]

W -1
 B.W -1

Table 11.6 Admission Data for Graduate School of Business

Admit Do not admit Borderline

Applicant GPA GMAT Applicant GPA GMAT Applicant GPA GMAT
no. no. no.

1 2.96 596 32 2.54 446 60 2.86 494
2 3.14 473 33 2.43 425 61 2.85 496
3 3.22 482 34 2.20 474 62 3.14 419
4 3.29 527 35 2.36 531 63 3.28 371
5 3.69 505 36 2.57 542 64 2.89 447
6 3.46 693 37 2.35 406 65 3.15 313
7 3.03 626 38 2.51 412 66 3.50 402
8 3.19 663 39 2.51 458 67 2.89 485
9 3.63 447 40 2.36 399 68 2.80 444

10 3.59 588 41 2.36 482 69 3.13 416
11 3.30 563 42 2.66 420 70 3.01 471
12 3.40 553 43 2.68 414 71 2.79 490
13 3.50 572 44 2.48 533 72 2.89 431
14 3.78 591 45 2.46 509 73 2.91 446
15 3.44 692 46 2.63 504 74 2.75 546
16 3.48 528 47 2.44 336 75 2.73 467
17 3.47 552 48 2.13 408 76 3.12 463
18 3.35 520 49 2.41 469 77 3.08 440
19 3.39 543 50 2.55 538 78 3.03 419
20 3.28 523 51 2.31 505 79 3.00 509
21 3.21 530 52 2.41 489 80 3.03 438
22 3.58 564 53 2.19 411 81 3.05 399
23 3.33 565 54 2.35 321 82 2.85 483
24 3.40 431 55 2.60 394 83 3.01 453
25 3.38 605 56 2.55 528 84 3.03 414
26 3.26 664 57 2.72 399 85 3.04 446
27 3.60 609 58 2.85 381
28 3.37 559 59 2.90 384
29 3.80 521
30 3.76 646
31 3.24 467

1x221x121x221x121x221x12

p3 :p2 :p1 :
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and two measures of hydrocarbons,

hydrocarbons (in percent area)

hydrocarbons (in percent area)

are presented for 56 cases in Table 11.7. The last two measurements are determined from
areas under a gas–liquid chromatography curve.

(a) Obtain the estimated minimum TPM rule, assuming normality. Comment on the
adequacy of the assumption of normality.

(b) Determine the estimate of using Lachenbruch’s holdout procedure. Also,
give the confusion matrix.

(c) Consider various transformations of the data to normality (see Example 11.14), and
repeat Parts a and b.

E1AER2

X5 = aromatic

X4 = saturated

Table 11.7 Crude-Oil Data

3.9 51.0 0.20 7.06 12.19
2.7 49.0 0.07 7.14 12.23
2.8 36.0 0.30 7.00 11.30
3.1 45.0 0.08 7.20 13.01
3.5 46.0 0.10 7.81 12.63
3.9 43.0 0.07 6.25 10.42
2.7 35.0 0.00 5.11 9.00

5.0 47.0 0.07 7.06 6.10
3.4 32.0 0.20 5.82 4.69
1.2 12.0 0.00 5.54 3.15
8.4 17.0 0.07 6.31 4.55
4.2 36.0 0.50 9.25 4.95
4.2 35.0 0.50 5.69 2.22
3.9 41.0 0.10 5.63 2.94
3.9 36.0 0.07 6.19 2.27
7.3 32.0 0.30 8.02 12.92
4.4 46.0 0.07 7.54 5.76
3.0 30.0 0.00 5.12 10.77

6.3 13.0 0.50 4.24 8.27
1.7 5.6 1.00 5.69 4.64
7.3 24.0 0.00 4.34 2.99
7.8 18.0 0.50 3.92 6.09
7.8 25.0 0.70 5.39 6.20
7.8 26.0 1.00 5.02 2.50
9.5 17.0 0.05 3.52 5.71
7.7 14.0 0.30 4.65 8.63

11.0 20.0 0.50 4.27 8.40
8.0 14.0 0.30 4.32 7.87
8.4 18.0 0.20 4.38 7.98

p3

p2

p1

x5x4x3x2x1

(continues on next page)
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Exercises

11.31. Refer to the data on salmon in Table 11.2.

(a) Plot the bivariate data for the two groups of salmon.Are the sizes and orientation of
the scatters roughly the same? Do bivariate normal distributions with a common co-
variance matrix appear to be viable population models for the Alaskan and Canadi-
an salmon?

(b) Using a linear discriminant function for two normal populations with equal priors
and equal costs [see (11-19)], construct dot diagrams of the discriminant scores for
the two groups. Does it appear as if the growth ring diameters separate for the two
groups reasonably well? Explain.

(c) Repeat the analysis in Example 11.8 for the male and female salmon separately. Is it
easier to discriminate Alaskan male salmon from Canadian male salmon than it is to
discriminate the females in the two groups? Is gender (male or female) likely to be a
useful discriminatory variable?

11.32. Data on hemophilia A carriers, similar to those used in Example 11.3, are listed in 
Table 11.8 on page 664. (See [15].) Using these data,

(a) Investigate the assumption of bivariate normality for the two groups.

Table 11.7 (continued)

10.0 18.0 0.10 3.06 7.67
7.3 15.0 0.05 3.76 6.84
9.5 22.0 0.30 3.98 5.02
8.4 15.0 0.20 5.02 10.12
8.4 17.0 0.20 4.42 8.25
9.5 25.0 0.50 4.44 5.95
7.2 22.0 1.00 4.70 3.49
4.0 12.0 0.50 5.71 6.32
6.7 52.0 0.50 4.80 3.20
9.0 27.0 0.30 3.69 3.30
7.8 29.0 1.50 6.72 5.75
4.5 41.0 0.50 3.33 2.27
6.2 34.0 0.70 7.56 6.93
5.6 20.0 0.50 5.07 6.70
9.0 17.0 0.20 4.39 8.33
8.4 20.0 0.10 3.74 3.77
9.5 19.0 0.50 3.72 7.37
9.0 20.0 0.50 5.97 11.17
6.2 16.0 0.05 4.23 4.18
7.3 20.0 0.50 4.39 3.50
3.6 15.0 0.70 7.00 4.82
6.2 34.0 0.07 4.84 2.37
7.3 22.0 0.00 4.13 2.70
4.1 29.0 0.70 5.78 7.76
5.4 29.0 0.20 4.64 2.65
5.0 34.0 0.70 4.21 6.50
6.2 27.0 0.30 3.97 2.97

x5x4x3x2x1
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Chapter 11 Discrimination and Classification

Table 11.8 Hemophilia Data

Noncarriers Obligatory carriers 

Group (AHF activity) (AHF antigen) Group (AHF activity) (AHF antigen)

1 2 .1151
1 2
1 2
1 .0064 2
1 .0713 2 .0097
1 .0106 2
1 2 .1237
1 .0392 2
1 2
1 2 .0722
1 2
1 .0248 2
1 2 .1670
1 .0084 .0782 2
1 2
1 .1237 .2140 2 .0548
1 2
1 2
1 .0006 2
1 2 .2132
1 2
1 .1507 .0933 2
1 2 .2876
1 2 .0046
1 2
1 .0291 .0442 2 .0097
1 2
1 2
1 2
1 2 .1569

2
2 .1539
2 .1400
2
2 .1642
2 .1137
2 .0531
2 .0867
2 .0804
2 .0875
2 .2510
2 .1892
2
2 .1614
2 .0282

Source: See [15].

- .4784
- .2444

- .2418- .4055
- .1744
- .1878
- .3352
- .0234
- .2642
- .0964
- .1508
- .1416

- .0776- .1740
- .0312
- .0149

- .1368- .3351
- .0639- .0560- .0867

- .1162- .4046- .0607- .1972
- .2682- .3778- .0733- .0997
- .0573- .2540- .1710- .2228

- .3447
- .0219- .2154- .1007- .1952

- .2205- .1232- .1551
- .2375- .0669- .1259

- .0998- .4232
- .0407- .2447- .2293- .1932

- .1652- .0498- .2015
- .2483- .5107- .1153
- .0153- .4950- .0686- .1519
- .1865- .3755- .3099- .4702

- .5573
- .0020- .2734- .1138- .1827
- .0687- .4319

- .3226- .0580- .0225
- .0399- .3610- .0842
- .1079- .4719- .4773- .5268

- .3539- .1190- .1092
- .1721- .3479- .2123- .1913
- .1682- .4535- .0762

- .3608- .0005- .1979
- .3390- .6911- .0836

- .1326- .1679
- .2984- .5015- .0894
- .0860- .4986- .1879- .3469
- .2008- .3618- .1585- .1698

- .3478- .1657- .0056

log10log10log10log10

1p221p12
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Exercises

(b) Obtain the sample linear discriminant function, assuming equal prior probabilities,
and estimate the error rate using the holdout procedure.

(c) Classify the following 10 new cases using the discriminant function in Part b.

(d) Repeat Parts a–c, assuming that the prior probability of obligatory carriers (group 2)
is and that of noncarriers (group 1) is 34 .1

4

11.33. Consider the data on bulls in Table 1.10.

(a) Using the variables YrHgt, FtFrBody, PrctFFB, Frame, BkFat, SaleHt, and SaleWt,
calculate Fisher’s linear discriminants, and classify the bulls as Angus, Hereford,
or Simental. Calculate an estimate of using the holdout procedure.
Classify a bull with characteristics 

and as one of the three
breeds. Plot the discriminant scores for the bulls in the two-dimensional discriminant
space using different plotting symbols to identify the three groups.

(b) Is there a subset of the original seven variables that is almost as good for discrimi-
nating among the three breeds? Explore this possibility by computing the estimated
E(AER) for various subsets.

11.34. Table 11.9 on pages 666–667 contains data on breakfast cereals produced by three
different American manufacturers: General Mills (G), Kellogg (K), and Quaker (Q).
Assuming multivariate normal data with a common covariance matrix, equal costs, and
equal priors, classify the cereal brands according to manufacturer. Compute the estimat-
ed E(AER) using the holdout procedure. Interpret the coefficients of the discriminant
functions. Does it appear as if some manufacturers are associated with more “nutritional”
cereals (high protein, low fat, high fiber, low sugar, and so forth) than others? Plot the
cereals in the two-dimensional discriminant space, using different plotting symbols to
identify the three manufacturers.

11.35. Table 11.10 on page 668 contains measurements on the gender, age, tail length (mm), and
snout to vent length (mm) for Concho Water Snakes.

Define the variables

X4 = SntoVnLength

X3 = TailLength

X2 = Age

X1 = Gender

SaleWt = 1525SaleHt = 54,BkFat = .17,Frame = 7,
PrctFFB = 73,FtFrBody = 1000,YrHgt = 50,

E1AER2

New Cases Requiring Classification

Case (AHF activity) (AHF antigen)

1
2
3 .064 .012
4
5
6
7
8
9

10 - .019- .126
- .090- .210
- .037- .011
- .143- .123
- .113- .094
- .098- .050
- .052- .043

- .068- .059
- .279- .112

log10log10
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Chapter 11 Discrimination and Classification

(a) Plot the data as a scatter plot with tail length ( ) as the horizontal axis and snout to
vent length ( ) as the vertical axis. Use different plotting symbols for female and
male snakes, and different symbols for different ages. Does it appear as if tail length
and snout to vent length might usefully discriminate the genders of snakes? The dif-
ferent ages of snakes?

(b) Assuming multivariate normal data with a common covariance matrix, equal priors,
and equal costs, classify the Concho Water Snakes according to gender. Compute the
estimated E(AER) using the holdout procedure.

x4

x3

Table 11.10 Concho Water Snake Data

Gender Age TailLength Snto Gender Age TailLength Snto 
VnLength VnLength

1 Female 2 127 441 1 Male 2 126 457
2 Female 2 171 455 2 Male 2 128 466
3 Female 2 171 462 3 Male 2 151 466
4 Female 2 164 446 4 Male 2 115 361
5 Female 2 165 463 5 Male 2 138 473
6 Female 2 127 393 6 Male 2 145 477
7 Female 2 162 451 7 Male 3 145 507
8 Female 2 133 376 8 Male 3 145 493
9 Female 2 173 475 9 Male 3 158 558

10 Female 2 145 398 10 Male 3 152 495
11 Female 2 154 435 11 Male 3 159 521
12 Female 3 165 491 12 Male 3 138 487
13 Female 3 178 485 13 Male 3 166 565
14 Female 3 169 477 14 Male 3 168 585
15 Female 3 186 530 15 Male 3 160 550
16 Female 3 170 478 16 Male 4 181 652
17 Female 3 182 511 17 Male 4 185 587
18 Female 3 172 475 18 Male 4 172 606
19 Female 3 182 487 19 Male 4 180 591
20 Female 3 172 454 20 Male 4 205 683
21 Female 3 183 502 21 Male 4 175 625
22 Female 3 170 483 22 Male 4 182 612
23 Female 3 171 477 23 Male 4 185 618
24 Female 3 181 493 24 Male 4 181 613
25 Female 3 167 490 25 Male 4 167 600
26 Female 3 175 493 26 Male 4 167 602
27 Female 3 139 477 27 Male 4 160 596
28 Female 3 183 501 28 Male 4 165 611
29 Female 4 198 537 29 Male 4 173 603
30 Female 4 190 566
31 Female 4 192 569
32 Female 4 211 574
33 Female 4 206 570
34 Female 4 206 573
35 Female 4 165 531
36 Female 4 189 528
37 Female 4 195 536

Source: Data courtesy of Raymond J. Carroll.
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References

(c) Repeat part (b) using age as the groups rather than gender.

(d) Repeat part (b) using only snout to vent length to classify the snakes according to
age. Compare the results with those in part (c). Can effective classification be
achieved with only a single variable in this case? Explain.

11.36. Refer to Example 11.17. Using logistic regression, refit the salmon data in Table 11.2
with only the covariates freshwater growth and marine growth. Check for the signifi-
cance of the model and the significance of each individual covariate. Set Use
the fitted function to classify each of the observations in Table 11.2 as Alaskan salmon or
Canadian salmon using rule (11-77). Compute the apparent error rate, APER, and com-
pare this error rate with the error rate from the linear classification function discussed in
Example 11.8.

References

1. Anderson, E. “The Irises of the Gaspé Peninsula.” Bulletin of the American Iris Society,
59 (1939), 2–5.

2. Anderson, T. W. An Introduction to Multivariate Statistical Analysis (3rd ed.). New York:
John Wiley, 2003.

3. Bartlett, M. S.“An Inverse Matrix Adjustment Arising in Discriminant Analysis.” Annals
of Mathematical Statistics, 22 (1951), 107–111.

4. Bouma, B. N., et al. “Evaluation of the Detection Rate of Hemophilia Carriers.”
Statistical Methods for Clinical Decision Making, 7, no. 2 (1975), 339–350.

5. Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees.
Belmont, CA: Wadsworth, Inc., 1984.

6. Darroch, J. N., and J. E. Mosimann. “Canonical and Principal Components of Shape.”
Biometrika, 72, no. 1 (1985), 241–252.

7. Efron, B. “The Efficiency of Logistic Regression Compared to Normal Discriminant
Analysis.” Journal of the American Statistical Association, 81 (1975), 321–327.

8. Eisenbeis, R. A. “Pitfalls in the Application of Discriminant Analysis in Business,
Finance and Economics.” Journal of Finance, 32, no. 3 (1977), 875–900.

9. Fisher, R. A. “The Use of Multiple Measurements in Taxonomic Problems.” Annals of
Eugenics, 7 (1936), 179–188.

10. Fisher, R.A.“The Statistical Utilization of Multiple Measurements.” Annals of Eugenics,
8 (1938), 376–386.

11. Ganesalingam, S. “Classification and Mixture Approaches to Clustering via Maximum
Likelihood.” Applied Statistics, 38, no. 3 (1989), 455–466.

12. Geisser, S. “Discrimination, Allocatory and Separatory, Linear Aspects.” In Classificatio-
n and Clustering, edited by J. Van Ryzin, pp. 301–330. New York: Academic Press, 1977.

13. Gerrild, P. M., and R. J. Lantz. “Chemical Analysis of 75 Crude Oil Samples from
Pliocene Sand Units, Elk Hills Oil Field, California.” U.S. Geological Survey Open-File
Report, 1969.

14. Gnanadesikan, R. Methods for Statistical Data Analysis of Multivariate Observations
(2nd ed.). New York: Wiley-Interscience, 1997.

15. Habbema, J. D. F., J. Hermans, and K. Van Den Broek. “A Stepwise Discriminant
Analysis Program Using Density Estimation.” In Compstat 1974, Proc. Computational
Statistics, pp. 101–110. Vienna: Physica, 1974.

a = .05.

669



Chapter 11 Discrimination and Classification

16. Hills, M. “Allocation Rules and Their Error Rates.” Journal of the Royal Statistical
Society (B), 28 (1966), 1–31.

17. Hosmer, D. W. and S. Lemeshow. Applied Logistic Regression (2nd ed.). New York:
Wiley-Interscience, 2000.

18. Hudlet, R., and R. A. Johnson. “Linear Discrimination and Some Further Results on
Best Lower Dimensional Representations.” In Classification and Clustering, edited by
J. Van Ryzin, pp. 371–394. New York: Academic Press, 1977.

19. Johnson, W. “The Detection of Influential Observations for Allocation, Separation, and
the Determination of Probabilities in a Bayesian Framework.” Journal of Business and
Economic Statistics, 5, no. 3 (1987), 369–381.

20. Kendall, M. G. Multivariate Analysis. New York: Hafner Press, 1975.

21. Kim, H. and Loh,W.Y.,“Classification Trees with Unbiased Multiway Splits,” Journal of
the American Statistical Association, 96, (2001), 589–604.

22. Krzanowski, W. J. “The Performance of Fisher’s Linear Discriminant Function under
Non-Optimal Conditions.” Technometrics, 19, no. 2 (1977), 191–200.

23. Lachenbruch, P. A. Discriminant Analysis. New York: Hafner Press, 1975.

24. Lachenbruch, P. A., and M. R. Mickey. “Estimation of Error Rates in Discriminant
Analysis.” Technometrics, 10, no. 1 (1968), 1–11.

25. Loh, W. Y. and Shih, Y. S., “Split Selection Methods for Classification Trees,” Statistica
Sinica, 7, (1997), 815–840.

26. McCullagh, P., and J.A. Nelder. Generalized Linear Models (2nd ed.). London: Chapman
and Hall, 1989.

27. Mucciardi,A. N., and E. E. Gose.“A Comparison of Seven Techniques for Choosing Sub-
sets of Pattern Recognition Properties.” IEEE Trans. Computers, C20 (1971), 1023–1031.

28. Murray, G. D. “A Cautionary Note on Selection of Variables in Discriminant Analysis.”
Applied Statistics, 26, no. 3 (1977), 246–250.

29. Rencher, A. C. “Interpretation of Canonical Discriminant Functions, Canonical Variates
and Principal Components.” The American Statistician, 46 (1992), 217–225.

30. Stern, H. S. “Neural Networks in Applied Statistics.” Technometrics, 38, (1996), 205–214.

31. Wald, A. “On a Statistical Problem Arising in the Classification of an Individual into
One of Two Groups.” Annals of Mathematical Statistics, 15 (1944), 145–162.

32. Welch, B. L. “Note on Discriminant Functions.” Biometrika, 31 (1939), 218–220.

670



CLUSTERING, DISTANCE METHODS,
AND ORDINATION

12.1 Introduction
Rudimentary, exploratory procedures are often quite helpful in understanding
the complex nature of multivariate relationships. For example, throughout
this book, we have emphasized the value of data plots. In this chapter, we shall dis-
cuss some additional displays based on certain measures of distance and suggested
step-by-step rules (algorithms) for grouping objects (variables or items). Searching
the data for a structure of “natural” groupings is an important exploratory
technique. Groupings can provide an informal means for assessing dimensionality,
identifying outliers, and suggesting interesting hypotheses concerning relationships.

Grouping, or clustering, is distinct from the classification methods discussed in
the previous chapter. Classification pertains to a known number of groups, and the
operational objective is to assign new observations to one of these groups. Cluster
analysis is a more primitive technique in that no assumptions are made concerning
the number of groups or the group structure. Grouping is done on the basis of simi-
larities or distances (dissimilarities). The inputs required are similarity measures or
data from which similarities can be computed.

To illustrate the nature of the difficulty in defining a natural grouping, consider
sorting the 16 face cards in an ordinary deck of playing cards into clusters of similar
objects. Some groupings are illustrated in Figure 12.1. It is immediately clear that
meaningful partitions depend on the definition of similar.

In most practical applications of cluster analysis, the investigator knows enough
about the problem to distinguish “good” groupings from “bad” groupings. Why not
enumerate all possible groupings and select the “best” ones for further study?

C h a p t e r

12
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Chapter 12 Clustering, Distance Methods, and Ordination

For the playing-card example, there is one way to form a single group of
16 face cards, there are 32,767 ways to partition the face cards into two groups (of
varying sizes), there are 7,141,686 ways to sort the face cards into three groups
(of varying sizes), and so on.1 Obviously, time constraints make it impossible to
determine the best groupings of similar objects from a list of all possible struc-
tures. Even fast computers are easily overwhelmed by the typically large number
of cases, so one must settle for algorithms that search for good, but not necessarily
the best, groupings.

To summarize, the basic objective in cluster analysis is to discover natural
groupings of the items (or variables). In turn, we must first develop a quantitative
scale on which to measure the association (similarity) between objects. Section 12.2
is devoted to a discussion of similarity measures. After that section, we describe a
few of the more common algorithms for sorting objects into groups.

A

(a) Individual cards

K

Q

J

A

(c) Black and red suits

K

Q

J

A

(e) Hearts plus queen of spades
     and other suits (hearts)

K

Q

J

A

(b) Individual suits

K

Q

J

A

(d) Major and minor suits (bridge)

(f) Like face cards

K

Q

J

A

K

Q

J

Figure 12.1 Grouping face cards.

1The number of ways of sorting n objects into k nonempty groups is a Stirling number of the second

kind given by (See [1].) Adding these numbers for groups, we

obtain the total number of possible ways to sort n objects into groups.

k = 1, 2, Á , n11>k!2 a
k

j = 0
 1-12k - j

 ¢k

j
≤jn.
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Even without the precise notion of a natural grouping, we are often able to
group objects in two- or three-dimensional plots by eye. Stars and Chernoff faces,
discussed in Section 1.4, have been used for this purpose. (See Examples 1.11 and
1.12.) Additional procedures for depicting high-dimensional observations in two di-
mensions such that similar objects are, in some sense, close to one another are con-
sidered in Sections 12.5–12.7.

12.2 Similarity Measures
Most efforts to produce a rather simple group structure from a complex data set re-
quire a measure of “closeness,” or “similarity.” There is often a great deal of subjec-
tivity involved in the choice of a similarity measure. Important considerations
include the nature of the variables (discrete, continuous, binary), scales of measure-
ment (nominal, ordinal, interval, ratio), and subject matter knowledge.

When items (units or cases) are clustered, proximity is usually indicated by
some sort of distance. By contrast, variables are usually grouped on the basis of
correlation coefficients or like measures of association.

Distances and Similarity Coefficients for Pairs of Items

We discussed the notion of distance in Chapter 1, Section 1.5. Recall that the
Euclidean (straight-line) distance between two p-dimensional observations (items)

and is, from (1-12),

(12-1)

The statistical distance between the same two observations is of the form [see (1-23)]

(12-2)

Ordinarily, where S contains the sample variances and covariances.
However, without prior knowledge of the distinct groups, these sample quantities
cannot be computed. For this reason, Euclidean distance is often preferred for
clustering.

Another distance measure is the Minkowski metric

(12-3)

For measures the “city-block” distance between two points in p
dimensions. For becomes the Euclidean distance. In general, varying
m changes the weight given to larger and smaller differences.

d1x, y2m = 2,
d1x, y2m = 1,

d1x, y2 = Bap
i = 1

 ƒ   xi - yi  ƒ
mR1>m

A = S-1,

d1x, y2 = 21x - y2¿  A1x - y2

 = 21x - y2¿1x - y2

 d1x, y2 = 21x1 - y12
2

+ 1x2 - y22
2

+
Á

+ 1xp - yp2
2

y2 , Á , yp4y¿ = 3y1 ,x2 , Á , xp4x¿ = 3x1 ,
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Two additional popular measures of “distance” or dissimilarity are given by the
Canberra metric and the Czekanowski coefficient. Both of these measures are
defined for nonnegative variables only. We have

Canberra metric: (12-4)

Czekanowski coefficient: (12-5)

Whenever possible, it is advisable to use “true” distances—that is, distances satisfy-
ing the distance properties of (1-25)—for clustering objects. On the other hand,
most clustering algorithms will accept subjectively assigned distance numbers that
may not satisfy, for example, the triangle inequality.

When items cannot be represented by meaningful p-dimensional measure-
ments, pairs of items are often compared on the basis of the presence or absence of
certain characteristics. Similar items have more characteristics in common than do
dissimilar items. The presence or absence of a characteristic can be described
mathematically by introducing a binary variable, which assumes the value 1 if the
characteristic is present and the value 0 if the characteristic is absent. For 
binary variables, for instance, the “scores” for two items i and k might be arranged as
follows:

p = 5

 d1x, y2 = 1 -

2 a
p

i = 1
 min 1xi , yi2

a
p

i = 1
 1xi + yi2

 d1x, y2 = a
p

i = 1
 
ƒ   xi - yi  ƒ

1xi + yi2

Variables
1 2 3 4 5

Item i 1 0 0 1 1
Item k 1 1 0 1 0

In this case, there are two 1–1 matches, one 0–0 match, and two mismatches.
Let be the score (1 or 0) of the jth binary variable on the ith item and be the

score (again, 1 or 0) of the jth variable on the kth item, Consequently,

(12-6)

and the squared Euclidean distance, provides a count of the number 

of mismatches. A large distance corresponds to many mismatches—that is, dissimi-
lar items. From the preceding display, the square of the distance between items i and
k would be

 = 2

 a
5

j = 1
 1xi j - xk j2

2
= 11 - 122 + 10 - 122 + 10 - 022 + 11 - 122 + 11 - 022

a
p

j = 1
 1xi j - xk j2

2,

1xi j - xk j2
2

= b0 if xi j = xk j = 1 or xi j = xk j = 0
1 if xi j Z xk j

j = 1, 2, Á , p.
xk jxi j
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Although a distance based on (12-6) might be used to measure similarity, it suf-
fers from weighting the 1–1 and 0–0 matches equally. In some cases, a 1–1 match is a
stronger indication of similarity than a 0–0 match. For instance, in grouping people,
the evidence that two persons both read ancient Greek is stronger evidence of simi-
larity than the absence of this ability. Thus, it might be reasonable to discount the
0–0 matches or even disregard them completely. To allow for differential treatment
of the 1–1 matches and the 0–0 matches, several schemes for defining similarity co-
efficients have been suggested.

To introduce these schemes, let us arrange the frequencies of matches and mis-
matches for items i and k in the form of a contingency table:

In this table, a represents the frequency of 1–1 matches, b is the frequency of 1–0
matches, and so forth. Given the foregoing five pairs of binary outcomes, and

Table 12.1 lists common similarity coefficients defined in terms of the frequen-
cies in (12-7). A short rationale follows each definition.

b = c = d = 1.
a = 2

Table 12.1 Similarity Coefficients for Clustering Items*

Coefficient Rationale

1. Equal weights for 1–1 matches and 0–0 matches.

2. Double weight for 1–1 matches and 0–0 matches.

3. Double weight for unmatched pairs.

4. No 0–0 matches in numerator.

5. No 0–0 matches in numerator or denominator.
(The 0–0 matches are treated as irrelevant.)

6. No 0–0 matches in numerator or denominator.
Double weight for 1–1 matches.

7. No 0–0 matches in numerator or denominator.
Double weight for unmatched pairs.

8. Ratio of matches to mismatches with 0–0 matches
excluded.

*[p binary variables; see (12-7).]

a

b + c

a

a + 2 1b + c2

2a

2a + b + c

a

a + b + c

a
p

a + d

a + d + 2 1b + c2

2 1a + d2

2 1a + d2 + b + c

a + d
p

Item k
1 0 Totals

Item i
1 a b

(12-7)
0 c d

Totals p = a + b + c + db + da + c

c + d
a + b
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Coefficients 1, 2, and 3 in the table are monotonically related. Suppose
coefficient 1 is calculated for two contingency tables, Table I and Table II. Then
if ± ± we also have ± ± ±

± and coefficient 3 will be at least as large
for Table I as it is for Table II. (See Exercise 12.4.) Coefficients 5, 6, and 7 also re-
tain their relative orders.

Monotonicity is important, because some clustering procedures are not affected
if the definition of similarity is changed in a manner that leaves the relative orderings
of similarities unchanged. The single linkage and complete linkage hierarchical
procedures discussed in Section 12.3 are not affected. For these methods, any choice
of the coefficients 1, 2, and 3 in Table 12.1 will produce the same groupings. Similarly,
any choice of the coefficients 5, 6, and 7 will yield identical groupings.

Example 12.1 (Calculating the values of a similarity coefficient) Suppose five indi-
viduals possess the following characteristics:

bII + cII4,Ú  2 1aII + dII2>32 1aII + dII2
cI4dI2 + bIdI2>321aI21aIdII2>p,dI2>p Ú 1aII1aI

Eye Hair
Height Weight color color Handedness Gender

Individual 1 68 in 140 lb green blond right female
Individual 2 73 in 185 lb brown brown right male
Individual 3 67 in 165 lb blue blond right male
Individual 4 64 in 120 lb brown brown right female
Individual 5 76 in 210 lb brown brown left male

Define six binary variables as

The scores for individuals 1 and 2 on the binary variables arep = 6

 X3 = b1 brown eyes
0 otherwise

   X6 = b1 female
0 male

 X2 = b1 weight Ú 150 lb
0 weight 6 150 lb

   X5 = b1 right handed
0 left handed

 X1 = b1 height Ú 72 in.
0 height 6 72 in.

   X4 = b1 blond hair
0 not blond hair

X4 , X5 , X6X1 , X2 , X3 ,

Individual 1 0 0 0 1 1 1
2 1 1 1 0 1 0

X6X5X4X3X2X1

and the number of matches and mismatches are indicated in the two-way array

Individual 2

1 0 Total

Individual 1
1 1 2 3
0 3 0 3

Totals 4 2 6
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Employing similarity coefficient 1, which gives equal weight to matches, we
compute

Continuing with similarity coefficient 1, we calculate the remaining similarity
numbers for pairs of individuals. These are displayed in the symmetric
matrix

Individual

Individual

Based on the magnitudes of the similarity coefficient, we should conclude that
individuals 2 and 5 are most similar and individuals 1 and 5 are least similar. Other
pairs fall between these extremes. If we were to divide the individuals into two rela-
tively homogeneous subgroups on the basis of the similarity numbers, we might
form the subgroups and 

Note that implies an absence of brown eyes, so that two people, one
with blue eyes and one with green eyes, will yield a 0–0 match. Consequently, it may
be inappropriate to use similarity coefficient 1, 2, or 3 because these coefficients give
the same weights to 1–1 and 0–0 matches. �

We have described the construction of distances and similarities. It is always
possible to construct similarities from distances. For example, we might set

(12-8)

where is the similarity between items i and k and is the corre-
sponding distance.

However, distances that must satisfy (1-25) cannot always be constructed from
similarities. As Gower [11, 12] has shown, this can be done only if the matrix of sim-
ilarities is nonnegative definite. With the nonnegative definite condition, and with
the maximum similarity scaled so that 

(12-9)

has the properties of a distance.

Similarities and Association Measures for Pairs of Variables
Thus far, we have discussed similarity measures for items. In some applications, it is
the variables, rather than the items, that must be grouped. Similarity measures for
variables often take the form of sample correlation coefficients. Moreover, in some
clustering applications, negative correlations are replaced by their absolute values.

di k = 2211 - s
'

i k2

s
'

i i = 1,

di k0 6 s
'

i k … 1

s
'

i k =

1
1 + di k

X3 = 0
12 52.11 3 42
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When the variables are binary, the data can again be arranged in the form of a
contingency table. This time, however, the variables, rather than the items, delineate
the categories. For each pair of variables, there are n items categorized in the table.
With the usual 0 and 1 coding, the table becomes as follows:

Variable k
1 0 Totals

Variable i
1 a b

(12-10)
0 c d

Totals n = a + b + c + db + da + c

c + d
a + b

For instance, variable i equals 1 and variable k equals 0 for b of the n items.
The usual product moment correlation formula applied to the binary variables

in the contingency table of (12-10) gives (see Exercise 12.3)

(12-11)

This number can be taken as a measure of the similarity between the two variables.
The correlation coefficient in (12-11) is related to the chi-square statistic

for testing the independence of two categorical variables. For n fixed, a
large similarity (or correlation) is consistent with the presence of dependence.

Given the table in (12-10), measures of association (or similarity) exactly analo-
gous to the ones listed in Table 12.1 can be developed. The only change required is
the substitution of n (the number of items) for p (the number of variables).

Concluding Comments on Similarity

To summarize this section, we note that there are many ways to measure the simi-
larity between pairs of objects. It appears that most practitioners use distances [see
(12-1) through (12-5)] or the coefficients in Table 12.1 to cluster items and correla-
tions to cluster variables. However, at times, inputs to clustering algorithms may be
simple frequencies.

Example 12.2 (Measuring the similarities of 11 languages) The meanings of words
change with the course of history. However, the meaning of the numbers 
represents one conspicuous exception. Thus, a first comparison of languages might
be based on the numerals alone. Table 12.2 gives the first 10 numbers in English,
Polish, Hungarian, and eight other modern European languages. (Only languages
that use the Roman alphabet are considered, and accent marks, cedillas, diereses,
etc., are omitted.) A cursory examination of the spelling of the numerals in the table
suggests that the first five languages (English, Norwegian, Danish, Dutch, and Ger-
man) are very much alike. French, Spanish, and Italian are in even closer agreement.
Hungarian and Finnish seem to stand by themselves, and Polish has some of the
characteristics of the languages in each of the larger subgroups.

1, 2, 3, Á

1r2
= x2>n2

r =

ad - bc

31a + b2 1c + d2 1a + c2 1b + d241>2
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The words for 1 in French, Spanish, and Italian all begin with u. For illustrative
purposes, we might compare languages by looking at the first letters of the numbers.
We call the words for the same number in two different languages concordant if they
have the same first letter and discordant if they do not. From Table 12.2, the table of
concordances (frequencies of matching first initials) for the numbers 1–10 is given in
Table 12.3.We see that English and Norwegian have the same first letter for 8 of the
10 word pairs. The remaining frequencies were calculated in the same manner.

The results in Table 12.3 confirm our initial visual impression of Table 12.2.That
is, English, Norwegian, Danish, Dutch, and German seem to form a group. French,
Spanish, Italian, and Polish might be grouped together, whereas Hungarian and
Finnish appear to stand alone. �

In our examples so far, we have used our visual impression of similarity or dis-
tance measures to form groups.We now discuss less subjective schemes for creating
clusters.

12.3 Hierarchical Clustering Methods
We can rarely examine all grouping possibilities, even with the largest and fastest
computers. Because of this problem, a wide variety of clustering algorithms have
emerged that find “reasonable” clusters without having to look at all configurations.

Hierarchical clustering techniques proceed by either a series of successive
mergers or a series of successive divisions. Agglomerative hierarchical methods start
with the individual objects. Thus, there are initially as many clusters as objects. The
most similar objects are first grouped, and these initial groups are merged according
to their similarities. Eventually, as the similarity decreases, all subgroups are fused
into a single cluster.

Divisive hierarchical methods work in the opposite direction. An initial single
group of objects is divided into two subgroups such that the objects in one subgroup
are “far from” the objects in the other. These subgroups are then further divided
into dissimilar subgroups; the process continues until there are as many subgroups
as objects—that is, until each object forms a group.

Table 12.3 Concordant First Letters for Numbers in 11 Languages

E N Da Du G Fr Sp I P H Fi

E 10
N 8 10
Da 8 9 10
Du 3 5 4 10
G 4 6 5 5 10
Fr 4 4 4 1 3 10
Sp 4 4 5 1 3 8 10
I 4 4 5 1 3 9 9 10
P 3 3 4 0 2 5 7 6 10
H 1 2 2 2 1 0 0 0 0 10
Fi 1 1 1 1 1 1 1 1 1 2 10
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The results of both agglomerative and divisive methods may be displayed in the
form of a two-dimensional diagram known as a dendrogram. As we shall see, the
dendrogram illustrates the mergers or divisions that have been made at successive
levels.

In this section we shall concentrate on agglomerative hierarchical procedures
and, in particular, linkage methods. Excellent elementary discussions of divisive
hierarchical procedures and other agglomerative techniques are available in [3]
and [8].

Linkage methods are suitable for clustering items, as well as variables. This is
not true for all hierarchical agglomerative procedures. We shall discuss, in turn,
single linkage (minimum distance or nearest neighbor), complete linkage (maxi-
mum distance or farthest neighbor), and average linkage (average distance). The
merging of clusters under the three linkage criteria is illustrated schematically in
Figure 12.2.

From the figure, we see that single linkage results when groups are fused ac-
cording to the distance between their nearest members. Complete linkage occurs
when groups are fused according to the distance between their farthest members.
For average linkage, groups are fused according to the average distance between
pairs of members in the respective sets.

The following are the steps in the agglomerative hierarchical clustering algo-
rithm for grouping N objects (items or variables):

1. Start with N clusters, each containing a single entity and an symmetric
matrix of distances (or similarities) 

2. Search the distance matrix for the nearest (most similar) pair of clusters. Let the
distance between “most similar” clusters U and V be dU V .

D = 5di k6.
N * N

1

2

(a)

d24

Cluster distance

6

4

1

2
5

5

(b)

d154

1

2 5

(c)

3

3

3

d13 � d14 � d15 � d23 � d24 � d254

Figure 12.2 Intercluster distance (dissimilarity) for (a) single linkage, (b) complete
linkage, and (c) average linkage.
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3. Merge clusters U and V. Label the newly formed cluster Update the en-
tries in the distance matrix by (a) deleting the rows and columns corresponding
to clusters U and V and (b) adding a row and column giving the distances be-
tween cluster and the remaining clusters.

4. Repeat Steps 2 and 3 a total of times. (All objects will be in a single
cluster after the algorithm terminates.) Record the identity of clusters that
are merged and the levels (distances or similarities) at which the mergers take
place. (12-12)

The ideas behind any clustering procedure are probably best conveyed through
examples, which we shall present after brief discussions of the input and algorithmic
components of the linkage methods.

Single Linkage
The inputs to a single linkage algorithm can be distances or similarities between
pairs of objects. Groups are formed from the individual entities by merging nearest
neighbors, where the term nearest neighbor connotes the smallest distance or largest
similarity.

Initially, we must find the smallest distance in and merge the
corresponding objects, say, U and V, to get the cluster . For Step 3 of the general
algorithm of (12-12), the distances between and any other cluster W are
computed by

(12-13)

Here the quantities and are the distances between the nearest neighbors
of clusters U and W and clusters V and W, respectively.

The results of single linkage clustering can be graphically displayed in the form
of a dendrogram, or tree diagram. The branches in the tree represent clusters. The
branches come together (merge) at nodes whose positions along a distance (or
similarity) axis indicate the level at which the fusions occur. Dendrograms for some
specific cases are considered in the following examples.

Example 12.3 (Clustering using single linkage) To illustrate the single linkage
algorithm, we consider the hypothetical distances between pairs of five objects as
follows:

Treating each object as a cluster, we commence clustering by merging the two
closest items. Since

min
i, k

 1di k2 = d5 3 = 2

D = 5di k6 =  

 

1
2
3
4
5

 E
1 2 3 4 5
0     

9 0    

3 7 0   

6 5 9 0  

11 10 2 8 0

U

dV WdU W

d1U V2W = min 5dU W , dV W6

1UV2
1UV2

D = 5di k6

N - 1
1UV2

1UV2.
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objects 5 and 3 are merged to form the cluster (35). To implement the next level of
clustering, we need the distances between the cluster (35) and the remaining objects,
1, 2, and 4. The nearest neighbor distances are

Deleting the rows and columns of D corresponding to objects 3 and 5, and adding a
row and column for the cluster (35), we obtain the new distance matrix

The smallest distance between pairs of clusters is now and we merge
cluster (1) with cluster (35) to get the next cluster, (135). Calculating

we find that the distance matrix for the next level of clustering is

The minimum nearest neighbor distance between pairs of clusters is and we
merge objects 4 and 2 to get the cluster (24).

At this point we have two distinct clusters, (135) and (24). Their nearest neigh-
bor distance is

The final distance matrix becomes

Consequently, clusters (135) and (24) are merged to form a single cluster of all five
objects, (12345), when the nearest neighbor distance reaches 6.

The dendrogram picturing the hierarchical clustering just concluded is shown in
Figure 12.3. The groupings and the distance levels at which they occur are clearly
illustrated by the dendrogram. �

In typical applications of hierarchical clustering, the intermediate results—
where the objects are sorted into a moderate number of clusters—are of chief
interest.

 

11352
1242

 B11352 1242
0  

6 0
R

d11352 1242 = min 5d113522 , d1135246 = min 57, 66 = 6

d42 = 5,

 

11352
2
4

 C 11352 2 4
0   

7 0  

6 5 0

  S
 d113524 = min 5d13524 , d1 46 = min 58, 66 = 6

 d113522 = min 5d13522 , d1 26 = min 57, 96 = 7

d13521 = 3,

 

1352
1
2
4

 D
1352 1 2 4

0    

3 0   

7 9 0  

8 6 5 0

T

 d13524 = min 5d34 , d546 = min 59, 86 = 8

 d13522 = min 5d32 , d526 = min 57, 106 = 7

 d13521 = min 5d31 , d516 = min 53, 116 = 3
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Example 12.4 (Single linkage clustering of 11 languages) Consider the array of con-
cordances in Table 12.3 representing the closeness between the numbers 1–10 in 11
languages. To develop a matrix of distances, we subtract the concordances from the
perfect agreement figure of 10 that each language has with itself. The subsequent
assignments of distances are

We first search for the minimum distance between pairs of languages (clusters).
The minimum distance, 1, occurs between Danish and Norwegian, Italian and
French, and Italian and Spanish. Numbering the languages in the order in which
they appear across the top of the array, we have

Since we can merge only clusters 8 and 6 or clusters 8 and 7. We cannot
merge clusters 6, 7, and 8 at level 1. We choose first to merge 6 and 8, and then to
update the distance matrix and merge 2 and 3 to obtain the clusters (68) and (23).
Subsequent computer calculations produce the dendrogram in Figure 12.4.

From the dendrogram, we see that Norwegian and Danish, and also French and
Italian, cluster at the minimum distance (maximum similarity) level. When the
allowable distance is increased, English is added to the Norwegian–Danish group,

d76 = 2,

d32 = 1;  d86 = 1; and d87 = 1
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Hierarchical Clustering Methods

and Spanish merges with the French–Italian group. Notice that Hungarian and
Finnish are more similar to each other than to the other clusters of languages. How-
ever, these two clusters (languages) do not merge until the distance between nearest
neighbors has increased substantially. Finally, all the clusters of languages are
merged into a single cluster at the largest nearest neighbor distance, 9. �

Since single linkage joins clusters by the shortest link between them, the tech-
nique cannot discern poorly separated clusters. [See Figure 12.5(a).] On the other
hand, single linkage is one of the few clustering methods that can delineate nonel-
lipsoidal clusters. The tendency of single linkage to pick out long stringlike clusters
is known as chaining. [See Figure 12.5(b).] Chaining can be misleading if items at
opposite ends of the chain are, in fact, quite dissimilar.
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Figure 12.5 Single linkage clusters.

The clusters formed by the single linkage method will be unchanged by any as-
signment of distance (similarity) that gives the same relative orderings as the initial
distances (similarities). In particular, any one of a set of similarity coefficients from
Table 12.1 that are monotonic to one another will produce the same clustering.

Complete Linkage

Complete linkage clustering proceeds in much the same manner as single linkage
clusterings, with one important exception: At each stage, the distance (similarity)
between clusters is determined by the distance (similarity) between the two
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Chapter 12 Clustering, Distance Methods, and Ordination

elements, one from each cluster, that are most distant. Thus, complete linkage
ensures that all items in a cluster are within some maximum distance (or minimum
similarity) of each other.

The general agglomerative algorithm again starts by finding the minimum entry
in and merging the corresponding objects, such as U and V, to get cluster

. For Step 3 of the general algorithm in (12-12), the distances between 
and any other cluster W are computed by

(12-14)

Here and are the distances between the most distant members of clusters
U and W and clusters V and W, respectively.

Example 12.5 (Clustering using complete linkage) Let us return to the distance
matrix introduced in Example 12.3:

At the first stage, objects 3 and 5 are merged, since they are most similar. This gives
the cluster (35). At stage 2, we compute

and the modified distance matrix becomes

The next merger occurs between the most similar groups, 2 and 4, to give the cluster
(24). At stage 3, we have

and the distance matrix
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The next merger produces the cluster (124). At the final stage, the groups (35) and
(124) are merged as the single cluster (12345) at level

The dendrogram is given in Figure 12.6. �

Comparing Figures 12.3 and 12.6, we see that the dendrograms for single link-
age and complete linkage differ in the allocation of object 1 to previous groups.

Example 12.6 (Complete linkage clustering of 11 languages) In Example 12.4, we
presented a distance matrix for numbers in 11 languages.The complete linkage clus-
tering algorithm applied to this distance matrix produces the dendrogram shown in
Figure 12.7.

Comparing Figures 12.7 and 12.4, we see that both hierarchical methods yield the
English–Norwegian–Danish and the French–Italian–Spanish language groups. Polish is
merged with French–Italian–Spanish at an intermediate level. In addition, both meth-
ods merge Hungarian and Finnish only at the penultimate stage.

However, the two methods handle German and Dutch differently. Single link-
age merges German and Dutch at an intermediate distance, and these two lan-
guages remain a cluster until the final merger. Complete linkage merges German

d11242 1352 = max 5d11352 , d1242 13526 = max 511, 106 = 11
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with the English–Norwegian–Danish group at an intermediate level. Dutch remains
a cluster by itself until it is merged with the English–Norwegian–Danish–German
and French–Italian–Spanish–Polish groups at a higher distance level. The final com-
plete linkage merger involves two clusters. The final merger in single linkage in-
volves three clusters. �

Example 12.7 (Clustering variables using complete linkage) Data collected on 22
U.S. public utility companies for the year 1975 are listed in Table 12.4. Although it is
more interesting to group companies, we shall see here how the complete linkage al-
gorithm can be used to cluster variables.We measure the similarity between pairs of

Table 12.4 Public Utility Data (1975)

Variables

Company

1. Arizona Public Service 1.06 9.2 151 54.4 1.6 9077 0. .628
2. Boston Edison Co. .89 10.3 202 57.9 2.2 5088 25.3 1.555
3. Central Louisiana Electric Co. 1.43 15.4 113 53.0 3.4 9212 0. 1.058
4. Commonwealth Edison Co. 1.02 11.2 168 56.0 .3 6423 34.3 .700
5. Consolidated Edison Co. (N.Y.) 1.49 8.8 192 51.2 1.0 3300 15.6 2.044
6. Florida Power & Light Co. 1.32 13.5 111 60.0 11127 22.5 1.241
7. Hawaiian Electric Co. 1.22 12.2 175 67.6 2.2 7642 0. 1.652
8. Idaho Power Co. 1.10 9.2 245 57.0 3.3 13082 0. .309
9. Kentucky Utilities Co. 1.34 13.0 168 60.4 7.2 8406 0. .862

10. Madison Gas & Electric Co. 1.12 12.4 197 53.0 2.7 6455 39.2 .623
11. Nevada Power Co. .75 7.5 173 51.5 6.5 17441 0. .768
12. New England Electric Co. 1.13 10.9 178 62.0 3.7 6154 0. 1.897
13. Northern States Power Co. 1.15 12.7 199 53.7 6.4 7179 50.2 .527
14. Oklahoma Gas & Electric Co. 1.09 12.0 96 49.8 1.4 9673 0. .588
15. Pacific Gas & Electric Co. .96 7.6 164 62.2 6468 .9 1.400
16. Puget Sound Power & Light Co. 1.16 9.9 252 56.0 9.2 15991 0. .620
17. San Diego Gas & Electric Co. .76 6.4 136 61.9 9.0 5714 8.3 1.920
18. The Southern Co. 1.05 12.6 150 56.7 2.7 10140 0. 1.108
19. Texas Utilities Co. 1.16 11.7 104 54.0 13507 0. .636
20. Wisconsin Electric Power Co. 1.20 11.8 148 59.9 3.5 7287 41.1 .702
21. United Illuminating Co. 1.04 8.6 204 61.0 3.5 6650 0. 2.116
22. Virginia Electric & Power Co. 1.07 9.3 174 54.3 5.9 10093 26.6 1.306

KEY: Fixed-charge coverage ratio (income/debt).
Rate of return on capital.
Cost per KW capacity in place.
Annual load factor.
Peak kWh demand growth from 1974 to 1975.
Sales (kWh use per year).
Percent nuclear.
Total fuel costs (cents per kWh).

Source: Data courtesy of H. E. Thompson.
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variables by the product-moment correlation coefficient. The correlation matrix is
given in Table 12.5.

When the sample correlations are used as similarity measures, variables with
large negative correlations are regarded as very dissimilar; variables with large pos-
itive correlations are regarded as very similar. In this case, the “distance” between
clusters is measured as the smallest similarity between members of the correspond-
ing clusters. The complete linkage algorithm, applied to the foregoing similarity ma-
trix, yields the dendrogram in Figure 12.8.

We see that variables 1 and 2 (fixed-charge coverage ratio and rate of return on
capital), variables 4 and 8 (annual load factor and total fuel costs), and variables 3
and 5 (cost per kilowatt capacity in place and peak kilowatthour demand growth)
cluster at intermediate “similarity” levels.Variables 7 (percent nuclear) and 6 (sales)
remain by themselves until the final stages. The final merger brings together the
(12478) group and the (356) group. �

As in single linkage, a “new” assignment of distances (similarities) that have the
same relative orderings as the initial distances will not change the configuration of
the complete linkage clusters.

Table 12.5 Correlations Between Pairs of Variables (Public Utility Data)
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dendrogram for similarities among
eight utility company variables.

689



Chapter 12 Clustering, Distance Methods, and Ordination

Average Linkage

Average linkage treats the distance between two clusters as the average distance
between all pairs of items where one member of a pair belongs to each cluster.

Again, the input to the average linkage algorithm may be distances or similari-
ties, and the method can be used to group objects or variables. The average linkage
algorithm proceeds in the manner of the general algorithm of (12-12). We begin by
searching the distance matrix to find the nearest (most similar) objects—
for example, U and V. These objects are merged to form the cluster . For Step
3 of the general agglomerative algorithm, the distances between and the other
cluster W are determined by

(12-15)

where is the distance between object i in the cluster and object k in the
cluster W, and and are the number of items in clusters and W,
respectively.

Example 12.8 (Average linkage clustering of 11 languages) The average linkage al-
gorithm was applied to the “distances” between 11 languages given in Example 12.4.
The resulting dendrogram is displayed in Figure 12.9.
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Figure 12.9 Average linkage
dendrogram for distances between
numbers in 11 languages.

A comparison of the dendrogram in Figure 12.9 with the corresponding single
linkage dendrogram (Figure 12.4) and complete linkage dendrogram (Figure 12.7)
indicates that average linkage yields a configuration very much like the complete
linkage configuration. However, because distance is defined differently for each
case, it is not surprising that mergers take place at different levels. �

Example 12.9 (Average linkage clustering of public utilities) An average linkage
algorithm applied to the Euclidean distances between 22 public utilities (see 
Table 12.6) produced the dendrogram in Figure 12.10 on page 692.
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Concentrating on the intermediate clusters, we see that the utility companies
tend to group according to geographical location. For example, one intermediate
cluster contains the firms 1 (Arizona Public Service), 18 (The Southern Company—
primarily Georgia and Alabama), 19 (Texas Utilities Company), and 14 (Oklahoma
Gas and Electric Company). There are some exceptions. The cluster (7, 12, 21, 15, 2)
contains firms on the eastern seaboard and in the far west. On the other hand, all
these firms are located near the coasts. Notice that Consolidated Edison Company
of New York and San Diego Gas and Electric Company stand by themselves until
the final amalgamation stages.

It is, perhaps, not surprising that utility firms with similar locations (or types of
locations) cluster. One would expect regulated firms in the same area to use, basi-
cally, the same type of fuel(s) for power plants and face common markets. Conse-
quently, types of generation, costs, growth rates, and so forth should be relatively
homogeneous among these firms. This is apparently reflected in the hierarchical
clustering. �

For average linkage clustering, changes in the assignment of distances (similari-
ties) can affect the arrangement of the final configuration of clusters, even though
the changes preserve relative orderings.

Ward’s Hierarchical Clustering Method

Ward [32] considered hierarchical clustering procedures based on minimizing the
‘loss of information’ from joining two groups. This method is usually implemented
with loss of information taken to be an increase in an error sum of squares criterion,
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Figure 12.10 Average linkage dendrogram for distances between 22 public utility
companies.
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ESS. First, for a given cluster k, let be the sum of the squared deviations of
every item in the cluster from the cluster mean (centroid). If there are currently K
clusters, define ESS as the sum of the or = ± ±
At each step in the analysis, the union of every possible pair of clusters is considered,
and the two clusters whose combination results in the smallest increase in ESS (min-
imum loss of information) are joined. Initially, each cluster consists of a single item,
and, if there are N items, so At the other ex-
treme, when all the clusters are combined in a single group of N items, the value of
ESS is given by

where is the multivariate measurement associated with the jth item and is the
mean of all the items.

The results of Ward’s method can be displayed as a dendrogram. The vertical
axis gives the values of ESS at which the mergers occur.

Ward’s method is based on the notion that the clusters of multivariate observa-
tions are expected to be roughly elliptically shaped. It is a hierarchical precursor to
nonhierarchical clustering methods that optimize some criterion for dividing data
into a given number of elliptical groups. We discuss nonhierarchical clustering pro-
cedures in the next section.Additional discussion of optimization methods of cluster
analysis is contained in [8].

Example 12.10 (Clustering pure malt scotch whiskies) Virtually all the world’s pure
malt Scotch whiskies are produced in Scotland. In one study (see [22]), 68 binary
variables were created measuring characteristics of Scotch whiskey that can be
broadly classified as color, nose, body, palate, and finish. For example, there were
14 color characteristics (descriptions), including white wine, yellow, very pale, pale,
bronze, full amber, red, and so forth. LaPointe and Legendre clustered 109 pure malt
Scotch whiskies, each from a different distillery. The investigators were interested in
determining the major types of single-malt whiskies, their chief characteristics, and
the best representative. In addition, they wanted to know whether the groups pro-
duced by the hierarchical clustering procedure corresponded to different geograph-
ical regions, since it is known that whiskies are affected by local soil, temperature,
and water conditions.

Weighted similarity coefficients were created from binary variables repre-
senting the presence or absence of characteristics. The resulting “distances,” defined
as = were used with Ward’s method to group the 109 pure (single-)
malt Scotch whiskies. The resulting dendrogram is shown in Figure 12.11. (An aver-
age linkage procedure applied to a similarity matrix produced almost exactly the
same classification.)

The groups labelled A–L in the figure are the 12 groups of similar Scotches
identified by the investigators. A follow-up analysis suggested that these 12 
groups have a large geographic component in the sense that Scotches with similar
characteristics tend to be produced by distilleries that are located reasonably

1 - si k6,5di k

5si k6

x–xj

ESS = a
N

j = 1
 1xj - x–2œ1xj - x–2

ESS = 0.k = 1, 2, Á , N,ESSk = 0,

ESSK .ESS2 + ÁESS1ESSESSk

ESSk

693



Chapter 12 Clustering, Distance Methods, and Ordination

close to one another. Consequently, the investigators concluded, “The relationship
with geographic features was demonstrated, supporting the hypothesis that
whiskies are affected not only by distillery secrets and traditions but also by fac-
tors dependent on region such as water, soil, microclimate, temperature and even
air quality.” �
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Figure 12.11 A dendrogram for similarities between 109 pure malt Scotch 
whiskies.
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Final Comments—Hierarchical Procedures

There are many agglomerative hierarchical clustering procedures besides single
linkage, complete linkage, and average linkage. However, all the agglomerative pro-
cedures follow the basic algorithm of (12-12).

As with most clustering methods, sources of error and variation are not formal-
ly considered in hierarchical procedures.This means that a clustering method will be
sensitive to outliers, or “noise points.”

In hierarchical clustering, there is no provision for a reallocation of objects that
may have been “incorrectly” grouped at an early stage. Consequently, the final
configuration of clusters should always be carefully examined to see whether it is
sensible.

For a particular problem, it is a good idea to try several clustering methods and,
within a given method, a couple different ways of assigning distances (similarities).
If the outcomes from the several methods are (roughly) consistent with one anoth-
er, perhaps a case for “natural” groupings can be advanced.

The stability of a hierarchical solution can sometimes be checked by applying
the clustering algorithm before and after small errors (perturbations) have been
added to the data units. If the groups are fairly well distinguished, the clusterings
before perturbation and after perturbation should agree.

Common values (ties) in the similarity or distance matrix can produce multi-
ple solutions to a hierarchical clustering problem. That is, the dendrograms corre-
sponding to different treatments of the tied similarities (distances) can be
different, particularly at the lower levels. This is not an inherent problem of any
method; rather, multiple solutions occur for certain kinds of data. Multiple solu-
tions are not necessarily bad, but the user needs to know of their existence so that
the groupings (dendrograms) can be properly interpreted and different groupings
(dendrograms) compared to assess their overlap. A further discussion of this issue
appears in [27].

Some data sets and hierarchical clustering methods can produce inversions.
(See [27].) An inversion occurs when an object joins an existing cluster at a smaller
distance (greater similarity) than that of a previous consolidation. An inversion is
represented two different ways in the following diagram:

0
A B C D

20

30
32

(i)

0
A B C D

20

32

30

(ii)
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In this example, the clustering method joins A and B at distance 20. At the next
step, C is added to the group (AB) at distance 32. Because of the nature of the clus-
tering algorithm, D is added to group (ABC) at distance 30, a smaller distance than
the distance at which C joined (AB). In (i) the inversion is indicated by a dendro-
gram with crossover. In (ii), the inversion is indicated by a dendrogram with a non-
monotonic scale.

Inversions can occur when there is no clear cluster structure and are generally
associated with two hierarchical clustering algorithms known as the centroid
method and the median method. The hierarchical procedures discussed in this book
are not prone to inversions.

12.4 Nonhierarchical Clustering Methods
Nonhierarchical clustering techniques are designed to group items, rather than vari-
ables, into a collection of K clusters. The number of clusters, K, may either be speci-
fied in advance or determined as part of the clustering procedure. Because a matrix
of distances (similarities) does not have to be determined, and the basic data do not
have to be stored during the computer run, nonhierarchical methods can be applied
to much larger data sets than can hierarchical techniques.

Nonhierarchical methods start from either (1) an initial partition of items into
groups or (2) an initial set of seed points, which will form the nuclei of clusters.
Good choices for starting configurations should be free of overt biases. One way to
start is to randomly select seed points from among the items or to randomly parti-
tion the items into initial groups.

In this section, we discuss one of the more popular nonhierarchical procedures,
the K-means method.

K-means Method

MacQueen [25] suggests the term K-means for describing an algorithm of his that
assigns each item to the cluster having the nearest centroid (mean). In its simplest
version, the process is composed of these three steps:

1. Partition the items into K initial clusters.

2. Proceed through the list of items, assigning an item to the cluster whose centroid
(mean) is nearest. (Distance is usually computed using Euclidean distance with
either standardized or unstandardized observations.) Recalculate the centroid
for the cluster receiving the new item and for the cluster losing the item.

3. Repeat Step 2 until no more reassignments take place. (12-16)

Rather than starting with a partition of all items into K preliminary groups 
in Step 1, we could specify K initial centroids (seed points) and then proceed to
Step 2.

The final assignment of items to clusters will be, to some extent, dependent
upon the initial partition or the initial selection of seed points. Experience suggests
that most major changes in assignment occur with the first reallocation step.
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Example 12.11 (Clustering using the K-means method) Suppose we measure two
variables and for each of four items A, B, C, and D. The data are given in the
following table:

X2X1

Observations

Item

A 5 3
B 1
C 1
D -2-3

-2
-1

x2x1

Coordinates of centroid

Cluster

-2 + 1-22
2

= -2
1 + 1-32

2
= -11CD2

3 + 1
2

= 2
5 + 1-12

2
= 21AB2

x–2x–1

The objective is to divide these items into clusters such that the
items within a cluster are closer to one another than they are to the items in
different clusters. To implement the -means method, we arbitrarily parti-
tion the items into two clusters, such as and and compute the co-
ordinates of the cluster centroid (mean). Thus, at Step 1, we have1xq1 , xq22

1CD2,1AB2
K = 2

K = 2

At Step 2, we compute the Euclidean distance of each item from the group
centroids and reassign each item to the nearest group. If an item is moved from the
initial configuration, the cluster centroids (means) must be updated before proceed-
ing. The ith coordinate, of the centroid is easily updated using the
formulas:

if the jth item is added to a group

if the jth item is removed from a group

Here n is the number of items in the “old” group with centroid 
Consider the initial clusters (AB) and (CD). The coordinates of the centroids are 

(2, 2) and (21, 22) respectively. Suppose item A with coordinates (5, 3) is moved to
the (CD) group.The new groups are (B) and (ACD) with updated centroids:

Group (B) the coordinates of B

Group (ACD) x–1, new =
21-12 + 5

2 + 1
= 1 x–2, new =

21-22 + 3

2 + 1
= - .33

x–1, new =
2122 - 5

2 - 1
= -1 x–2, new =

2122 - 3

2 - 1
= 1,

x– ¿ = 1x–1, x–2, . . . , x– p2.

xqi, new =
nxqi - xji

n - 1

xqi, new =
nxqi + xji

n + 1

i = 1, 2, . . . , p,
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Returning to the initial groupings in Step 1, we compute the squared distances

if A is not moved

if A is moved to the (CD) group

Since A is closer to the center of (AB) than it is to the center of (ACD), it is not
reassigned.

Continuing, we consider reassigning B. We get

if B is not moved

if B is moved to the (CD) group

Since B is closer to the center of (BCD) than it is to the center of (AB), B is reas-
signed to the (CD) group. We now have the clusters (A) and (BCD) with centroid
coordinates (5, 3) and (�1, �1) respectively.

We check C for reassignment.

if C is not moved

if C is moved to the (A) group

Since C is closer to the center of the BCD group than it is to the center of the AC
group, C is not moved. Continuing in this way, we find that no more reassignments
take place and the final clusters are (A) and (BCD).

For the final clusters, we have
K = 2

d21C,1BD22 = 11 + 222 + 1-2 + .522 = 11.25

d21C,1AC22 = 11 - 322 + 1-2 - .522 = 10.25

d21C,1BCD22 = 11 + 122 + 1-2 + 122 = 5

d21C,1A22 = 11 - 522 + 1-2 - 322 = 41

d21B,1BCD22 = 1-1 + 122 + 11 + 122 = 4

d21B,1A222 = 1-1-522 + 11 - 322 = 40

d21B,1CD22 = 1-1 + 122 + 11 + 222 = 9

d21B,1AB22 = 1-1 - 222 + 11 - 222 = 10

d21A,1ACD22 = 15 - 122 + 13 + .3322 = 27.09

d21A,1B22 = 15 + 122 + 13 - 122 = 40

 d21A,1CD22 = 15 + 122 + 13 + 222 = 61

 d21A,1AB22 = 15 - 222 + 13 - 222 = 10

The within cluster sum of squares (sum of squared distances to centroid) are

Equivalently, we can determine the clusters by using the criterion

min E = ad2
i, c1i2

K = 2

Cluster 1BCD2: 4 + 5 + 5 = 14
Cluster A:  0

Squared distances to
group centroids

Item

Cluster A B C D

A 0 40 41 89
52 4 5 51BCD2
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where the minimum is over the number of clusters and is the squared
distance of case i from the centroid (mean) of the assigned cluster.

In this example, there are seven possibilities for clusters:

For the A, (BCD) pair:

Consequently,

For the remaining pairs, you may verify that

Since the smallest occurs for the pair of clusters (A) and (BCD), this is the

final partition. �

To check the stability of the clustering, it is desirable to rerun the algorithm with
a new initial partition. Once clusters are determined, intuitions concerning their in-
terpretations are aided by rearranging the list of items so that those in the first clus-
ter appear first, those in the second cluster appear next, and so forth. A table of the
cluster centroids (means) and within-cluster variances also helps to delineate group
differences.

Example 12.12 (K-means clustering of public utilities) Let us return to the problem
of clustering public utilities using the data in Table 12.4. The K-means algorithm for
several choices of K was run. We present a summary of the results for and

In general, the choice of a particular K is not clear cut and depends upon
subject-matter knowledge, as well as data-based appraisals. (Data-based appraisals
might include choosing K so as to maximize the between-cluster variability relative

K = 5.
K = 4

ad2
i, c1i2

 1AD2, 1BC2 ad2
i, c1i2 = 51.3

 1AC2, 1BD2 ad2
i, c1i2 = 27

 1AB2, 1CD2 ad2
i, c1i2 = 28

 D, 1ABC2 ad2
i, c1i2 = 31.3

 C, 1ABD2 ad2
i, c1i2 = 27.7

 B, 1ACD2 ad2
i, c1i2 = 48.7

ad2
i, c1i2 = 0 + 14 = 14

 1BCD2  d2
B, c1B2 + d2

C, c1C2 + d2
D, c1D2 = 4 + 5 + 5 = 14

 A  d2
A, c1A2 = 0

1AD2, 1BC2
1AC2, 1BD2

1AB2, 1CD2

D, 1ABC2

C, 1ABD2

B, 1ACD2

A, 1BCD2

K = 2

d2
i, c1i2K = 2
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to the within-cluster variability. Relevant measures might include 
[see (6-38)] and ) The summary is as follows:tr 1W-1

 B2.
ƒ W ƒ  > ƒ B + W ƒ

Number of
Cluster firms Firms

Idaho Power Co. (8), Nevada Power Co. (11), Puget
1 5 Sound Power & Light Co. (16), Virginia Electric &

Power Co. (22), Kentucky Utilities Co. (9).
Central Louisiana Electric Co. (3), Oklahoma Gas & Electric

2 6 Co. (14), The Southern Co. (18), Texas Utilities Co. (19),
Arizona Public Service (1), Florida Power & Light Co. (6).
New England Electric Co. (12), Pacific Gas & Electric

3 5 Co. (15), San Diego Gas & Electric Co. (17),
United Illuminating Co. (21), Hawaiian Electric Co. (7).
Consolidated Edison Co. (N.Y.) (5), Boston Edison Co.

4 6 (2), Madison Gas & Electric Co. (10), Northern States
Power Co. (13), Wisconsin Electric Power Co.
(20), Commonwealth Edison Co. (4).

K = 4

bbb
c

Distances between Cluster Centers

 

1
2
3
4

 D
1 2 3 4
0    

3.08 0   

3.29 3.56 0  

3.05 2.84 3.18 0

T

b
b
b
b
b

Number of
Cluster firms Firms

Nevada Power Co. (11), Puget Sound Power & Light
1 5 Co. (16), Idaho Power Co. (8), Virginia Electric & Power Co.

(22), Kentucky Utilities Co. (9).

Central Louisiana Electric Co. (3), Texas Utilities Co. (19),
2 6 Oklahoma Gas & Electric Co. (14), The Southern Co.

(18), Arizona Public Service (1), Florida Power & Light Co. (6).

New England Electric Co. (12), Pacific Gas & Electric
3 5 Co. (15), San Diego Gas & Electric Co. (17), United

Illuminating Co. (21), Hawaiian Electric Co. (7).

4 2 Consolidated Edison Co. (N.Y.) (5), Boston
Edison Co. (2).

5 4 Commonwealth Edison Co. (4), Madison Gas & Electric Co. (10),
Northern States Power Co. (13),Wisconsin Electric Power Co. (20).

K = 5
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Distances between Cluster Centers

The cluster profiles shown in Figure 12.12 order the eight variables
according to the ratios of their between-cluster variability to their within-cluster
variability. [For univariate F-ratios, see Section 6.4.] We have

so firms within different clusters are widely separated with respect to percent nu-
clear, but firms within the same cluster show little percent nuclear variation. Fuel
costs (FUELC) and annual sales (SALES) also seem to be of some importance in
distinguishing the clusters.

Reviewing the firms in the five clusters, it is apparent that the K-means method
gives results generally consistent with the average linkage hierarchical method. (See
Example 12.9.) Firms with common or compatible geographical locations cluster.
Also, the firms in a given cluster seem to be roughly the same in terms of percent
nuclear. �

We must caution, as we have throughout the book, that the importance of
individual variables in clustering must be judged from a multivariate perspective.
All of the variables (multivariate observations) determine the cluster means and
the reassignment of items. In addition, the values of the descriptive statistics
measuring the importance of individual variables are functions of the number of
clusters and the final configuration of the clusters. On the other hand, descriptive
measures can be helpful, after the fact, in assessing the “success” of the clustering
procedure.

Final Comments—Nonhierarchical Procedures

There are strong arguments for not fixing the number of clusters, K, in advance,
including the following:

1. If two or more seed points inadvertently lie within a single cluster, their resulting
clusters will be poorly differentiated.

Fnuc =

mean square percent nuclear between clusters

mean square percent nuclear within clusters
=

3.335
.255

= 13.1

1K = 52

 

1
2
3
4
5

 E
1 2 3 4 5
0     

3.08 0    

3.29 3.56 0   

3.63 3.46 2.63 0  

3.18 2.99 3.81 2.89 0

 U
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Clustering Based on Statistical Models

2. The existence of an outlier might produce at least one group with very disperse
items.

3. Even if the population is known to consist of K groups, the sampling method
may be such that data from the rarest group do not appear in the sample. Forc-
ing the data into K groups would lead to nonsensical clusters.

In cases in which a single run of the algorithm requires the user to specify K, it
is always a good idea to rerun the algorithm for several choices.

Discussions of other nonhierarchical clustering procedures are available in [3],
[8], and [16].

12.5 Clustering Based on Statistical Models
The popular clustering methods discussed earlier in this chapter, including single
linkage, complete linkage, average linkage, Ward’s method and K-means cluster-
ing, are intuitively reasonable procedures but that is as much as we can say with-
out having a model to explain how the observations were produced. Major
advances in clustering methods have been made through the introduction of sta-
tistical models that indicate how the collection of ( ) measurements from
the N objects, was generated. The most common model is one where cluster k has
expected proportion of the objects and the corresponding measurements are
generated by a probability density function Then, if there are K clusters, the
observation vector for a single object is modeled as arising from the mixing distri-
bution

where each and This distribution is called a mixture of
the K distributions because the observation is generated
from the component distribution with probability The collection of N ob-
servation vectors generated from this distribution will be a mixture of observations
from the component distributions.

The most common mixture model is a mixture of multivariate normal distribu-
tions where the k-th component is the density function.

The normal mixture model for one observation x is

(12-17)

Clusters generated by this model are ellipsoidal in shape with the heaviest concen-
tration of observations near the center.

= a
K

k = 1
pk 

1

12p2p>2 ƒ   �k  ƒ  
1>2 exp a-  

1
2

 1x - Mk2¿  �-1
k 1x - Mk2b

fMix1x |   M1, �1, . . ., MK, �K2

Np1Mk, �k2fk1x2

pk.fk1x2
f11x2, f21x2, . . . , fK1x2

fMix1x2a
K
k = 1 pk = 1.pk Ú 0

fMix1x2 = a
K

k = 1
pk  fk1x2

fk1x2.
pk

xj,p * 1
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Inferences are based on the likelihood, which for N objects and a fixed number
of clusters K, is

(12-18)

where the proportions the mean vectors and the covariance
matrices are unknown. The measurements for different objects are
treated as independent and identically distributed observations from the mixture
distribution.

There are typically far too many unknown parameters for making inferences
when the number of objects to be clustered is at least moderate. However, certain
conclusions can be made regarding situations where a heuristic clustering method
should work well. In particular, the likelihood based procedure under the normal
mixture model with all the same multiple of the identity matrix, is
approximately the same as K-means clustering and Ward’s method. To date, no
statistical models have been advanced for which the cluster formation procedure is
approximately the same as single linkage, complete linkage or average linkage.

Most importantly, under the sequence of mixture models (12-17) for different
K, the problems of choosing the number of clusters and choosing an appropriate
clustering method has been reduced to the problem of selecting an appropriate sta-
tistical model. This is a major advance.

A good approach to selecting a model is to first obtain the maximum likelihood
estimates for a fixed number of clusters K.These es-
timates must be obtained numerically using special purpose software. The resulting
value of the maximum of the likelihood

provides the basis for model selection. How do we decide on a reasonable value for
the number of clusters K? In order to compare models with different numbers
of parameters, a penalty is subtracted from twice the maximized value of the 
log-likelihood to give

where the penalty depends on the number of parameters estimated and the number
of observations N. Since the probabilities sum to 1, there are only proba-
bilities that must be estimated, means and variances and
covariances. For the Akaike information criterion (AIC), the penalty is

so

(12-19)AIC = 2 ln Lmax - 2N ¢K 
1
2

 1p + 121p + 22 - 1≤
2N * 1number of parameters2

K * p1p + 12>2K * p
K - 1pk

-2 ln Lmax - Penalty

Lmax = L1pn 1, . . . , pn K, Mn 1, �n 1, . . . , Mn K, �n K2

pn 1, . . . , pn K, Mn 1, �n 1, . . . , Mn K, �n K

h I,�k

�1, . . . , �k

M1, . . . , Mk,p1, . . . , pk,

 = q
N

j = 1
¢aK

k = 1
pk 

1

12p2p>2 
 ƒ   �k  ƒ  

1>2  exp ¢-  
1
2

 1xj - Mk2¿�
-1
k 1xj - Mk2≤≤

 L1p1, . . . , pK, M1, �1, . . . , Mk, �K2 = q
N

j = 1
 fMix1xj ƒ   M1, �1, . . . , MK, �K2
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The Bayesian information criterion (BIC) is similar but uses the logarithm of the
number of parameters in the penalty function

(12-20)

There is still occasional difficulty with too many parameters in the mixture model so
simple structures are assumed for the . In particular, progressively more compli-
cated structures are allowed as indicated in the following table.

�k

BIC = 2 ln Lmax - 2 ln1N2¢K 
1
2

 1p + 121p + 22 - 1≤

Additional structures for the covariance matrices are considered in [6] and [9].
Even for a fixed number of clusters, the estimation of a mixture model is

complicated. One current software package, MCLUST, available in the R software
library, combines hierarchical clustering, the EM algorithm and the BIC criterion to
develop an appropriate model for clustering. In the ‘E’-step of the EM algorithm, a

matrix is created whose jth row contains estimates of the conditional (on
the current parameter estimates) probabilities that observation belongs to cluster
1, 2 , . . . , K. So, at convergence, the jth observation (object) is assigned to the cluster
k for which the conditional probability

of membership is the largest. (See [6] and [9] and the references therein.)

Example 12.13 (A model based clustering of the iris data) Consider the Iris data in
Table 11.5. Using MCLUST and specifically the me function, we first fit the 
dimensional normal mixture model restricting the covariance matrices to satisfy

.
Using the BIC criterion, the software chooses clusters with estimated

centers

and estimated variance-covariance scale factors and 
The estimated mixing proportions are and For
this solution, . A matrix plot of the clusters for pairs of variables is
shown in Figure 12.13.

Once we have an estimated mixture model, a new object will be assigned to the
cluster for which the conditional probability of membership is the largest (see [9]).

Assuming the covariance structure and allowing up to clus-
ters, the BIC can be increased to BIC = -705.1.

K = 7�k = hk I

xj

BIC = -853.8
pn3 = .2534.pn1 = .3333, pn2 = .4133

hn3 = .163.hn1 = .076, hn2 = .163

M3 = D6.85
3.07
5.73
2.07

T ,M2 = D5.90
2.75
4.40
1.43

T ,M1 = D5.01
3.43
1.46
0.25

T ,

K = 3
�k = hk I, k = 1, 2, 3

p = 4

p1k ƒ  xj2 = pn j f1xj ƒ   k2 /a
K

i = 1
pn i f1xi ƒ   k2

xj

1N * K2

Assumed form Total number 
for of parameters BIC

ln Lmax - 2 ln1N21K1p + 22 + p - 12K1p + 22 + p - 1�k = hk Diag1l1 , l2 , . . . , lp 2

ln Lmax - 2ln1N21K1p + 22 - 12K1p + 22 - 1�k = hk I
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Finally, using the BIC criterion with up to groups and several different
covariance structures, the best choice is a two group mixture model with uncon-
strained covariances. The estimated mixing probabilities are and

The estimated group centers are

and the two estimated covariance matrices are

Essentially, two species of Iris have been put in the same cluster as the projected
view of the scatter plot of the sepal measurements in Figure 12.14 shows. �

12.6 Multidimensional Scaling
This section begins a discussion of methods for displaying (transformed) multivari-
ate data in low-dimensional space. We have already considered this issue when we
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Figure 12.13 Multiple scatter plots of clusters for Iris dataK = 3

706



Multidimensional Scaling

2.0

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.5

3.0

3.5

4.0

Se
pa

l.W
id

th

Sepal.Length

discussed plotting scores on, say, the first two principal components or the scores on
the first two linear discriminants. The methods we are about to discuss differ from
these procedures in the sense that their primary objective is to “fit” the original data
into a low-dimensional coordinate system such that any distortion caused by a re-
duction in dimensionality is minimized. Distortion generally refers to the similari-
ties or dissimilarities (distances) among the original data points. Although
Euclidean distance may be used to measure the closeness of points in the final low-
dimensional configuration, the notion of similarity or dissimilarity depends upon
the underlying technique for its definition. A low-dimensional plot of the kind we
are alluding to is called an ordination of the data.

Multidimensional scaling techniques deal with the following problem: For a set
of observed similarities (or distances) between every pair of N items, find a repre-
sentation of the items in few dimensions such that the interitem proximities “nearly
match” the original similarities (or distances).

It may not be possible to match exactly the ordering of the original similarities
(distances). Consequently, scaling techniques attempt to find configurations in

dimensions such that the match is as close as possible. The numerical
measure of closeness is called the stress.

It is possible to arrange the N items in a low-dimensional coordinate system using
only the rank orders of the original similarities (distances), and not their
magnitudes. When only this ordinal information is used to obtain a geometric repre-
sentation, the process is called nonmetric multidimensional scaling. If the actual magni-
tudes of the original similarities (distances) are used to obtain a geometric
representation in q dimensions, the process is called metric multidimensional scaling.
Metric multidimensional scaling is also known as principal coordinate analysis.

N1N - 12>2

q … N - 1

Figure 12.14 Scatter plot of sepal measurements for best model.
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Scaling techniques were developed by Shepard (see [29] for a review of early
work), Kruskal [19, 20, 21], and others. A good summary of the history, theory, and
applications of multidimensional scaling is contained in [35]. Multidimensional
scaling invariably requires the use of a computer, and several good computer
programs are now available for the purpose.

The Basic Algorithm
For N items, there are similarities (distances) between pairs of
different items. These similarities constitute the basic data. (In cases where the simi-
larities cannot be easily quantified as, for example, the similarity between two col-
ors, the rank orders of the similarities are the basic data.)

Assuming no ties, the similarities can be arranged in a strictly ascending order as
(12-21)

Here is the smallest of the M similarities. The subscript indicates the pair 
of items that are least similar—that is, the items with rank 1 in the similarity
ordering. Other subscripts are interpreted in the same manner. We want to find a 
q-dimensional configuration of the N items such that the distances, between
pairs of items match the ordering in (12-21). If the distances are laid out in a manner
corresponding to that ordering, a perfect match occurs when

(12-22)

That is, the descending ordering of the distances in q dimensions is exactly analo-
gous to the ascending ordering of the initial similarities. As long as the order in
(12-22) is preserved, the magnitudes of the distances are unimportant.

For a given value of q, it may not be possible to find a configuration of points
whose pairwise distances are monotonically related to the original similarities.
Kruskal [19] proposed a measure of the extent to which a geometrical representa-
tion falls short of a perfect match. This measure, the stress, is defined as

(12-23)

The ’s in the stress formula are numbers known to satisfy (12-22); that is, they
are monotonically related to the similarities.The ’s are not distances in the sense
that they satisfy the usual distance properties of (1-25). They are merely reference
numbers used to judge the nonmonotonicity of the observed ’s.

The idea is to find a representation of the items as points in q-dimensions such
that the stress is as small as possible. Kruskal [19] suggests the stress be informally
interpreted according to the following guidelines:
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Goodness of fit refers to the monotonic relationship between the similarities and the
final distances.
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A second measure of discrepancy, introduced by Takane et al. [31], is becoming
the preferred criterion. For a given dimension q, this measure, denoted by SStress,
replaces the ’s and ’s in (12-23) by their squares and is given by

(12-25)

The value of SStress is always between 0 and 1. Any value less than .1 is typically
taken to mean that there is a good representation of the objects by the points in the
given configuration.

Once items are located in q dimensions, their vectors of coordinates can be
treated as multivariate observations. For display purposes, it is convenient to represent
this q-dimensional scatter plot in terms of its principal component axes. (See Chapter 8.)

We have written the stress measure as a function of q, the number of dimensions
for the geometrical representation. For each q, the configuration leading to the min-
imum stress can be obtained. As q increases, minimum stress will, within rounding
error, decrease and will be zero for Beginning with a plot of
these stress (q) numbers versus q can be constructed. The value of q for which this
plot begins to level off may be selected as the “best” choice of the dimensionality.
That is, we look for an “elbow” in the stress-dimensionality plot.

The entire multidimensional scaling algorithm is summarized in these steps:
1. For N items, obtain the similarities (distances) between dis-

tinct pairs of items. Order the similarities as in (12-21). (Distances are ordered
from largest to smallest.) If similarities (distances) cannot be computed, the
rank orders must be specified.

2. Using a trial configuration in q dimensions, determine the interitem distances 
and numbers where the latter satisfy (12-22) and minimize the stress (12-23) or
SStress (12-25). (The are frequently determined within scaling computer pro-
grams using regression methods designed to produce monotonic “fitted” distances.)

3. Using the ’s, move the points around to obtain an improved configuration.
(For q fixed, an improved configuration is determined by a general function
minimization procedure applied to the stress. In this context, the stress is re-
garded as a function of the coordinates of the N items.) A new configu-
ration will have new ’s new ’s and smaller stress. The process is repeated
until the best (minimum stress) representation is obtained.

4. Plot minimum stress (q) versus q and choose the best number of dimensions,
from an examination of this plot. (12-26)

We have assumed that the initial similarity values are symmetric = that
there are no ties, and that there are no missing observations. Kruskal [19, 20] has
suggested methods for handling asymmetries, ties, and missing observations. In ad-
dition, there are now multidimensional scaling computer programs that will handle
not only Euclidean distance, but any distance of the Minkowski type. [See (12-3).]

The next three examples illustrate multidimensional scaling with distances as
the initial (dis)similarity measures.

Example 12.14 (Multidimensional scaling of U.S. cities) Table 12.7 displays the
airline distances between pairs of selected U.S. cities.
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Multidimensional Scaling

Since the cities naturally lie in a two-dimensional space (a nearly level part of the
curved surface of the earth), it is not surprising that multidimensional scaling with

will locate these items about as they occur on a map. Note that if the distances
in the table are ordered from largest to smallest—that is, from a least similar to most
similar—the first position is occupied by

A multidimensional scaling plot for dimensions is shown in Figure 12.15.
The axes lie along the sample principal components of the scatter plot.

A plot of stress (q) versus q is shown in Figure 12.16 on page 712. Since 
stress a representation of the cities in one dimension (along a
single axis) is not unreasonable. The “elbow” of the stress function occurs at 
Here stress and the “fit” is almost perfect.

The plot in Figure 12.16 indicates that is the best choice for the dimen-
sion of the final configuration. Note that the stress actually increases for
This anomaly can occur for extremely small values of stress because of difficulties
with the numerical search procedure used to locate the minimum stress. �

Example 12.15 (Multidimensional scaling of public utilities) Let us try to represent
the 22 public utility firms discussed in Example 12.7 as points in a low-dimensional
space. The measures of (dis)similarities between pairs of firms are the Euclidean
distances listed in Table 12.6. Multidimensional scaling in dimensions
produced the stress function shown in Figure 12.17.

q = 1, 2, Á , 6

q = 3.
q = 2

122 * 100% = 0.8%,
q = 2.

112 * 100% = 12%,

q = 2
dBoston, L.A. = 3052.

q = 2
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Figure 12.15 A geometrical representation of cities produced by multidimensional
scaling.
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The stress function in Figure 12.17 has no sharp elbow.The plot appears to level
out at “good” values of stress (less than or equal to 5%) in the neighborhood of

A good four-dimensional representation of the utilities is achievable, but dif-
ficult to display. We show a plot of the utility configuration obtained in di-
mensions in Figure 12.18. The axes lie along the sample principal components of the
final scatter.

Although the stress for two dimensions is rather high (stress (2)
), the distances between firms in Figure 12.18 are not wildly inconsistent with

the clustering results presented earlier in this chapter. For example, the midwest
utilities—Commonwealth Edison, Wisconsin Electric Power (WEPCO), Madison
Gas and Electric (MG & E), and Northern States Power (NSP)—are close together
(similar). Texas Utilities and Oklahoma Gas and Electric (Ok. G & E) are also very
close together (similar). Other utilities tend to group according to geographical
locations or similar environments.

The utilities cannot be positioned in two dimensions such that the interutility
distances are entirely consistent with the original distances in Table 12.6. More
flexibility for positioning the points is required, and this can only be obtained by in-
troducing additional dimensions. �

Example 12.16 (Multidimensional scaling of universities) Data related to 25 U.S.
universities are given in Table 12.9 on page 729. (See Example 12.19.) These data
give the average SAT score of entering freshmen, percent of freshmen in top
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Figure 12.18 A geometrical representation of utilities produced by multidimensional
scaling.
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10% of high school class, percent of applicants accepted, student–faculty ratio, esti-
mated annual expense, and graduation rate (%).A metric multidimensional scaling
algorithm applied to the standardized university data gives the two-dimensional
representation shown in Figure 12.19. Notice how the private universities cluster
on the right of the plot while the large public universities are, generally, on the left.
A nonmetric multidimensional scaling two-dimensional configuration is shown in
Figure 12.20. For this example, the metric and nonmetric scaling representations
are very similar, with the two dimensional stress value being approximately 10%
for both scalings. �

Classical metric scaling, or principal coordinate analysis, is equivalent to ploting
the principal components. Different software programs choose the signs of the ap-
propriate eigenvectors differently, so at first sight, two solutions may appear to be
different. However, the solutions will coincide with a reflection of one or more of
the axes. (See [26].)
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Figure 12.19 A two-dimensional representation of universities produced by metric
multidimensional scaling.
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To summarize, the key objective of multidimensional scaling procedures is a
low-dimensional picture. Whenever multivariate data can be presented graphically
in two or three dimensions, visual inspection can greatly aid interpretations.

When the multivariate observations are naturally numerical, and Euclidean dis-
tances in p-dimensions, can be computed, we can seek a -dimensional
representation by minimizing

(12-27)

In this alternative approach, the Euclidean distances in p and q dimensions are
compared directly. Techniques for obtaining low-dimensional representations by
minimizing E are called nonlinear mappings.

The final goodness of fit of any low-dimensional representation can be
depicted graphically by minimal spanning trees. (See [16] for a further discussion of
these topics.)
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Figure 12.20 A two-dimensional representation of universities produced by nonmetric
multidimensional scaling.
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12.7 Correspondence Analysis
Developed by the French, correspondence analysis is a graphical procedure for rep-
resenting associations in a table of frequencies or counts. We will concentrate on a
two-way table of frequencies or contingency table. If the contingency table has I
rows and J columns, the plot produced by correspondence analysis contains two sets
of points: A set of I points corresponding to the rows and a set of J points corre-
sponding to the columns. The positions of the points reflect associations.

Row points that are close together indicate rows that have similar profiles (con-
ditional distributions) across the columns. Column points that are close together in-
dicate columns with similar profiles (conditional distributions) down the rows.
Finally, row points that are close to column points represent combinations that
occur more frequently than would be expected from an independence model—that
is, a model in which the row categories are unrelated to the column categories.

The usual output from a correspondence analysis includes the “best” two-
dimensional representation of the data, along with the coordinates of the plotted
points, and a measure (called the inertia) of the amount of information retained in
each dimension.

Before briefly discussing the algebraic development of correspondence analy-
sis, it is helpful to illustrate the ideas we have introduced with an example.

Example 12.17 (Correspondence analysis of archaeological data) Table 12.8 contains
the frequencies (counts) of different types of pottery (called potsherds)
found at archaeological sites in an area of the American Southwest. If we
divide the frequencies in each row (archaeological site) by the corresponding row
total, we obtain a profile of types of pottery. The profiles for the different sites
(rows) are shown in a bar graph in Figure 12.21(a). The widths of the bars are
proportional to the total row frequencies. In general, the profiles are different;
however, the profiles for sites P1 and P2 are similar, as are the profiles for sites
P4 and P5.

The archaeological site profile for different types of pottery (columns) are
shown in a bar graph in Figure 12.21(b). The site profiles are constructed using the

I = 7
J = 4

Table 12.8 Frequencies of Types of Pottery

Type

Site A B C D Total

P0 30 10 10 39 89
P1 53 4 16 2 75
P2 73 1 41 1 116
P3 20 6 1 4 31
P4 46 36 37 13 132
P5 45 6 59 10 120
P6 16 28 169 5 218

Total 283 91 333 74 781

Source: Data courtesy of M. J. Tretter.
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column totals. The bars in the figure appear to be quite different from one another.
This suggests that the various types of pottery are not distributed over the archaeo-
logical sites in the same way.

The two-dimensional plot from a correspondence analysis2 of the pottery
type–site data is shown in Figure 12.22.

The plot in Figure 12.22 indicates, for example, that sites P1 and P2 have similar
pottery type profiles (the two points are close together), and sites P0 and P6 have very
different profiles (the points are far apart). The individual points representing the
types of pottery are spread out, indicating that their archaeological site profiles are
quite different.These findings are consistent with the profiles pictured in Figure 12.21.

Notice that the points P0 and D are quite close together and separated from the
remaining points. This indicates that pottery type D tends to be associated, almost
exclusively, with site P0. Similarly, pottery type A tends to be associated with site P1
and, to lesser degrees, with sites P2 and P3. Pottery type B is associated with sites P4
and P5, and pottery type C tends to be associated, again, almost exclusively, with site
P6. Since the archaeological sites represent different periods, these associations are
of considerable interest to archaeologists.

The number at the end of the first coordinate axis in the two-
dimensional plot is the inertia associated with the first dimension.This inertia is 55%
of the total inertia.The inertia associated with the second dimension is and
the second dimension accounts for 33% of the total inertia. Together, the two di-
mensions account for = of the total inertia. Since, in this case, the
data could be exactly represented in three dimensions, relatively little information
(variation) is lost by representing the data in the two-dimensional plot of 
Figure 12.22. Equivalently, we may regard this plot as the best two-dimensional rep-
resentation of the multidimensional scatter of row points and the multidimensional

88%55% + 33%
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Figure 12.21 Site and pottery type profiles for the data in Table 12.8.

2The JMP software was used for a correspondence analysis of the data in Table 12.8.
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scatter of column points. The combined inertia of 88% suggests that the representa-
tion “fits” the data well.

In this example, the graphical output from a correspondence analysis shows the
nature of the associations in the contingency table quite clearly. �

Algebraic Development of Correspondence Analysis

To begin, let X, with elements be an two-way table of unscaled fre-
quencies or counts. In our discussion we take and assume that X is of full
column rank J. The rows and columns of the contingency table X correspond to
different categories of two different characteristics. As an example, the array of
frequencies of different pottery types at different archaeological sites shown in
Table 12.8 is a contingency table with archaeological sites and pot-
tery types.

If n is the total of the frequencies in the data matrix X, we first construct a ma-
trix of proportions by dividing each element of X by n. Hence

(12-28)

The matrix P is called the correspondence matrix.

pi j =

xi j

n
,  i = 1, 2, Á , I,  j = 1, 2, Á , J, or P

1I * J2
=

1
n

 X
1I * J2

P = 5pi j6
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I 7 J
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Figure 12.22 A correspondence analysis plot of the pottery type–site data.
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Next define the vectors of row and column sums r and c respectively, and the
diagonal matrices and with the elements of r and c on the diagonals. Thus

(12-29)

where is a and is a vector of 1’s and

(12-30)

We define the square root matrices

(12-31)

for scaling purposes.
Correspondence analysis can be formulated as the weighted least squares prob-

lem to select = a matrix of specified reduced rank, to minimize

(12-32)

since is the element of 

As Result 12.1 demonstrates, the term is common to the approximation 
whatever the correspondence matrix P.The matrix = can be shown to
be the best rank 1 approximation to P.

Result 12.1. The term is common to the approximation whatever the 
correspondence matrix P.

The reduced rank s approximation to P, which minimizes the sum of squares
(12-32), is given by

where the are the singular values and the vectors and the vectors
are the corresponding singular vectors of the matrix The 

minimum value of (12-32) is 
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where the are the singular values and the vectors and the vectors
are the corresponding singular vectors of the matrix 

Here and for 

Proof. We first consider a scaled version = of the correspondence
matrix P. According to Result 2A.16, the best low approximation to

is given by the first s terms in the the singular-value decomposition

(12-34)

where

(12-35)

and

The approximation to P is then given by

and, by Result 2A.16, the error of approximation is 

Whatever the correspondence matrix P, the term always provides a (the
best) rank one approximation. This corresponds to the assumption of independence
of the rows and columns. To see this, let = and = where is a

and a vector of 1’s. We verify that (12-35) holds for these choices.

and

That is,

(12-36)

are singular vectors associated with singular value For any correspondence
matrix, P, the common term in every expansion is
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Therefore, we have established the first approximation and (12-34) can always be
expressed as

Because of the common term, the problem can be rephrased in terms of 
and its scaled version By the orthogonality of the singular
vectors of we have and for so

is the singular-value decomposition of in terms of the singular val-
ues and vectors obtained from Converting to singular values and vectors

and from only amounts to changing k to so
and for

In terms of the singular value decomposition for the ex-
pansion for takes the form

(12-37)

The best rank K approximation to is given by 
Then, the best approximation to is

(12-38)

�

Remark. Note that the vectors and in the expansion (12-38) of
need not have length 1 but satisfy the scaling

Because of this scaling, the expansions in Result 12.1 have been called a generalized
singular-value decomposition.

Let and be the matricies of singular values
and vectors obtained from It is usual in correspondence
analysis to plot the first two or three columns of and

or and for and maybe 3.
The joint plot of the coordinates in F and G is called a symmetric map (see

Greenacre [13]) since the points representing the rows and columns have the same
normalization, or scaling, along the dimensions of the solution.That is, the geometry
for the row points is identical to the geometry for the column points.
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Example 12.18 (Calculations for correspondence analysis) Consider the 
contingency table

3 * 2

The correspondence matrix is

with marginal totals and The negative square root
matrices are

Then

The scaled version of this matrix is

Since the square of the singular values and the are determined from

A¿  A = B .1 - .2 .1
- .1 .2 - .1

R   C .1 - .1
- .2 .2

.1 - .1
S = B .06 - .06

- .06 .06
R

viI 7 J,

 = C 0.1 -0.1
-0.2 0.2

0.1 -0.1
S

 A = D-1>2
r 1P - rc¿2 D-1>2

c = E 12
.6

0 0

0
12
.8

0

0 0 12

U   C .03 - .03
- .08 .08

.05 - .05
S   B12 0

0 12
R

P - rc¿ = C .12 .06
.08 .24
.30 .20

S - C .18
.32
.50
S   3.5 .54 = C .03 - .03

- .08 .08
.05 - .05

S
D-1>2

r = diag 112>.6, 12>.8, 122  D-1>2
c = diag 112, 122

r¿ = 3.18, .32, .504.c¿ = 3.5, .54

P = C .12 .06
.08 .24
.30 .20

S

B1 B2 Total

A1 24 12 36
A2 16 48 64
A3 60 40 100

100 100 200
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It is easily checked that since and that

Further,

A computer calculation confirms that the single nonzero eigenvalue is
so that the singular value has absolute value and, as you can easily
check,

The expansion of is then the single term

= 1.12 F
.313

-  
.813
.513

V   c
1
2
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2
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2
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.02 - .04 .02

S
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2
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There is only one pair of vectors to plot

and

�

There is a second way to define contingency analysis. Following Greenacre [13],
we call the preceding approach the matrix approximation method and the approach
to follow the profile approximation method. We illustrate the profile approximation
method using the row profiles; however, an analogous solution results if we were to
begin with the column profiles.

Algebraically, the row profiles are the rows of the matrix and contin-
gency analysis can be defined as the approximation of the row profiles by points in
a low-dimensional space. Consider approximating the row profiles by the matrix 
Using the square-root matrices and defined in (12-31), we can write

and the least squares criterion (12-32) can be written, with aspi j
…

= pn i j >ri ,

1Dr
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 P - P*2 D-1>2
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(12-39)

Minimizing the last expression for the trace in (12-39) is precisely the first min-
imization problem treated in the proof of Result 12.1. By (12-34), has
the singular-value decomposition

(12-40)

The best rank K approximation is obtained by using the first K terms of this expan-
sion. Since, by (12-39), we have approximated by we leftD1>2
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multiply by and right multiply by to obtain the generalized singular-value
decomposition

(12-41)

where, from (12-36), = are singular vectors associated with
singular value Since = and = the leading
term in the decomposition (12-41) is 

Consequently, in terms of the singular values and vectors from the
reduced rank approximation to the row profiles is

(12-42)

In terms of the singular values and vectors and obtained from 
– we can write

(Row profiles for the archaeological data in Table 12.8 are shown in Figure 12.21 on
page 717.)

Inertia

Total inertia is a measure of the variation in the count data and is defined as the
weighted sum of squares

(12-43)

where the are the singular values obtained from the singular-value decomposi-
tion of (see the proof of Result 12.1).3

The inertia associated with the best reduced rank approximation to the 

centered matrix (the K-dimensional solution) has inertia The 

residual inertia (variation) not accounted for by the rank K solution is equal to the
sum of squares of the remaining singular values: ± For
plots, the inertia associated with dimension is ordinarily displayed along the
kth coordinate axis, as in Figure 12.22 for k = 1, 2.
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3Total inertia is related to the chi-square measure of association in a two-way contingency table,

= Here = is the observed frequency and is the expected frequency for 
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Interpretation in Two Dimensions

Since the inertia is a measure of the data table’s total variation, how do we interpret 

a large value for the proportion Geometrically, we say that the 

associations in the centered data are well represented by points in a plane, and this
best approximating plane accounts for nearly all the variation in the data beyond
that accounted for by the rank 1 solution (independence model). Algebraically, we
say that the approximation

is very good or, equivalently, that

Final Comments

Correspondence analysis is primarily a graphical technique designed to represent
associations in a low-dimensional space. It can be regarded as a scaling method, and
can be viewed as a complement to other methods such as multidimensional scaling
(Section 12.6) and biplots (Section 12.8). Correspondence analysis also has links to
principal component analysis (Chapter 8) and canonical correlation analysis
(Chapter 10). The book by Greenacre [14] is one choice for learning more about
correspondence analysis.

12.8 Biplots for Viewing Sampling Units and Variables
A biplot is a graphical representation of the information in an data matrix.
The bi- refers to the two kinds of information contained in a data matrix. The infor-
mation in the rows pertains to samples or sampling units and that in the columns
pertains to variables.

When there are only two variables, scatter plots can represent the information
on both the sampling units and the variables in a single diagram.This permits the vi-
sual inspection of the position of one sampling unit relative to another and the rela-
tive importance of each of the two variables to the position of any unit.

With several variables, one can construct a matrix array of scatter plots,
but there is no one single plot of the sampling units. On the other hand, a two-
dimensional plot of the sampling units can be obtained by graphing the first two
principal components, as in Section 8.4. The idea behind biplots is to add the infor-
mation about the variables to the principal component graph.

Figure 12.23 gives an example of a biplot for the public utilities data in
Table 12.4.

You can see how the companies group together and which variables con-
tribute to their positioning within this representation. For instance,
load factor and fuel costs are primarily responsible for the grouping of
the mostly coastal companies in the lower right. The two variables X1 = fixed-

X8 = total
X4 = annual

n * p

P � rc¿ + l1 u1 v1
œ

+ l2 u2 v2
œ

P - rc¿ � l1 u1 v1
œ

+ l2 u2 v2
œ

1l1
2

+ l2
22>a

J - 1

k = 1
 lk

2
 ?
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charge ratio and of return on capital put the Florida and Louisiana
companies together.

Constructing Biplots

The construction of a biplot proceeds from the sample principal components.
According to Result 8A.1, the best two-dimensional approximation to the data

matrix approximates the jth observation in terms of the sample values of the
first two principal components. In particular,

(12-44)

where and are the first two eigenvectors of S or, equivalently, of
Here denotes the mean corrected data matrix with rows

The eigenvectors determine a plane, and the coordinates of the jth unit
(row) are the pair of values of the principal components,

To include the information on the variables in this plot, we consider the pair of
eigenvectors These eigenvectors are the coefficient vectors for the first two
sample principal components. Consequently, each row of the matrix EN = 3eN 1 , eN24

1eN 1 , eN 22.

1ynj 1 , ynj 22.
1xj - xq2œ.

XcXœ

c  Xc = 1n - 12 S.
eN 2eN1

xj � xq + ynj 1 eN 1 + ynj 2  eN2

xjX

X2 = rate

�2 �1 0 1 2 3

�2

�1

0

1
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3

Cent. Louis.

NSP.

Idaho Po.

Tex. Util.

Bost. Ed.

Pac. G&E

Ariz. Pub. Ser.

Pug. Sd. Po.

WEPCO

Kent Util.
Common Ed.

Flor. Po. & Lt.
Unit. Ill. Co.

Haw. El.

Southern Co.

Nev. Po.

San Dieg. G&E

Con. Ed.

N. Eng. El.

Ok. G. & E.
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M.G.&.E.

X6

X2

X1

X4

X8

X3

X5

Figure 12.23 A biplot of the data on public utilities.
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positions a variable in the graph, and the magnitudes of the coefficients (the coordi-
nates of the variable) show the weightings that variable has in each principal com-
ponent. The positions of the variables in the plot are indicated by a vector. Usually,
statistical computer programs include a multiplier so that the lengths of all of the
vectors can be suitably adjusted and plotted on the same axes as the sampling units.
Units that are close to a variable likely have high values on that variable. To inter-
pret a new point we plot its principal components 

A direct approach to obtaining a biplot starts from the singular value decom-
position (see Result 2A.15), which first expresses the mean corrected
matrix as

(12-45)

where and V is an orthogonal matrix whose columns are the
eigenvectors of = That is, = Multiplying
(12-45) on the right by we find

(12-46)

where the jth row of the left-hand side,

is just the value of the principal components for the jth item.That is, contains all
of the values of the principal components, while contains the coefficients
that define the principal components.

The best rank 2 approximation to is obtained by replacing by
This result, called the Eckart–Young theorem, was es-

tablished in Result 8.A.1. The approximation is then

(12-47)

where is the vector of values of the first principal component and is the
vector of values of the second principal component.

In the biplot, each row of the data matrix, or item, is represented by the point lo-
cated by the pair of values of the principal components. The ith column of the data
matrix, or variable, is represented as an arrow from the origin to the point with co-
ordinates the entries in the ith column of the second matrix in the
approximation (12-47). This scale may not be compatible with that of the principal
components, so an arbitrary multiplier can be introduced that adjusts all of the vec-
tors by the same amount.

The idea of a biplot, to represent both units and variables in the same plot, ex-
tends to canonical correlation analysis, multidimensional scaling, and even more
complicated nonlinear techniques. (See [12].)
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Example 12.19 (A biplot of universities and their characteristics) Table 12.9 gives the
data on some universities for certain variables used to compare or rank major
universities. These variables include SAT score of new freshmen,

of new freshmen in top 10% of high school class,
of applicants accepted, ratio, annual expens-
es and rate (%).

Because two of the variables, SAT and Expenses, are on a much different scale
from that of the other variables, we standardize the data and base our biplot on the
matrix of standardized observations The biplot is given in Figure 12.24 on
page 730.

Notice how Cal Tech and Johns Hopkins are off by themselves; the variable
Expense is mostly responsible for this positioning.The large state universities in our
sample are to the left in the biplot, and most of the private schools are on the right.

zj .

X6 = graduation
X5 = estimatedX4 = student–faculty

X3 = percentageX2 = percentage
X1 = average

Table 12.9 Data on Universities

University SAT Top10 Accept SFRatio Expenses Grad

Harvard 14.00 91 14 11 39.525 97
Princeton 13.75 91 14 8 30.220 95
Yale 13.75 95 19 11 43.514 96
Stanford 13.60 90 20 12 36.450 93
MIT 13.80 94 30 10 34.870 91
Duke 13.15 90 30 12 31.585 95
CalTech 14.15 100 25 6 63.575 81
Dartmouth 13.40 89 23 10 32.162 95
Brown 13.10 89 22 13 22.704 94
JohnsHopkins 13.05 75 44 7 58.691 87
UChicago 12.90 75 50 13 38.380 87
UPenn 12.85 80 36 11 27.553 90
Cornell 12.80 83 33 13 21.864 90
Northwestern 12.60 85 39 11 28.052 89
Columbia 13.10 76 24 12 31.510 88
NotreDame 12.55 81 42 13 15.122 94
UVirginia 12.25 77 44 14 13.349 92
Georgetown 12.55 74 24 12 20.126 92
CarnegieMellon 12.60 62 59 9 25.026 72
UMichigan 11.80 65 68 16 15.470 85
UCBerkeley 12.40 95 40 17 15.140 78
UWisconsin 10.85 40 69 15 11.857 71
PennState 10.81 38 54 18 10.185 80
Purdue 10.05 28 90 19 9.066 69
TexasA&M 10.75 49 67 25 8.704 67

Source: U.S. News & World Report, September 18, 1995, p. 126.
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Large values for the variables SAT, Top10, and Grad are associated with the private
school group. Northwestern lies in the middle of the biplot. �

A newer version of the biplot, due to Gower and Hand [12], has some advan-
tages. Their biplot, developed as an extension of the scatter plot, has features that
make it easier to interpret.

• The two axes for the principal components are suppressed.
• An axis is constructed for each variable and a scale is attached.

As in the original biplot, the i-th item is located by the corresponding pair of
values of the first two principal components

where and where are the first two eigenvectors of S. The scales for the princi-
pal components are not shown on the graph.

In addition the arrows for the variables in the original biplot are replaced by
axes that extend in both directions and that have scales attached. As was the case
with the arrows, the axis for the i-the variable is determined by the i-the row of
En = [en1, en2].

en2en1

1yn1i, yn2i2 = 11xi - x–2¿en1,1xi - x–2¿en22
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Figure 12.24 A biplot of the data on universities.
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Biplots for Viewing Sampling Units and Variables

To begin, we let ui the vector with 1 in the i-th position and 0’s elsewhere. Then
an arbitrary vector x can be expressed as

and, by Definition 2.A.12, its projection onto the space of the first two eigenvectors
has coefficient vector

so the contribution of the i-th variable to the vector sum is 

The two entries and in the i-the row of determine the direction of the axis
for the i-th variable.

The projection vector of the sample mean 

is the origin of the biplot. Every x can also be written as and its
projection vector has two components

Starting from the origin, the points in the direction are plotted for
This provides a scale for the mean centered variable It

defines the distance in the biplot for a change of one unit in But, the origin for
the i-th variable corresponds to because the term was ignored.
The axis label needs to be translated so that the value is at the origin of the biplot.
Since is typically not an integer (or another nice number), an integer (or other
nice number) closest to it can be chosen and the scale translated appropriately.
Computer software simplifies this somewhat difficult task.

The scale allows us to visually interpolate the position of in the
biplot.The scales predict the values of a variable, not give its exact value, as they are
based on a two dimensional approximation.

Example 12.20 (An alternative biplot for the university data) We illustrate this
newer biplot with the university data in Table 12.9. The alternative biplot with an
axis for each variable is shown in Figure 12.25. Compared with Figure 12.24, the
software reversed the direction of the first principal component. Notice, for exam-
ple, that expenses and student faculty ratio separate Cal Tech and Johns Hopkins
from the other universities. Expenses for Cal Tech and Johns Hopkins can be seen to
be about 57 thousand a year, and the student faculty ratios are in the single digits.
The large state universities, on the right hand side of the plot, have relatively high
student faculty ratios, above 20, relatively low SAT scores of entering freshman, and
only about 50% or fewer of their entering students in the top 10% of their high
school class. The scaled axes on the newer biplot are more informative than the
arrows in the original biplot. �
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See le Roux and Gardner [23] for more examples of this alternative biplot and
references to appropriate special purpose statistical software.

12.9 Procrustes Analysis: A Method 
for Comparing Configurations

Starting with a given matrix of distances D, or similarities S, that relate n
objects, two or more configurations can be obtained using different techniques. The
possible methods include both metric and nonmetric multidimensional scaling.
The question naturally arises as to how well the solutions coincide. Figures 12.19 and
12.20 in Example 12.16 respectively give the metric multidimensional scaling
(principal coordinate analysis) and nonmetric multidimensional scaling solutions
for the data on universities. The two configurations appear to be quite similar, but a
quantitative measure would be useful. A numerical comparison of two configura-
tions, obtained by moving one configuration so that it aligns best with the other, is
called Procrustes analysis, after the innkeeper Procrustes, in Greek mythology, who
would either stretch or lop off customers’ limbs so they would fit his bed.

n * n
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Figure 12.25 An alternative biplot of the data on universities.
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Procrustes Analysis: A Method for Comparing Configurations

Constructing the Procrustes Measure of Agreement

Suppose the matrix contains the coordinates of the n points obtained for
plotting with technique 1 and the matrix contains the coordinates from
technique 2, where By adding columns of zeros to if necessary, we can
assume that and both have the same dimension To determine how
compatible the two configurations are, we move, say, the second configuration to
match the first by shifting each point by the same amount and rotating or reflecting
the configuration about the coordinate axes.4

Mathematically, we translate by a vector b and multiply by an orthogonal
matrix Q so that the coordinates of the jth point are transformed to

The vector b and orthogonal matrix Q are then varied to order to minimize the sum,
over all n points, of squared distances

(12-48)

between and the transformed coordinates obtained for the second tech-
nique. We take, as a measure of fit, or agreement, between the two configurations,
the residual sum of squares

(12-49)

The next result shows how to evaluate this Procrustes residual sum of squares mea-
sure of agreement and determines the Procrustes rotation of relative to 

Result 12.2 Let the configurations and both be centered so that all
columns have mean zero. Then

(12-50)

where and the minimizing transformation is

(12-51)QN = a
p

i = 1
 vi uœ

i = VU¿  bN = 0

l2 , Á , lp2∂ = diag1l1 ,

 = tr 3X* X*¿4 + tr 3Y* Y*¿4 - 2 tr 3∂4

 PR2
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n
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 xœ
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 yœ
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4Sibson [30] has proposed a numerical measure of the agreement between two configurations, given
by the coefficient

For identical configurations, If necessary, can be computed after a Procrustes analysis has been
completed.
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tr 1X*¿  X*2 tr 1Y*¿  Y*2
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Here U, and V are obtained from the singular-value decomposition

Proof. Because the configurations are centered to have zero means 

and we have

The last term is nonnegative, so the best fit occurs for Consequently, we need
only consider

Using = we find that the expression being maximized becomes

By the singular-value decomposition,

where and are orthogonal matrices.
Consequently,

The variable quantity in the ith term

has an upper bound of 1 as can be seen by applying the Cauchy–Schwarz inequality
(2–48) with and That is, since is orthogonal,
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Procrustes Analysis: A Method for Comparing Configurations

Each of these p terms can be maximized by the same choice With this
choice,

Therefore,

Finally, we verify that = = = so Q is a orthogonal
matrix, as required. �

Example 12.21 (Procrustes analysis of the data on universities) Two configurations,
produced by metric and nonmetric multidimensional scaling, of data on universities
are given Example 12.16. The two configurations appear to be quite close. There is a
two-dimensional array of coordinates for each of the two scaling methods. Initially,
the sum of squared distances is

A computer calculation gives

According to Result 12.2, to better align these two solutions, we multiply the non-
metric scaling solution by the orthogonal matrix

This corresponds to clockwise rotation of the nonmetric solution by about 
2 degrees. After rotation, the sum of squared distances, 3.862, is reduced to the
Procrustes measure of fit
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Example 12.22 (Procrustes analysis and additional ordinations of data on forests)
Data were collected on the populations of eight species of trees growing on ten
upland sites in southern Wisconsin. These data are shown in Table 12.10.

The metric, or principal coordinate, solution and nonmetric multidimensional
scaling solution are shown in Figures 12.26 and 12.27.
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Figure 12.26 Metric multidimensional scaling of the data on forests.

Table 12.10 Wisconsin Forest Data

Site

Tree 1 2 3 4 5 6 7 8 9 10

BurOak 9 8 3 5 6 0 5 0 0 0
BlackOak 8 9 8 7 0 0 0 0 0 0
WhiteOak 5 4 9 9 7 7 4 6 0 2
RedOak 3 4 0 6 9 8 7 6 4 3
AmericanElm 2 2 4 5 6 0 5 0 2 5
Basswood 0 0 0 0 2 7 6 6 7 6
Ironwood 0 0 0 0 0 0 7 4 6 5
SugarMaple 0 0 0 0 0 5 4 8 8 9

Source: See [24].
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Using the coordinates of the points in Figures 12.26 and 12.27, we obtain the
initial sum of squared distances for fit:

A computer calculation gives

According to Result 12.2, to better align these two solutions, we multiply the non-
metric scaling solution by the orthogonal matrix
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R
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R
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Figure 12.27 Nonmetric multidimensional scaling of the data on forests.
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This corresponds to clockwise rotation of the nonmetric solution by about 10 degrees.
After rotation, the sum of squared distances, 8.547, is reduced to the Procrustes
measure of fit

We note that the sampling sites seem to fall along a curve in both pictures. This
could lead to a one-dimensional nonlinear ordination of the data. A quadratic or
other curve could be fit to the points. By adding a scale to the curve, we would
obtain a one-dimensional ordination.

It is informative to view the Wisconsin forest data when both sampling units and
variables are shown. A correspondence analysis applied to the data produces the
plot in Figure 12.28. The biplot is shown in Figure 12.29.

All of the plots tell similar stories. Sites 1–5 tend to be associated with species of
oak trees, while sites 7–10 tend to be associated with basswood, ironwood, and sugar
maples. American elm trees are distributed over most sites, but are more closely
associated with the lower numbered sites. There is almost a continuum of sites
distinguished by the different species of trees. �
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Figure 12.28 The correspondence analysis plot of the data on forests.
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Figure 12.29 The biplot of the data on forests.
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DATA MINING

Introduction
A very large sample in applications of traditional statistical methodology may mean
10,000 observations on, perhaps, 50 variables. Today, computer-based repositories
known as data warehouses may contain many terabytes of data. For some organiza-
tions, corporate data have grown by a factor of 100,000 or more over the last few
decades. The telecommunications, banking, pharmaceutical, and (package) shipping
industries provide several examples of companies with huge databases. Consider the
following illustration. If each of the approximately 17 million books in the Library
of Congress contained a megabyte of text (roughly 450 pages) in MS Word format,
then typing this collection of printed material into a computer database would con-
sume about 17 terabytes of disk space. United Parcel Service (UPS) has a package-
level detail database of about 17 terabytes to track its shipments.

For our purposes, data mining refers to the process associated with discovering
patterns and relationships in extremely large data sets. That is, data mining is
concerned with extracting a few nuggets of knowledge from a relative mountain of
numerical information. From a business perspective, the nuggets of knowledge rep-
resent actionable information that can be exploited for a competitive advantage.

Data mining is not possible without appropriate software and fast computers. Not
surprisingly, many of the techniques discussed in this book, along with algorithms de-
veloped in the machine learning and artificial intelligence fields, play important roles
in data mining. Companies with well-known statistical software packages now offer
comprehensive data mining programs.5 In addition, special purpose programs such as
CART have been used successfully in data mining applications.

Data mining has helped to identify new chemical compounds for prescription
drugs, detect fraudulent claims and purchases, create and maintain individual
customer relationships, design better engines and build appropriate inventories,
create better medical procedures, improve process control, and develop effective
credit scoring rules.

S u p p l e m e n t

12A

5SAS Institute’s data mining program is currently called Enterprise Miner. SPSS’s data mining
program is Clementine.
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In traditional statistical applications, sample sizes are relatively small, data are
carefully collected, sample results provide a basis for inference, anomalies are
treated but are often not of immediate interest, and models are frequently highly
structured. In data mining, sample sizes can be huge; data are scattered and histori-
cal (routinely recorded), samples are used for training, validation, and testing (no
formal inference); anomalies are of interest; and models are often unstructured.
Moreover, data preparation—including data collection, assessment and cleaning,
and variable definition and selection—is typically an arduous task and represents 60
to 80% of the data mining effort.

Data mining problems can be roughly classified into the following categories:

• Classification (discrete outcomes):

Who is likely to move to another cellular phone service?

• Prediction (continuous outcomes):

What is the appropriate appraised value for this house?

• Association/market basket analysis:

Is skim milk typically purchased with low-fat cottage cheese?

• Clustering:

Are there groups with similar buying habits?

• Description:

On Thursdays, grocery store consumers often purchase corn chips and soft
drinks together.

Given the nature of data mining problems, it should not be surprising that many of
the statistical methods discussed in this book are part of comprehensive data mining
software packages. Specifically, regression, discrimination and classification proce-
dures (linear rules, logistic regression, decision trees such as those produced by
CART), and clustering algorithms are important data mining tools. Other tools,
whose discussion is beyond the scope of this book, include association rules, multi-
variate adaptive regression splines (MARS), K-nearest neighbor algorithm, neural
networks, genetic algorithms, and visualization.6

The Data Mining Process

Data mining is a process requiring a sequence of steps. The steps form a strategy
that is not unlike the strategy associated with any model building effort. Specifically,
data miners must

1. Define the problem and identify objectives.

2. Gather and prepare the appropriate data.

3. Explore the data for suspected associations, unanticipated characteristics, and
obvious anomalies to gain understanding.

4. Clean the data and perform any variable transformation that seems appropriate.

6For more information on data mining in general and data mining tools in particular, see the refer-
ences at the end of this chapter.
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5. Divide the data into training, validation, and, perhaps, test data sets.
6. Build the model on the training set.
7. Modify the model (if necessary) based on its performance with the validation data.
8. Assess the model by checking its performance on validation or test data.

Compare the model outcomes with the initial objectives. Is the model likely to
be useful?

9. Use the model.
10. Monitor the model performance. Are the results reliable, cost effective?

In practice, it is typically necessary to repeat one of more of these steps several
times until a satisfactory solution is achieved. Data mining software suites such as
Enterprise Miner and Clementine are typically organized so that the user can work
sequentially through the steps listed and, in fact, can picture them on the screen as a
process flow diagram.

Data mining requires a rich collection of tools and algorithms used by a skilled
analyst with sound subject matter knowledge (or working with someone with sound
subject matter knowledge) to produce acceptable results. Once established, any suc-
cessful data mining effort is an ongoing exercise. New data must be collected and
processed, the model must be updated or a new model developed, and, in general,
adjustments made in light of new experience. The cost of a poor data mining effort
is high, so careful model construction and evaluation is imperative.

Model Assessment

In the model development stage of data mining, several models may be examined
simultaneously. In the example to follow, we briefly discuss the results of applying
logistic regression, decision tree methodology, and a neural network to the problem
of credit scoring (determining good credit risks) using a publicly available data set
known as the German Credit data. Although the data miner can control the model
inputs and certain parameters that govern the development of individual models, in
most data mining applications there is little formal statistical inference. Models are
ordinarily assessed (and compared) by domain experts using descriptive devices
such as confusion matrices, summary profit or loss numbers, lift charts, threshold
charts, and other, mostly graphical, procedures.

The split of the very large initial data set into training, validation, and testing
subsets allows potential models to be assessed with data that were not involved in
model development. Thus, the training set is used to build models that are assessed
on the validation (holdout) data set. If a model does not perform satisfactorily in the
validation phase, it is retrained. Iteration between training and validation continues
until satisfactory performance with validation data is achieved. At this point, a
trained and validated model is assessed with test data. The test data set is ordinarily
used once at the end of the modeling process to ensure an unbiased assessment of
model performance. On occasion, the test data step is omitted and the final assess-
ment is done with the validation sample, or by cross-validation.

An important assessment tool is the lift chart. Lift charts may be formatted in
various ways, but all indicate improvement of the selected procedures (models) over
what can be achieved by a baseline activity. The baseline activity often represents a
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prior conviction or a random assignment. Lift charts are particularly useful for
comparing the performance of different models.

Lift is defined as

If the result is independent of the condition, then A value of 
implies the condition (generally a model or algorithm) leads to a greater probabili-
ty of the desired result and, hence, the condition is useful and potentially profitable.
Different conditions can be compared by comparing their lift charts.

Example 12.23 (A small-scale data mining exercise) A publicly available data set
known as the German Credit data7 contains observations on 20 variables for 1000
past applicants for credit. In addition, the resulting credit rating (“Good” or “Bad”)
for each applicant was recorded. The objective is to develop a credit scoring rule
that can be used to determine if a new applicant is a good credit risk or a bad 
credit risk based on values for one or more of the 20 explanatory variables.
The 20 explanatory variables include CHECKING (checking account status),
DURATION (duration of credit in months), HISTORY (credit history),AMOUNT
(credit amount), EMPLOYED (present employment since), RESIDENT (present
resident since), AGE (age in years), OTHER (other installment debts), INSTALLP
(installment rate as % of disposable income), and so forth. Essentially, then, we
must develop a function of several variables that allows us to classify a new appli-
cant into one of two categories: Good or Bad.

We will develop a classification procedure using three approaches discussed in
Sections 11.7 and 11.8; logistic regression, classification trees, and neural networks.
An abbreviated assessment of the three approaches will allow us compare the per-
formance of the three approaches on a validation data set.This data mining exercise
is implemented using the general data mining process described earlier and SAS
Enterprise Miner software.

In the full credit data set, 70% of the applicants were Good credit risks and 30%
of the applicants were Bad credit risks.The initial data were divided into two sets for
our purposes, a training set and a validation set. About 60% of the data (581 cases)
were allocated to the training set and about 40% of the data (419 cases) were allo-
cated to the validation set. The random sampling scheme employed ensured that
each of the training and validation sets contained about 70% Good applicants and
about 30% Bad applicants. The applicant credit risk profiles for the data sets follow.

Lift 7 1Lift = 1.

Lift =

P1result | condition2

P1result2

7At the time this supplement was written, the German Credit data were available in a sample data
file accompanying SAS Enterprise Miner. Many other publicly available data sets can be downloaded
from the following Web site: www.kdnuggets.com.

Credit data Training data Validation data

Good: 700 401 299
Bad:
Total: 1000 581 419

120180 300
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Figure 12.30 shows the process flow diagram from the Enterprise Miner screen.
The icons in the figure represent various activities in the data mining process. As
examples, SAMPS10.DMAGECR contains the data; Data Partition allows the data
to be split into training, validation, and testing subsets; Transform Variables, as the
name implies, allows one to make variable transformations; the Regression, Tree,
and Neural Network icons can each be opened to develop the individual models;
and Assessment allows an evaluation of each predictive model in terms of predictive
power, lift, profit or loss, and so on, and a comparison of all models.

The best model (with the training set parameters) can be used to score a new
selection of applicants without a credit designation (SAMPS10.DMAGESCR). The
results of this scoring can be displayed, in various ways, with Distribution Explorer.

For this example, the prior probabilities were set proportional to the data; con-
sequently, and The cost matrix was initially specified
as follows:

P1Bad2 = .3.P1Good2 = .7

Regression

Score !
[Apply]

SAMPS10.
DMAGECR

Data
Partition Transform

Variables
Tree

Neura1
Network

Assessment
Distribution

Explorer

SAMPS10.
DMAGESCR

Figure 12.30 The process flow diagram.

so that it is 5 times as costly to classify a Bad applicant as Good (Accept) as it is to
classify a Good applicant as Bad (Reject). In practice, accepting a Good credit risk
should result in a profit or, equivalently, a negative cost. To match this formulation
more closely, we subtract $1 from the entries in the first row of the cost matrix to
obtain the “realistic” cost matrix:

Predicted (Decision)

Good (Accept) Bad (Reject)

Actual
Good 0 $1
Bad $5 0

Predicted (Decision)

Good (Accept) Bad (Reject)

Actual
Good 0
Bad $5 0

-$1
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This matrix yields the same decisions as the original cost matrix, but the results are
easier to interpret relative to the expected cost objective function. For example,
after further adjustments, a negative expected cost score may indicate a potential
profit so the applicant would be a Good credit risk.

Next, input variables need to be processed (perhaps transformed), models (or
algorithms) must be specified, and required parameters must be set in all of the icons in
the process flow diagram.Then the process can be executed up to any point in the dia-
gram by clicking on an icon.All previous connected icons are run. For example, clicking
on Score executes the process up to and including the Score icon. Results associated
with individual icons can then be examined by clicking on the appropriate icon.

We illustrate model assessment using lift charts. These lift charts, available in
the Assessment icon, result from one execution of the process flow diagram in
Figure 12.30.

Consider the logistic regression classifier. Using the logistic regression function
determined with the training data, an expected cost can be computed for each case
in the validation set.These expected cost “scores” can then ordered from smallest to
largest and partitioned into groups by the 10th, 20th, p , and 90th percentiles. The
first percentile group then contains the 42 (10% of 419) of the applicants with the
smallest negative expected costs (largest potential profits), the second percentile
group contains the next 42 applicants (next 10%), and so on. (From a classification
viewpoint, those applicants with negative expected costs might be classified as Good
risks and those with nonnegative expected costs as Bad risks.)

If the model has no predictive power, we would expect, approximately, a uni-
form distribution of, say, Good credit risks over the percentile groups. That is, we
would expect 10% or Good credit risks among the 42 applicants in
each of the percentile groups.

Once the validation data have been scored, we can count the number of Good
credit risks (of the 42 applicants) actually falling in each percentile group. For
example, of the 42 applicants in the first percentile group, 40 were actually Good
risks for a “captured response rate” of or 13.3%. In this case, lift for
the first percentile group can be calculated as the ratio of the number of Good
predicted by the model to the number of Good from a random assignment or

The lift value indicates the model assigns or 3.3% more Good risks
to the first percentile group (largest negative expected cost) than would be assigned
by chance.8

Lift statistics can be displayed as individual (noncumulative) values or as cumu-
lative values. For example, 40 Good risks also occur in the second percentile group
for the logistic regression classifier, and the cumulative risk for the first two per-
centile groups is

Lift =

40 + 40
30 + 30

= 1.33

10>299 = .033

Lift =

40
30

= 1.33

40>299 = .133

.1012992 = 30

8The lift numbers calculated here differ a bit from the numbers displayed in the lift diagrams to fol-
low because of rounding.
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The cumulative lift chart for the logistic regression model is displayed in Figure 12.31.
Lift and cumulative lift statistics can be determined for the classification tree

tool and for the neural network tool. For each classifier, the entire data set is scored
(expected costs computed), applicants ordered from smallest score to largest score
and percentile groups created. At this point, the lift calculations follow those out-
lined for the logistic regression method. The cumulative charts for all three classi-
fiers are shown in Figure 12.32.

Lift Value

Tool Name

Baseline Reg

1.2

1

1.1

1.4

1.3

10 90
1008060

70
20 40

5030

Percentile

Figure 12.31 Cumulative lift
chart for the logistic regression
classifier.

Tool Name

Baseline Neural Tree Reg

Lift Value

1.2

1

1.1

1.4

1.3

10 90
1008060

70
20 40

5030

Percentile
Figure 12.32 Cumulative lift
charts for neural network,
classification tree, and logistic
regression tools.
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We see from Figure 12.32 that the neural network and the logistic regression
have very similar predictive powers and they both do better, in this case, than the
classification tree.The classification tree, in turn, outperforms a random assignment.
If this represented the end of the model building and assessment effort, one model
would be picked (say, the neural network) to score a new set of applicants (without
a credit risk designation) as Good (accept) or Bad (reject).

In the decision flow diagram in Figure 12.30, the SAMPS10.DMAGESCR file
contains 75 new applicants. Expected cost scores for these applicants were created
using the neural network model. Of the 75 applicants, 33 were classified as Good
credit risks (with negative expected costs). �

Data mining procedures and software continue to evolve, and it is difficult to
predict what the future might bring. Database packages with embedded data mining
capabilities, such as SQL Server 2005, represent one evolutionary direction.

Exercises

12.1. Certain characteristics associated with a few recent U.S. presidents are listed in Table 12.11.

Table 12.11

Birthplace Elected Prior U.S.
(region of first congressional Served as

President United States) term? Party experience? vice president?

1. R. Reagan Midwest Yes Republican No No
2. J. Carter South Yes Democrat No No
3. G. Ford Midwest No Republican Yes Yes
4. R. Nixon West Yes Republican Yes Yes
5. L. Johnson South No Democrat Yes Yes
6. J. Kennedy East Yes Democrat Yes No

(a) Introducing appropriate binary variables, calculate similarity coefficient 1 in 
Table 12.1 for pairs of presidents.

Hint: You may use birthplace as South, non-South.

(b) Proceeding as in Part a, calculate similarity coefficients 2 and 3 in Table 12.1 Verify
the monotonicity relation of coefficients 1, 2, and 3 by displaying the order of the 15
similarities for each coefficient.

12.2. Repeat Exercise 12.1 using similarity coefficients 5, 6, and 7 in Table 12.1.

12.3. Show that the sample correlation coefficient [see (12-11)] can be written as

for two 0–1 binary variables with the following frequencies:

r =

ad - bc

31a + b2 1a + c2 1b + d2 1c + d241>2

Variable 2

0 1

Variable 1
0 a b
1 c d
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12.4. Show that the monotonicity property holds for the similarity coefficients 1, 2, and 3 in
Table 12.1.
Hint: So, for instance,

This equation relates coefficients 3 and 1. Find analogous representations for the other
pairs.

12.5. Consider the matrix of distances

Cluster the four items using each of the following procedures.

(a) Single linkage hierarchical procedure.

(b) Complete linkage hierarchical procedure.

(c) Average linkage hierarchical procedure.

Draw the dendrograms and compare the results in (a), (b), and (c).

12.6. The distances between pairs of five items are as follows:

Cluster the five items using the single linkage, complete linkage, and average linkage hi-
erarchical methods. Draw the dendrograms and compare the results.

12.7. Sample correlations for five stocks were given in Example 8.5. These correlations,
rounded to two decimal places, are reproduced as follows:

Treating the sample correlations as similarity measures, cluster the stocks using the sin-
gle linkage and complete linkage hierarchical procedures. Draw the dendrograms and
compare the results.

12.8. Using the distances in Example 12.3, cluster the items using the average linkage
hierarchical procedure. Draw the dendrogram. Compare the results with those in
Examples 12.3 and 12.5.

 

 

JP Morgan
Citibank
Wells Fargo
Royal DutchShell
ExxonMobil

 E
JP  Wells Royal  Exxon

Morgan Citibank Fargo DutchShell Mobil
1     

.63 1    

.51 .57 1   

.12 .32 .18 1  

.16 .21 .15 .68 1

 U

 

1
2
3
4
5

 E
1 2 3 4 5
0     

4 0    

6 9 0   

1 7 10 0  

6 3 5 8 0

 U

 

1
2
3
4

 D
1 2 3 4
0    

1 0   

11 2 0  

5 3 4 0

 T

a + d

a + d + 2 1b + c2
=

1
1 + 2 3p>1a + d2 - 14

1b + c2 = p - 1a + d2.
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12.9. The vocabulary “richness” of a text can be quantitatively described by counting the
words used once, the words used twice, and so forth. Based on these counts, a linguist
proposed the following distances between chapters of the Old Testament book Lamenta-
tions (data courtesy of Y. T. Radday and M. A. Pollatschek):

Lamentations
chapter

Cluster the chapters of Lamentations using the three linkage hierarchical methods we
have discussed. Draw the dendrograms and compare the results.

12.10. Use Ward’s method to cluster the four items whose measurements on a single variable X
are given in the following table.

Lamentations
chapter

 

 

1
2
3
4
5

 E
1 2 3 4 5

0     

.76 0    

2.97 .80 0   

4.88 4.17 .21 0  

3.86 1.92 1.51 .51 0

 U

Measurements

Item x

1 2
2 1
3 5
4 8

(a) Initially, each item is a cluster and we have the clusters

Show that as it must.

(b) If we join clusters and the new cluster has

and the ESS associated with the grouping is = .5
� The increase in ESS (loss of information) from the first step to the
current step in Complete the following table by determining the in-
crease in ESS for all the possibilities at step 2.

.5 - 0 = .5.
0 + 0 = .5.

ESS546536,5126,

ESS1 = a
 

 

 1xj - xq22 = 12 - 1.522 + 11 - 1.522 = .5

5126526,516

ESS = 0,

516 526 536 546

Increase
Clusters in ESS

.5

5346526516
5365246516
5465236516
5365265146
5465265136
5465365126

(c) Complete the last two algamation steps, and construct the dendrogram showing the
values of ESS at which the mergers take place.
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12.11. Suppose we measure two variables and for four items A, B, C, and D.The data are
as follows:

X2X1

Observations

Item

A 5 4
B 1
C 1
D 3 1

-1
-2

x2x1

Use the K-means clustering technique to divide the items into clusters. Start with
the initial groups and .

12.12. Repeat Example 12.11, starting with the initial groups and Compare your
solution with the solution in the example. Are they the same? Graph the items in terms
of their coordinates, and comment on the solutions.

12.13. Repeat Example 12.11, but start at the bottom of the list of items, and proceed up in the
order D, C, B, A. Begin with the initial groups and . [The first potential reas-
signment will be based on the distances and ] Compare your
solution with the solution in the example. Are they the same? Should they be the same?

The following exercises require the use of a computer.

12.14. Table 11.9 lists measurements on 8 variables for 43 breakfast cereals.

(a) Using the data in the table, calculate the Euclidean distances between pairs of cereal
brands.

(b) Treating the distances calculated in (a) as measures of (dis)similarity, cluster the
cereals using the single linkage and complete linkage hierarchical procedures.
Construct dendrograms and compare the results.

12.15. Input the data in Table 11.9 into a K-means clustering program. Cluster the cereals into
and 4 groups. Compare the results with those in Exercise 12.14.

12.16. The national track records data for women are given in Table 1.9.

(a) Using the data in Table 1.9, calculate the Euclidean distances between pairs of
countries.

(b) Treating the distances in (a) as measures of (dis)similarity, cluster the countries using
the single linkage and complete linkage hierarchical procedures. Construct dendro-
grams and compare the results.

(c) Input the data in Table 1.9 into a K-means clustering program. Cluster the countries
into groups using several values of K. Compare the results with those in Part b.

12.17. Repeat Exercise 12.16 using the national track records data for men given in Table 8.6.
Compare the results with those of Exercise 12.16. Explain any differences.

12.18. Table 12.12 gives the road distances between 12 Wisconsin cities and cities in neighboring
states. Locate the cities in and 3 dimensions using multidimensional scaling. Plot
the minimum stress (q) versus q and interpret the graph. Compare the two-dimensional
multidimensional scaling configuration with the locations of the cities on a map from an
atlas.

12.19. Table 12.13 on page 752 gives the “distances” between certain archaeological sites 
from different periods, based upon the frequencies of different types of potsherds found
at the sites. Given these distances, determine the coordinates of the sites in 
and 5 dimensions using multidimensional scaling. Plot the minimum stress (q) versus q

q = 3, 4,

q = 1, 2,

K = 2, 3,

d21D, 1CD22.d21D, 1AB22
1CD21AB2

1x1 , x22

1BD2.1AC2

1CD21AB2
K = 2
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Exercises

and interpret the graph. If possible, locate the sites in two dimensions (the first two
principal components) using the coordinates for the -dimensional solution. (Treat
the sites as variables.) Noting the periods associated with the sites, interpret the two-
dimensional configuration.

12.20. A sample of people is cross-classified according to mental health status and
socioeconomic status in Table 12.14.

Perform a correspondence analysis of these data. Interpret the results. Can the asso-
ciations in the data be well represented in one dimension?

12.21. A sample of 901 individuals was cross-classified according to three categories of income
and four categories of job satisfaction. The results are given in Table 12.15.

Perform a correspondence analysis of these data. Interpret the results.

12.22. Perform a correspondence analysis of the data on forests listed in Table 12.10, and verify
Figure 12.28 given in Example 12.22.

12.23. Construct a biplot of the pottery data in Table 12.8. Interpret the biplot. Is the biplot con-
sistent with the correspondence analysis plot in Figure 12.22? Discuss your answer. (Use
the row proportions as a vector of observations at a site.)

12.24. Construct a biplot of the mental health and socioeconomic data in Table 12.14. Interpret
the biplot. Is the biplot consistent with the correspondence analysis plot in Exercise
12.20? Discuss your answer. (Use the column proportions as the vector of observations
for each status.)

n = 1660

q = 5

Table 12.14 Mental Health Status and Socioeconomic Status Data

Parental Socioeconomic Status

Mental Health Status A (High) B C D E (Low)

Well 121 57 72 36 21
Mild symptom formation 188 105 141 97 71
Moderate symptom formation 112 65 77 54 54
Impaired 86 60 94 78 71

Source: Adapted from data in Srole, L., T. S. Langner, S. T. Michael, P. Kirkpatrick, M. K. Opler, and
T. A. C. Rennie, Mental Health in the Metropolis: The Midtown Manhatten Study, rev. ed. (New York: NYU
Press, 1978).

Table 12.15 Income and Job Satisfaction Data

Job Satisfaction

Very Somewhat Moderately Very
Income dissatisfied dissatisfied satisfied satisfied

42 62 184 207
$25,000–$50,000 13 28 81 113

7 18 54 92

Source: Adapted from data in Table 8.2 in Agresti, A., Categorical Data Analysis (New York: John
Wiley, 1990).

7 $ 50,000

6 $ 25,000
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12.25. Using the archaeological data in Table 12.13, determine the two-dimensional metric and
nonmetric multidimensional scaling plots. (See Exercise 12.19.) Given the coordinates of
the points in each of these plots, perform a Procrustes analysis. Interpret the results.

12.26. Table 8.7 contains the Mali family farm data (see Exercise 8.28). Remove the outliers 25,
34, 69 and 72, leaving at total of observations in the data set. Treating the
Euclidean distances between pairs of farms as a measure of similarity, cluster the farms
using average linkage and Ward’s method. Construct the dendrograms and compare the
results. Do there appear to be several distinct clusters of farms?

12.27. Repeat Exercise 12.26 using standardized observations. Does it make a difference
whether standardized or unstandardized observations are used? Explain.

12.28. Using the Mali family farm data in Table 8.7 with the outliers 25, 34, 69 and 72 removed,
cluster the farms with the K-means clustering algorithm for and .
Compare the results with those in Exercise 12.26. Is 5 or 6 about the right number of dis-
tinct clusters? Discuss.

12.29. Repeat Exercise 12.28 using standardized observations. Does it make a difference
whether standardized of unstandardized observations are used? Explain.

12.30. A company wants to do a mail marketing campaign. It costs the company $1 for each
item mailed. They have information on 100,000 customers. Create and interpret a cumu-
lative lift chart from the following information.

Overall Response Rate: Assume we have no model other than the prediction of the
overall response rate which is 20%. That is, if all 100,000
customers are contacted (at a cost of $100,000), we will re-
ceive around 20,000 positive responses.

Results of Response Model: A response model predicts who will respond to a
marketing campaign. We use the response model to as-
sign a score to all 100,000 customers and predict the
positive responses from contacting only the top 
10,000 customers, the top 20,000 customers, and so
forth. The model predictions are summarized below.

K = 6K = 5

n = 72

Cost Total Customers Positive
($) Contacted Responses

10000 10000 6000
20000 20000 10000
30000 30000 13000
40000 40000 15800
50000 50000 17000
60000 60000 18000
70000 70000 18800
80000 80000 19400
90000 90000 19800

100000 100000 20000

12.31. Consider the crude-oil data in Table 11.7.Transform the data as in Example 11.14. Ignore
the known group membership. Using the special purpose software MCLUST,

(a) select a mixture model using the BIC criterion allowing for the different covariance
structures listed in Section 12.5 and up to groups.

(b) compare the clustering results for the best model with the known classifications
given in Example 11.14. Notice how several clusters correspond to one crude-oil
classification.

K = 7
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TABLE 1 STANDARD NORMAL PROBABILITIES

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359

.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753

.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141

.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517

.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224

.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549

.7 .7580 .7611 .7642 .7673 .7703 .7734 .7764 .7794 .7823 .7852

.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133

.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319
1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936
2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998
3.5 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998

P[ Z �   ]

0 z

z
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TABLE 2 STUDENT’S t-DISTRIBUTION PERCENTAGE POINTS

d.f.
.250 .100 .050 .025 .010 .00833 .00625 .005 .0025

1 1.000 3.078 6.314 12.706 31.821 38.190 50.923 63.657 127.321
2 .816 1.886 2.920 4.303 6.965 7.649 8.860 9.925 14.089
3 .765 1.638 2.353 3.182 4.541 4.857 5.392 5.841 7.453
4 .741 1.533 2.132 2.776 3.747 3.961 4.315 4.604 5.598
5 .727 1.476 2.015 2.571 3.365 3.534 3.810 4.032 4.773
6 .718 1.440 1.943 2.447 3.143 3.287 3.521 3.707 4.317
7 .711 1.415 1.895 2.365 2.998 3.128 3.335 3.499 4.029
8 .706 1.397 1.860 2.306 2.896 3.016 3.206 3.355 3.833
9 .703 1.383 1.833 2.262 2.821 2.933 3.111 3.250 3.690

10 .700 1.372 1.812 2.228 2.764 2.870 3.038 3.169 3.581
11 .697 1.363 1.796 2.201 2.718 2.820 2.981 3.106 3.497
12 .695 1.356 1.782 2.179 2.681 2.779 2.934 3.055 3.428
13 .694 1.350 1.771 2.160 2.650 2.746 2.896 3.012 3.372
14 .692 1.345 1.761 2.145 2.624 2.718 2.864 2.977 3.326
15 .691 1.341 1.753 2.131 2.602 2.694 2.837 2.947 3.286
16 .690 1.337 1.746 2.120 2.583 2.673 2.813 2.921 3.252
17 .689 1.333 1.740 2.110 2.567 2.655 2.793 2.898 3.222
18 .688 1.330 1.734 2.101 2.552 2.639 2.775 2.878 3.197
19 .688 1.328 1.729 2.093 2.539 2.625 2.759 2.861 3.174
20 .687 1.325 1.725 2.086 2.528 2.613 2.744 2.845 3.153
21 .686 1.323 1.721 2.080 2.518 2.601 2.732 2.831 3.135
22 .686 1.321 1.717 2.074 2.508 2.591 2.720 2.819 3.119
23 .685 1.319 1.714 2.069 2.500 2.582 2.710 2.807 3.104
24 .685 1.318 1.711 2.064 2.492 2.574 2.700 2.797 3.091
25 .684 1.316 1.708 2.060 2.485 2.566 2.692 2.787 3.078
26 .684 1.315 1.706 2.056 2.479 2.559 2.684 2.779 3.067
27 .684 1.314 1.703 2.052 2.473 2.552 2.676 2.771 3.057
28 .683 1.313 1.701 2.048 2.467 2.546 2.669 2.763 3.047
29 .683 1.311 1.699 2.045 2.462 2.541 2.663 2.756 3.038
30 .683 1.310 1.697 2.042 2.457 2.536 2.657 2.750 3.030
40 .681 1.303 1.684 2.021 2.423 2.499 2.616 2.704 2.971
60 .679 1.296 1.671 2.000 2.390 2.463 2.575 2.660 2.915

120 .677 1.289 1.658 1.980 2.358 2.428 2.536 2.617 2.860
.674 1.282 1.645 1.960 2.326 2.394 2.498 2.576 2.813q

n

a

0 t   (   ) tα

α

ν
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TABLE 3 DISTRIBUTION PERCENTAGE POINTS

d.f.
.990 .950 .900 .500 .100 .050 .025 .010 .005

1 .0002 .004 .02 .45 2.71 3.84 5.02 6.63 7.88
2 .02 .10 .21 1.39 4.61 5.99 7.38 9.21 10.60
3 .11 .35 .58 2.37 6.25 7.81 9.35 11.34 12.84
4 .30 .71 1.06 3.36 7.78 9.49 11.14 13.28 14.86
5 .55 1.15 1.61 4.35 9.24 11.07 12.83 15.09 16.75
6 .87 1.64 2.20 5.35 10.64 12.59 14.45 16.81 18.55
7 1.24 2.17 2.83 6.35 12.02 14.07 16.01 18.48 20.28
8 1.65 2.73 3.49 7.34 13.36 15.51 17.53 20.09 21.95
9 2.09 3.33 4.17 8.34 14.68 16.92 19.02 21.67 23.59

10 2.56 3.94 4.87 9.34 15.99 18.31 20.48 23.21 25.19
11 3.05 4.57 5.58 10.34 17.28 19.68 21.92 24.72 26.76
12 3.57 5.23 6.30 11.34 18.55 21.03 23.34 26.22 28.30
13 4.11 5.89 7.04 12.34 19.81 22.36 24.74 27.69 29.82
14 4.66 6.57 7.79 13.34 21.06 23.68 26.12 29.14 31.32
15 5.23 7.26 8.55 14.34 22.31 25.00 27.49 30.58 32.80
16 5.81 7.96 9.31 15.34 23.54 26.30 28.85 32.00 34.27
17 6.41 8.67 10.09 16.34 24.77 27.59 30.19 33.41 35.72
18 7.01 9.39 10.86 17.34 25.99 28.87 31.53 34.81 37.16
19 7.63 10.12 11.65 18.34 27.20 30.14 32.85 36.19 38.58
20 8.26 10.85 12.44 19.34 28.41 31.41 34.17 37.57 40.00
21 8.90 11.59 13.24 20.34 29.62 32.67 35.48 38.93 41.40
22 9.54 12.34 14.04 21.34 30.81 33.92 36.78 40.29 42.80
23 10.20 13.09 14.85 22.34 32.01 35.17 38.08 41.64 44.18
24 10.86 13.85 15.66 23.34 33.20 36.42 39.36 42.98 45.56
25 11.52 14.61 16.47 24.34 34.38 37.65 40.65 44.31 46.93
26 12.20 15.38 17.29 25.34 35.56 38.89 41.92 45.64 48.29
27 12.88 16.15 18.11 26.34 36.74 40.11 43.19 46.96 49.64
28 13.56 16.93 18.94 27.34 37.92 41.34 44.46 48.28 50.99
29 14.26 17.71 19.77 28.34 39.09 42.56 45.72 49.59 52.34
30 14.95 18.49 20.60 29.34 40.26 43.77 46.98 50.89 53.67
40 22.16 26.51 29.05 39.34 51.81 55.76 59.34 63.69 66.77
50 29.71 34.76 37.69 49.33 63.17 67.50 71.42 76.15 79.49
60 37.48 43.19 46.46 59.33 74.40 79.08 83.30 88.38 91.95
70 45.44 51.74 55.33 69.33 85.53 90.53 95.02 100.43 104.21
80 53.54 60.39 64.28 79.33 96.58 101.88 106.63 112.33 116.32
90 61.75 69.13 73.29 89.33 107.57 113.15 118.14 124.12 128.30

100 70.06 77.93 82.36 99.33 118.50 124.34 129.56 135.81 140.17

n

a

(   )α

α

χχ ν
2 2

x2
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TABLE 4 F-DISTRIBUTION PERCENTAGE POINTS 

1 2 3 4 5 6 7 8 9 10 12 15 20 25 30 40 60

1 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 59.86 60.19 60.71 61.22 61.74 62.05 62.26 62.53 62.79

2 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.47

3 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23 5.22 5.20 5.18 5.17 5.17 5.16 5.15

4 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92 3.90 3.87 3.84 3.83 3.82 3.80 3.79

5 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30 3.27 3.24 3.21 3.19 3.17 3.16 3.14

6 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94 2.90 2.87 2.84 2.81 2.80 2.78 2.76

7 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70 2.67 2.63 2.59 2.57 2.56 2.54 2.51

8 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54 2.50 2.46 2.42 2.40 2.38 2.36 2.34

9 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42 2.38 2.34 2.30 2.27 2.25 2.23 2.21

10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32 2.28 2.24 2.20 2.17 2.16 2.13 2.11

11 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25 2.21 2.17 2.12 2.10 2.08 2.05 2.03

12 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19 2.15 2.10 2.06 2.03 2.01 1.99 1.96

13 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14 2.10 2.05 2.01 1.98 1.96 1.93 1.90

14 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10 2.05 2.01 1.96 1.93 1.91 1.89 1.86

15 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06 2.02 1.97 1.92 1.89 1.87 1.85 1.82

16 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03 1.99 1.94 1.89 1.86 1.84 1.81 1.78

17 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00 1.96 1.91 1.86 1.83 1.81 1.78 1.75

18 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98 1.93 1.89 1.84 1.80 1.78 1.75 1.72

19 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96 1.91 1.86 1.81 1.78 1.76 1.73 1.70

20 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94 1.89 1.84 1.79 1.76 1.74 1.71 1.68

21 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95 1.92 1.87 1.83 1.78 1.74 1.72 1.69 1.66

22 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90 1.86 1.81 1.76 1.73 1.70 1.67 1.64

23 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92 1.89 1.84 1.80 1.74 1.71 1.69 1.66 1.62

24 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88 1.83 1.78 1.73 1.70 1.67 1.64 1.61

25 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87 1.82 1.77 1.72 1.68 1.66 1.63 1.59

26 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88 1.86 1.81 1.76 1.71 1.67 1.65 1.61 1.58

27 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87 1.85 1.80 1.75 1.70 1.66 1.64 1.60 1.57

28 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 1.84 1.79 1.74 1.69 1.65 1.63 1.59 1.56

29 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86 1.83 1.78 1.73 1.68 1.64 1.62 1.58 1.55

30 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82 1.77 1.72 1.67 1.63 1.61 1.57 1.54

40 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76 1.71 1.66 1.61 1.57 1.54 1.51 1.47

60 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71 1.66 1.60 1.54 1.50 1.48 1.44 1.40

120 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 1.65 1.60 1.55 1.48 1.45 1.41 1.37 1.32

2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 1.60 1.55 1.49 1.42 1.38 1.34 1.30 1.24q

n2

n1

(.10)

.10

F  1 ,   2 
Fν ν

1a = .102
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TABLE 5 F-DISTRIBUTION PERCENTAGE POINTS 

1 2 3 4 5 6 7 8 9 10 12 15 20 25 30 40 60

1 161.5 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9 243.9 246.0 248.0 249.3 250.1 251.1 252.2

2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.41 19.43 19.45 19.46 19.46 19.47 19.48

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.63 8.62 8.59 8.57

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.52 4.50 4.46 4.43

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.83 3.81 3.77 3.74

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.40 3.38 3.34 3.30

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.11 3.08 3.04 3.01

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.89 2.86 2.83 2.79

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.73 2.70 2.66 2.62

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.60 2.57 2.53 2.49

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.50 2.47 2.43 2.38

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46 2.41 2.38 2.34 2.30

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.34 2.31 2.27 2.22

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.28 2.25 2.20 2.16

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.23 2.19 2.15 2.11

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31 2.23 2.18 2.15 2.10 2.06

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.14 2.11 2.06 2.02

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.07 2.04 1.99 1.95

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92

22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.15 2.07 2.02 1.98 1.94 1.89

23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.20 2.13 2.05 2.00 1.96 1.91 1.86

24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.11 2.03 1.97 1.94 1.89 1.84

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82

26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.15 2.07 1.99 1.94 1.90 1.85 1.80

27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 2.13 2.06 1.97 1.92 1.88 1.84 1.79

28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.77

29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18 2.10 2.03 1.94 1.89 1.85 1.81 1.75

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.88 1.84 1.79 1.74

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.78 1.74 1.69 1.64

60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.69 1.65 1.59 1.53

120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.60 1.55 1.50 1.43

3.84 3.00 2.61 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57 1.51 1.46 1.39 1.32q

n2

n1

(.05)

.05

F 1 ,   2 
Fν ν

1a = .052
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TABLE 6 F-DISTRIBUTION PERCENTAGE POINTS 

1 2 3 4 5 6 7 8 9 10 12 15 20 25 30 40 60

1 4052. 5000. 5403. 5625. 5764. 5859. 5928. 5981. 6023. 6056. 6106. 6157. 6209. 6240. 6261. 6287. 6313.

2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40 99.42 99.43 99.45 99.46 99.47 99.47 99.48

3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23 27.05 26.87 26.69 26.58 26.50 26.41 26.32

4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55 14.37 14.20 14.02 13.91 13.84 13.75 13.65

5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.89 9.72 9.55 9.45 9.38 9.29 9.20

6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56 7.40 7.30 7.23 7.14 7.06

7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.31 6.16 6.06 5.99 5.91 5.82

8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52 5.36 5.26 5.20 5.12 5.03

9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.11 4.96 4.81 4.71 4.65 4.57 4.48

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.71 4.56 4.41 4.31 4.25 4.17 4.08

11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.40 4.25 4.10 4.01 3.94 3.86 3.78

12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.16 4.01 3.86 3.76 3.70 3.62 3.54

13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 3.96 3.82 3.66 3.57 3.51 3.43 3.34

14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.80 3.66 3.51 3.41 3.35 3.27 3.18

15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.67 3.52 3.37 3.28 3.21 3.13 3.05

16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.55 3.41 3.26 3.16 3.10 3.02 2.93

17 8.40 6.11 5.19 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.46 3.31 3.16 3.07 3.00 2.92 2.83

18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.37 3.23 3.08 2.98 2.92 2.84 2.75

19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.30 3.15 3.00 2.91 2.84 2.76 2.67

20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.23 3.09 2.94 2.84 2.78 2.69 2.61

21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 3.17 3.03 2.88 2.79 2.72 2.64 2.55

22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.12 2.98 2.83 2.73 2.67 2.58 2.50

23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.07 2.93 2.78 2.69 2.62 2.54 2.45

24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.03 2.89 2.74 2.64 2.58 2.49 2.40

25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13 2.99 2.85 2.70 2.60 2.54 2.45 2.36

26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 2.96 2.81 2.66 2.57 2.50 2.42 2.33

27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06 2.93 2.78 2.63 2.54 2.47 2.38 2.29

28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 2.90 2.75 2.60 2.51 2.44 2.35 2.26

29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00 2.87 2.73 2.57 2.48 2.41 2.33 2.23

30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.84 2.70 2.55 2.45 2.39 2.30 2.21

40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.66 2.52 2.37 2.27 2.20 2.11 2.02

60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.50 2.35 2.20 2.10 2.03 1.94 1.84

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.34 2.19 2.03 1.93 1.86 1.76 1.66

6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.18 2.04 1.88 1.78 1.70 1.59 1.47q

n2

n1

(.01)

.01

F  1 ,   2 
Fν ν

1a = .012
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Expected value, 60, 104-105, 107, 144, 150, 155-157,

178, 182, 364, 370, 378-379, 381, 406, 622,
634

Expected values, 57, 59, 104-105, 317, 400
definition of, 57, 105

Experiment, 13, 45, 281, 337, 341, 343, 353-354, 357,
361

Experimentation, 1
Experiments, 4, 273, 359, 606, 633, 644

Exponents, 593

F
Factoring, 160, 430, 488-489, 495, 497-498, 537

defined, 489
Factors, 4, 48, 162, 193, 306, 312, 314-316, 318, 323,

341, 357-358, 413, 428, 480, 481-484,
486-495, 497-499, 501, 503-507, 509-514,
516-520, 522-524, 526, 532, 534-535,
537-538, 694, 705

common factors, 482-484, 488, 490-492, 494-495,
501, 503-505, 507, 512-513, 516,
519-520, 535

defined, 193, 318, 489
F-distributions, 322
Feet, 14, 361, 372
First coordinate, 90, 717
First quadrant, 506
Fitted values, 364, 392, 420, 422, 658

and residuals, 422
Fixed-effects model, 312, 315
Formulas, 35-36, 84, 306, 514, 697
F-ratio, 375-376, 378, 702
Frequency, 570, 587, 615, 640, 675, 725
F-statistic, 308, 386, 398
F-test, 300-301, 303, 322, 378, 386

for treatment effects, 301
Functions, 36, 40, 126, 234, 303, 369, 408, 480, 496,

511, 574, 576, 579, 582-583, 590, 593-594,
596-599, 601, 603, 605-606, 608, 619, 621,
627, 633-634, 648, 651-653, 660, 665, 670,
701, 755

algebraic, 36
constant, 36, 40, 634, 653
defined, 40, 126, 496, 582, 593, 596, 598, 619, 653
difference, 590, 603, 605, 651-652
evaluating, 596-597, 599, 601, 603, 605
even, 234, 634
identity, 601
inverse, 369, 601
linear, 234, 369, 408, 480, 574, 590, 596, 601,

605-606, 619, 621, 633-634, 648,
651-652, 660, 665, 670

product, 480, 576
quadratic, 36, 593-594, 621, 653, 660
square, 408, 701, 755
sum, 126, 480

G
Gamma distribution, 184
Gamma function, 64, 174
Geometric mean, 472
Geometry, 49-56, 58, 60, 62-64, 66, 68-70, 72, 74, 76,

78, 80, 82, 84, 86, 303, 367-368, 466-467,
469, 505, 507, 721, 755

Grade point average, 614
Grams, 17, 334, 353, 453
Graphical data, 48
Graphs, 5, 24, 382, 635
Greater than, 31, 50, 73, 97-98, 101, 140, 174, 176,

184, 232, 294, 451, 465, 486, 491-492, 518,
618, 634-635, 638-639, 658

Growth, 24-26, 28, 262, 273, 328-332, 356, 358-359,
480, 535-536, 603-604, 639-640, 663, 669,
688-689, 692

limited, 603

H
Histogram, 177, 192-193

defined, 193
symmetric, 177

Histograms, 41, 177, 382
Horizontal axis, 20, 476, 478-479, 668
Horizontal lines, 239
Hours, 86, 239-244, 248, 269-270, 289-290, 306,

349-350, 358, 424, 460-461, 463-464, 478
Hypotenuse, 89

I
Identity, 96, 128, 131, 133, 135, 166, 170, 440, 516,

555, 557, 601, 654, 682, 704
defined, 96, 128, 555
property, 166

Identity matrix, 96, 128, 131, 133, 135, 166, 440, 704
defined, 96, 128
using, 131, 704

Image, 3
Independence, 58, 85, 107, 159-160, 207, 256-257,
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285, 383, 413, 483, 678, 716, 720, 726
Independent events, 230
Independent random variables, 144, 163, 297, 313
Independent variable, 256, 422-423
Independent variables, 301, 421, 423, 427, 482
Inequalities, 116-117, 119, 581, 585, 594, 598

defined, 117, 581, 598
linear, 116
quadratic, 117, 119, 594

Inference, 2, 210, 231, 234, 236, 395, 429, 448, 480,
481-482, 484, 486, 488, 490, 492, 494, 496,
498, 502, 504, 506, 508, 510, 512, 514, 516,
518, 520, 522, 524, 526, 528, 530, 532, 534,
536, 538, 741-742, 755-756

Infinite, 238
Infinity, 85, 531
Inputs, 244, 428, 430, 513, 647, 671, 678, 682, 742
Integers, 181, 196, 199, 326
Integral sign, 580
Integrals, 650
Integrand, 650
Integration, 109
Interaction plots, 317
Interest, 2, 9, 52, 80, 158, 174, 182, 264, 281, 308,

323, 326, 345, 370, 374, 421, 481, 513, 522,
565, 577, 596, 599, 627, 634, 683, 717, 741

simple, 513
Interest rate, 345
Intervals, 150, 177, 211, 223-227, 229-234, 236-238,

244-245, 256, 258-263, 265-270, 276-277,
281, 283, 288-293, 308-309, 317-318, 323,
335-338, 341, 343-344, 347, 351, 354,
356-358, 371-372, 399-400, 427, 456-457,
473, 637

Inverse, 69, 77, 96-97, 101, 103, 133-134, 151, 164,
204, 265, 364, 369, 386, 396, 404, 421, 591,
601-602, 654, 669

functions, 369, 601
of matrix, 96-97
variation, 386

J
Joint probability density function, 106

L
Law of Large Numbers, 175-176
Least squares, 140, 297, 364-365, 367-370, 372-373,

378, 382, 387-389, 393-395, 412, 420, 422,
429, 514-519, 534-535, 538, 634, 637, 658,
719, 724, 756

method of, 364, 372, 637
Length, 17, 24, 26-28, 52, 55, 57, 62-63, 68, 72-73,

82-83, 89, 91-92, 97-98, 103, 117, 119,
122-125, 137, 141, 154, 223, 234, 258-260,
262-263, 268, 298, 334-336, 344, 346-347,
352, 356-357, 365, 368, 419, 427, 431,
445-448, 454, 469-470, 478, 491, 520-522,
524-525, 532-533, 552, 573, 576, 589, 619,
645-646, 658-659, 665, 668-669, 706-707,
721

Likelihood function, 168, 170-172, 194, 219, 339, 497,
501-502, 521, 529, 637

Limits, 237-241, 244, 246-247, 251, 464
Line, 9, 17-18, 23, 30, 48, 52, 88, 152, 154-155,

178-179, 184, 186-187, 191, 195, 202, 243,
246, 258, 260, 299-300, 323, 362, 365, 385,
390, 422, 441, 470, 522, 578, 592, 594, 599,
618, 635, 658, 673

of equality, 323
of symmetry, 635
regression, 362, 385, 390, 422, 635, 658

Linear combination, 67-68, 71-72, 78, 91, 113-114,
121-122, 156-157, 165-167, 182, 202, 223,
262, 289, 291, 293, 338, 343-344, 347,
367-369, 378-379, 386, 401, 419, 431, 439,
441-442, 453-454, 467, 516, 539, 568, 587,
590, 596, 611, 618, 622-623, 629, 651, 654

Linear functions, 660
Linear regression, 360-364, 366-370, 372, 374, 376,

378-380, 382, 384, 386-390, 392, 394, 396,
398, 400-410, 412, 414, 416, 420, 422-429,
455, 636

Linear regression model, 360-363, 367, 369-370,
378-379, 387-388, 401, 412, 420, 422-423,
427

Lines, 24, 26, 131-132, 215, 239, 323, 658
parallel, 323

Location, 6, 28, 30, 58-59, 181, 196, 199, 353-354,

361, 376-378, 397, 692
Logarithms, 192, 206, 312, 334-335, 445-446, 532,

585, 593, 635
defined, 593

Logistic model, 642
Lower bound, 468
Lower control limit, 239, 243

M
Magnitude, 8, 178, 433, 445, 519, 565
Mass, 6, 17-19, 334-336
Matrices, 64, 75, 83, 86, 92-93, 95-99, 101, 104-107,

109, 111, 113, 115, 120-121, 123, 125-135,
137-142, 144-145, 148, 168-169, 204,
279-280, 291, 294-295, 306-307, 310-312,
318, 336, 339-340, 356, 359, 389, 394, 422,
437, 439, 475, 481-482, 484, 486-488, 490,
492, 494, 496, 498, 501-502, 504, 506, 508,
510, 512, 514, 516, 518, 520, 522-524, 526,
528, 530-532, 534, 536, 538, 545-546,
550-551, 558-563, 569, 584-586, 590,
593-595, 600, 605, 610-612, 616, 621-624,
640, 656, 660, 704-706, 719, 722, 724, 734,
742, 755

coefficient, 64, 109, 121, 291, 422, 482, 486, 545,
551, 559, 561, 590, 616

column, 83, 93, 95, 97, 120, 126, 128-129,
131-134, 142, 279, 488, 558, 719, 724

defined, 96, 106, 109, 115, 121, 123, 126, 128-130,
141, 204, 280, 318, 437, 496, 551, 558,
593, 724

equations, 99, 169, 486-487, 528, 545
identity, 96, 128, 131, 133, 135, 516, 704
models with, 534, 704
multiplying, 93, 538
notation, 95, 101, 106, 113, 123, 437, 482
row, 93, 95, 97, 126, 128-129, 131-132, 134, 142,

279, 623, 705, 719, 724
scalar multiplication, 120-121, 127
square, 95-98, 104, 128, 131, 133-135, 137-138,

142, 168, 294, 422, 502, 610, 719, 722,
724, 755

zero, 83, 92, 101, 121, 130, 134, 138, 279, 488,
490, 516, 534, 545, 551, 559, 563, 624,
734

Matrix, 3, 36, 49-52, 55, 57, 59-64, 67-72, 75-77, 80,
82-85, 87-119, 122, 124-148, 150-151,
156-161, 164-170, 172-174, 197, 204-205,
212-213, 216, 218, 220, 224, 235, 241,
248-250, 256-258, 261-262, 265, 278-280,
282-286, 288, 290, 292, 297, 301-302, 305,
310-311, 315-316, 320-321, 324-326,
328-329, 331-332, 339, 341, 346, 356,
361-365, 368-369, 371, 375-377, 381,
387-391, 393-394, 397-398, 401, 403-409,
411-412, 421-422, 427, 429, 430-434,
437-443, 446-448, 450-453, 455-456,
458-460, 462, 466, 469-476, 478, 480,
482-491, 493-499, 501, 503-505, 507,
509-510, 514-518, 520-522, 527-535,
537-538, 540, 542-543, 546, 549-550,
552-553, 555, 559, 567-573, 581, 584,
586-587, 590, 592-593, 598-602, 610, 612,
616, 618-620, 622-624, 628, 630, 633, 637,
639, 641, 643, 648, 650, 652-656, 660,
662-663, 665, 668-669, 677, 681-684,
686-687, 689-690, 693, 695-696, 704-705,
718-720, 722, 724-729, 732-733, 735, 737,
744-745, 748

Maximum, 116, 118-119, 132, 147, 155, 168-172, 198,
205, 209, 216-217, 219, 225, 252-253, 258,
272, 311, 330-331, 336, 347, 353, 356,
370-371, 375, 394-395, 398, 402-408, 410,
416, 423, 431, 439, 442-443, 448, 456, 488,
495-499, 501-505, 507, 510-518, 520-522,
524-535, 537-538, 545, 551, 568, 590-592,
629, 637-639, 641, 654, 669, 677, 681, 684,
686, 704

Maximum likelihood estimates, 168, 171-172, 205,
216, 252-253, 406, 408, 423, 443, 495-497,
501-502, 504, 510, 515-516, 518, 522,
527-528, 530, 532-533, 535, 537, 551, 637,
639, 641, 704

Mean, 6-7, 9-10, 31, 37-38, 50, 52-53, 57, 59, 64-67,
70-72, 75, 77-86, 106-107, 109, 111,
113-116, 144-147, 149-150, 155, 157-158,
160, 163-164, 166-168, 171, 173-176, 190,
192-194, 204-205, 210-218, 220-224, 226,
228, 230-240, 242, 244, 246-257, 260,

262-266, 268, 270, 272, 273-277, 280-281,
284-285, 287-291, 293, 295-302, 304-306,
310, 313, 315, 319-321, 323-327, 329-330,
333-334, 337-339, 342-344, 346-347,
350-351, 356-357, 359, 361-364, 367, 373,
380-381, 390-391, 394, 399, 401-406,
408-413, 415, 422, 436, 441, 443, 446-447,
449-450, 453, 459, 462, 465-466, 468-469,
472-473, 478, 482-483, 489, 514-516, 534,
540, 567, 584, 586, 592-594, 605, 610, 612,
615, 618, 622-623, 626, 628, 633-634, 637,
648, 651-653, 656, 693, 696-697, 699, 701,
704, 709, 727-728, 731, 733, 740

defined, 7, 57, 106, 109, 115, 150, 163, 174, 193,
204, 220, 248, 251, 280-281, 296, 326,
436, 489, 593, 653, 693

finding, 52, 327
geometric, 299, 472
quadratic, 59, 147, 329, 356, 363, 593-594, 610,

653
Mean square, 315, 319-320, 381, 390-391, 402-406,

408-409, 422, 701
Mean square error, 402-406, 408-409, 422
Means, 2, 7-10, 12, 31, 37-38, 45, 49, 68, 71, 76,

79-81, 84, 106-107, 109, 114-115, 144,
158-159, 173, 210, 215, 220-221, 223,
225-227, 229-233, 236-237, 239, 241,
249-251, 255, 262, 268-270, 273-274, 276,
278, 280, 282, 284, 286, 288, 290, 292-294,
296-310, 312, 314, 316-320, 322-324, 326,
328, 330-336, 338, 340, 342, 344, 346-347,
350, 352, 354, 356-358, 363, 410, 430, 495,
516, 535, 545, 550, 587-588, 590-592, 596,
601, 606, 621-622, 626-628, 633, 651-652,
654, 671, 695-697, 699, 701, 703-704, 734,
750, 754

confidence intervals for, 226-227, 233, 237, 262,
270, 276, 288, 290, 292-293, 308-309,
317-318, 323, 335, 338, 344, 347,
356-358

Measures, 4, 8-9, 12, 19, 37, 109, 150, 186-187, 190,
220, 273, 275, 277, 279-281, 283, 328-329,
331, 342-343, 347, 356, 384, 397, 409,
433-434, 533-535, 538, 539, 541, 553,
558-559, 561-562, 571-574, 576, 623, 643,
662, 671-675, 677-678, 680, 689, 700-701,
709, 711, 748, 750

of location, 397
Median, 342-343, 443, 474, 569, 696
Meters, 43, 207, 476, 537
Method of least squares, 364, 372
Midpoint, 587-588, 601, 606
Minimum, 1, 140, 147, 194, 311, 365, 369-370, 378,

402, 408, 513, 529, 581-582, 584-587,
592-593, 596-597, 606-608, 610-611, 618,
630, 632, 649, 651-652, 662, 681, 683-684,
686, 693, 699, 709, 711, 719, 750

Minitab, 507
Minutes, 43, 476
Mixture distribution, 704
Mode, 155
Model checking, 381, 383, 385, 413, 638, 642
Models, 24, 87, 156, 319, 332-333, 335, 342, 360,

362, 364, 366-368, 370, 372, 374, 376, 378,
380, 382, 384-386, 388, 390, 392, 394,
396-398, 400, 402, 404, 406, 408, 410,
412-417, 420, 422, 424-429, 488, 534, 537,
574, 584, 634, 637, 642-643, 663, 670,
703-705, 741-745, 755-756

defined, 398, 643, 743
Modulus, 267, 427, 478, 573
Multiple regression model, 360, 393, 395-396, 398,

410, 412-413, 418-419, 455
linear, 360, 396, 398, 410, 412-413, 419, 455

Multiples, 590
common, 590

Multiplication, 88-89, 93-94, 96, 112, 120-121,
126-128, 130, 144, 166, 204, 368-369, 655

Multiplicity, 440, 496
Multivariate distributions, 236, 272, 359

N
Natural logarithms, 206, 312, 334-335, 446, 585, 593,

635
defined, 593

Networks, 647-648, 670, 741, 743
optimal, 648, 670

nonlinear, 9, 332, 484, 715, 728, 738
Normal distribution, 2, 109, 149-156, 158-162, 164,
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166-174, 176-178, 180, 182, 184, 186, 188,
190, 192, 194, 196-198, 200, 202, 204-206,
208, 211, 221, 230, 237, 241, 249, 251-252,
268, 278, 338, 343, 370, 379, 394-395,
409-410, 441, 448, 456-457, 459, 462,
594-595, 652

Normal distributions, 149, 152, 155-156, 177, 273,
587, 594, 605, 640, 663, 703

mean, 149, 155, 273, 594, 605
standard deviation, 605

Normal equations, 421
Normal random variables, 154, 159, 165, 173, 415,

435, 596
Notation, 5-7, 52, 82, 95, 101, 106, 113, 123, 150, 162,

178, 273-274, 284, 361, 387, 398, 437, 443,
482, 573

interval, 178, 274
set, 6-7, 284, 361, 387

Null hypothesis, 210, 213, 219-220, 231, 261, 267,
270, 297, 310-311, 323-325, 331-332, 336,
374-375, 397-398, 564-565, 638-639, 641

simple, 397, 639
Numbers, 3, 5-6, 35-36, 40, 87, 92, 104, 120-122, 126,

130, 138, 140, 170, 175-176, 187, 211,
342-343, 354, 356, 373, 376, 385, 428, 474,
494, 506, 513, 520, 529, 534, 632, 644, 672,
674, 677-678, 680, 684-685, 687, 690, 704,
708-709, 742, 745

positive, 36, 104, 138, 170, 494, 506, 529
prime, 87
real, 3, 87, 92, 120-122, 126, 130, 138, 140, 644

O
Objective function, 529-530, 745, 756
Octagons, 26
Odds, 634-638
Opposites, 635
Optimal, 216, 219-220, 354-355, 402, 413, 420,

578-579, 582-583, 587, 597-598, 606-607,
619, 621, 633, 648-649, 670, 756

Order statistics, 182
Ordered pair, 126
Origin, 2, 30-37, 40, 55-56, 82, 89, 102-103, 119, 122,

143, 184, 187, 189, 222, 435, 448, 468, 522,
568, 728, 731

coordinate system, 34, 435, 448
Outlier, 20-21, 23-24, 189, 191-192, 278, 337, 423,

703
Outliers, 9, 16, 19, 23-24, 45-46, 180, 187-192, 208,

236, 268-269, 272, 278, 294, 306, 337,
343-344, 358, 384, 395, 427, 476, 478-479,
522, 535, 537-538, 622, 642, 671, 695, 754

Outputs, 647

P
Parameters, 2, 151, 168, 170, 194, 216, 219-220, 252,

297, 317, 331, 341, 361-362, 364, 370,
374-375, 385-386, 388-389, 395, 397, 402,
421-423, 485-486, 513, 584-585, 598, 619,
637-638, 642, 647-648, 704-705, 742,
744-745

Paths, 153
Patterns, 4, 9, 16, 38, 64, 67, 243, 499, 559, 643, 740
Percentages, 184
Percentiles, 184, 238, 745
Periods, 239, 279, 347, 349, 383, 413, 415, 463, 717,

750, 753
Plane, 30, 52, 62-63, 67-68, 90, 122, 259-260,

367-369, 467-469, 618, 632, 653, 726-727
Plots, 11-12, 14, 16, 20-24, 64-66, 177-180, 182,

185-186, 188-189, 191-192, 197, 199, 205,
208, 215, 229, 236, 261, 263, 267-269, 274,
299, 317, 333-334, 382-384, 428, 454, 512,
519, 522, 557-558, 588, 592, 620-622, 627,
656, 671, 673, 706, 725-726, 738, 754

box, 14, 208, 428, 620-621
interaction, 317, 428
normal probability, 208, 656
scatter, 11-12, 14, 16, 20-23, 64-66, 177, 182, 185,

188-189, 191-192, 208, 215, 229, 261,
263, 267-269, 333-334, 454, 519,
557-558, 588, 592, 622, 627, 706, 726

Plotting, 182, 270, 454, 520, 558, 622, 627, 629, 665,
668, 707, 733

Point, 6, 17, 19-20, 30-37, 40, 47, 50-51, 58-59, 64,
71, 102, 122, 154-155, 168, 183, 186, 188,
202, 210-211, 215, 233, 243, 246, 248, 277,
306, 325-326, 337, 350, 368, 376, 378,

384-386, 397, 423, 435-436, 439, 445,
453-454, 459, 461, 464, 472, 486, 491, 493,
505-506, 511, 513, 522, 535, 563, 565-566,
576-577, 605, 614, 633, 644, 649, 658, 683,
728, 733, 742, 745-746

critical, 215, 459, 472
Points, 11-12, 14, 17-20, 22-24, 30, 32-37, 40-41, 45,

47, 50-51, 57, 64, 69, 102-103, 118-119,
143, 147, 178-185, 189, 191, 196, 199, 212,
243, 246, 248-251, 263, 277, 367, 423, 429,
448, 463, 468, 482, 505-506, 512, 522, 592,
594, 628, 632, 643, 653, 658, 673, 695-696,
701, 707-709, 711, 713, 716-718, 721, 724,
726, 731, 733, 737-738, 754, 757, 759-763

Polynomial, 135, 328, 330-332
Pooling, 285, 289, 293, 310, 339, 346
Population, 24, 50, 58-61, 78, 109-110, 115, 143, 149,

163-164, 168-173, 175-178, 180, 184, 194,
200, 205, 210-213, 215, 218-220, 223-225,
234-235, 237, 249, 252-253, 262-264, 266,
268, 275, 280-281, 284, 289-291, 294-303,
305, 307, 310, 323, 325-326, 333, 343, 347,
350, 356, 363, 403-404, 422, 430-431,
433-435, 437-439, 441-444, 448-449, 453,
456-457, 459, 462, 470-471, 473-474, 478,
488, 495, 501, 527, 530-531, 545, 547,
549-550, 563, 576-578, 581-582, 584-585,
587, 589-590, 592-595, 597, 601, 606-612,
619, 621-625, 628-634, 637-639, 644, 646,
648, 650-653, 657, 660, 663, 703

census, 443, 474
Positive correlation, 333-334
Positive numbers, 529
Posterior probability, 609, 616-617
Pounds, 25, 267
Power, 85, 193-195, 197-198, 206, 208-209, 217, 220,

283, 336, 398, 403, 413, 539, 569, 648, 688,
692, 700, 713, 744-745

defined, 193, 220, 398
logarithms, 206

Powers, 193, 198, 747
Prediction, 2, 4, 47, 247-248, 251-253, 255-256, 263,

270, 360, 374, 378-381, 386, 399-402,
406-407, 409, 413, 415, 422-423, 425-427,
464, 741, 754-755

probability, 2, 248
Prediction interval, 379-381, 422-423, 425-427
Price, 38, 177, 206, 224, 372-374, 423, 425, 428,

451-452, 457, 473, 480, 493, 497, 503, 510,
517-519, 532, 534

total, 372-373, 423, 428, 451-452, 473, 493, 497,
510, 534

Principal, 48, 67, 71, 114, 116, 359, 386, 424,
430-476, 478-480, 482, 488, 490, 493-495,
497-499, 501, 504, 507-509, 511-512,
515-516, 519-522, 524-526, 530, 534-535,
537-538, 543, 547, 549, 574, 669-670, 707,
709, 711, 713-714, 726-728, 730-732, 736,
753

Prior probability, 580-582, 606-607, 610, 665
Probabilities, 106, 150, 264, 578, 580-584, 589, 592,

596-597, 600, 605-606, 608-609, 612, 615,
619, 630-631, 635, 640, 642-643, 652-653,
656, 665, 670, 704-706, 744, 757-758

Probability, 2, 58, 72, 105-106, 108, 149, 152-155,
163-164, 174-180, 183, 201-202, 206, 208,
211, 220, 223, 225, 230-232, 235-236, 241,
248, 257, 264, 288, 292, 316, 332, 341, 359,
576, 578-584, 587, 589, 593, 596, 606-610,
615-617, 634-637, 640-641, 646, 650, 653,
656, 665, 703, 705, 743, 756

odds, 634-637
Probability density function, 105-106, 149, 174, 703
Probability density functions, 576, 579
Probability function, 105-106, 108
Product, 4, 8, 47, 57, 67, 74, 90-91, 93-95, 100, 106,
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