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Markov process models are useful in studying the evolution of systems over repeated trials.
The repeated trials are often successive time periods in which the state of the system in any
particular period cannot be determined with certainty. Rather, transition probabilities are
used to describe the manner in which the system makes transitions from one period to the
next. Hence, we are interested in the probability of the system being in a particular state at
a given time period.

Markov process models can be used to describe the probability that a machine that is
functioning in one period will continue to function or will break down in the next period.
Models can also be used to describe the probability that a consumer purchasing brand A in
one period will purchase brand B in the next period. The Q.M. in Action, Benefit of Health
Care Services, describes how a Markov process model was used to determine the health sta-
tus probabilities for persons age 65 and older. Such information was helpful in understand-
ing the future need for health care services and the benefits of expanding current health care
programs.

In this chapter we present a marketing application that involves an analysis of the store-
switching behavior of supermarket customers. As a second illustration, we consider an
accounting application that is concerned with the transitioning of accounts receivable dol-
lars to different account-aging categories. Because an in-depth treatment of Markov
processes is beyond the scope of this text, the analysis in both illustrations is restricted to
situations consisting of a finite number of states, the transition probabilities remaining
constant over time, and the probability of being in a particular state at any one time period
depending only on the state in the immediately preceding time period. Such Markov
processes are referred to as Markov chains with stationary transition probabilities.

@ACHON

BENEFIT OF HEALTH CARE SERVICES*

The U.S. Government Accountability Office (GAO) is
an independent, nonpolitical audit organization in the
legislative branch of the federal government. GAO eval-
uators obtained data on the health conditions of individ-
uals age 65 and older. The individuals were identified as
being in three possible states:

Best: Able to perform daily activities with-
out assistance

Next Best: Able to perform some daily activities

without assistance

Unable to perform daily activities with-

out assistance

Worst:

Using a two-year period, the evaluators developed
estimates of the transition probabilities among the three
states. For example, a transition probability that a person
in the Best state is still in the Best state one year later was

*Based on information provided by Bill Ammann, U.S. Government
Accountability Office.

0.80, while the transition probability that a person in the
Best state moves to the Next Best state one year later is
0.10. The Markov analysis of the full set of transition
probabilities determined the steady-state probabilities
that individuals would be in each state. Thus, for a given
population age 65 and older, the steady-state probabilities
would indicate the percentage of the population that
would be in each state in future years.

The GAO study further subdivided individuals into
two groups: those receiving appropriate health care and
those not receiving appropriate health care. For individu-
als not receiving appropriate health care, the kind of ad-
ditional care and the cost of that care were estimated. The
revised transition probabilities showed that with appro-
priate health care, the steady-state probabilities indicated
the larger percentage of the population that would be
in the Best and Next Best health states in future years.
Using these results, the model provided evidence of the
future benefits that would be achieved by expanding
current health care programs.
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Market Share Analysis

Suppose we are interested in analyzing the market share and customer loyalty for Murphy’s
Foodliner and Ashley’s Supermarket, the only two grocery stores in a small town. We focus
on the sequence of shopping trips of one customer and assume that the customer makes one
shopping trip cach week to either Murphy’s Foodliner or Ashley’s Supermarket, but not both.

Using the terminology of Markov processes, we refer to the weekly periods or shop-
ping trips as the trials of the process. Thus, at cach trial, the customer will shop at cither
Murphy’s Foodliner or Ashley’s Supermarket. The particular store selected in a given week
is referred to as the state of the system in that period. Because the customer has two shop-
ping alternatives at cach trial, we say the system has two states. With a finite number of
states, we identify the states as follows:

State 1. The customer shops at Murphy’s Foodliner
State 2. The customer shops at Ashley’s Supermarket

If we say the system is in state 1 at trial 3, we are simply saying that the customer shops at
Murphy’s during the third weekly shopping period.

As we continue the shopping trip process into the future, we cannot say for certain
where the customer will shop during a given week or trial. In fact, we realize that during
any given week, the customer may be cither a Murphy’s customer or an Ashley’s customer.
However, using a Markov process model, we will be able to compute the probability that
the customer shops at cach store during any period. For example, we may find a 0.6 prob-
ability that the customer will shop at Murphy’s during a particular week and a 0.4 proba-
bility that the customer will shop at Ashley’s.

To determine the probabilities of the various states occurring at successive trials of the
Markov process, we need information on the probability that a customer remains with the
same store or switches to the competing store as the process continues from trial to trial or
week to week.

Suppose that, as part of a market rescarch study, we collect data from 100 shoppers over
a 10-week period. Suppose further that these data show cach customer’s weekly shopping
trip pattern in terms of the sequence of visits to Murphy’s and Ashley’s. To develop a Markov
process model for the sequence of weekly shopping trips, we need to express the probabil-
ity of sclecting each store (state) in a given period solely in terms of the store (state) that was
selected during the previous period. In reviewing the data, suppose that we find that of all
customers who shopped at Murphy’s in a given week, 90% shopped at Murphy’s the fol-
lowing week while 10% switched to Ashley’s. Suppose that similar data for the customers
who shopped at Ashley’s in a given week show that 80% shopped at Ashley’s the following
week while 20% switched to Murphy’s. Probabilities based on these data are shown in
Table 17.1. Because these probabilities indicate that a customer moves, or makes a transition,

TABLE 17.1 TRANSITION PROBABILITIES FOR MURPHY’S AND ASHLEY’S

GROCERY SALES
Current Weekly Next Weekly Shopping Period
Shopping Period Murphy’s Foodliner Ashley’s Supermarket
Murphy’s Foodliner 0.9 0.1
Ashley’s Supermarket 0.2 0.8
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from a state in a given period to each state in the following period, these probabilities are
called transition probabilities.

An important property of the table of transition probabilities is that the sum of the prob-
abilities in each row is 1; each row of the table provides a conditional probability distribu-
tion. For example, a customer who shops at Murphy’s one week must shop at either
Murphy’s or Ashley’s the next week. The entries in row 1 give the probabilities associated
with each of these events. The 0.9 and 0.8 probabilities in Table 17.1 can be interpreted as
measures of store loyalty in that they indicate the probability of a repeat visit to the same
store in consecutive weeks. Similarly, the 0.1 and 0.2 probabilities are measures of the store-
switching characteristics of the customers. In developing a Markov process model for this
problem, we are assuming that the transition probabilities will be the same for any customer
and that the transition probabilities will not change over time.

Note that Table 17.1 has one row and one column for each state of the system. We will
use the symbol p;; to represent the transition probabilities and the symbol P to represent the
matrix of transition probabilities; that is,

p; = probability of making a transition from state i in a given
period to state j in the next period

For the supermarket problem, we have

P {p“ plz} _ {0.9 0.1]
P2 DPx 02 038

Using the matrix of transition probabilities, we can now determine the probability that
a customer will be a Murphy’s customer or an Ashley’s customer at some period in the fu-
ture. Let us begin by assuming that we have a customer whose last weekly shopping trip
was to Murphy’s. What is the probability that this customer will shop at Murphy’s on the
next weekly shopping trip, period 1? In other words, what is the probability that the system
will be in state 1 after the first transition? The matrix of transition probabilities indicates
that this probability is p;; = 0.9.

Now let us consider the state of the system in period 2. A useful way of depicting what
can happen on the second weekly shopping trip is to draw a tree diagram of the possible
outcomes (see Figure 17.1). Using this tree diagram, we see that the probability that the cus-
tomer shops at Murphy’s during both the first and the second weeks is (0.9)(0.9) = 0.81.
Also, note that the probability of the customer switching to Ashley’s on the first trip and
then switching back to Murphy’s on the second trip is (0.1)(0.2) = 0.02. Because these
options are the only two ways that the customer can be in state 1 (shopping at Murphy’s)
during the second period, the probability of the system being in state 1 during the second
period is 0.81 + 0.02 = 0.83. Similarly, the probability of the system being in state 2 dur-
ing the second period is (0.9)(0.1) + (0.1)(0.8) = 0.09 + 0.08 = 0.17.

As desirable as the tree diagram approach may be from an intuitive point of view, it be-
comes cumbersome when we want to extend the analysis to three or more periods. Fortu-
nately, we have an easier way to calculate the probabilities of the system being in state 1 or
state 2 for any subsequent period. First, we introduce a notation that will allow us to repre-
sent these probabilities for any given period. Let

7;(n) = probability that the system is in state i in period n

Index denote/ \ Denotes the time

the state period or number of transitions
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FIGURE 17.1 TREE DIAGRAM DEPICTING TWO WEEKLY SHOPPING TRIPS

OF A CUSTOMER WHO SHOPPED LAST AT MURPHY’S

Week 1 Week 2 Probability of
(first (second Each Two-Week
shopping trip) shopping trip) Pattern

(0.9)(0.9) =0.81

Shops at
Murphy’s

(0.9)(0.1) = 0.09
Shops at

Ashley’s

(0.1)(0.2) = 0.02
Shops at

Customer Murphy’s

Shopped Last
at Murphy’s Shops at
Week 0 Ashley’s
(0.1)(0.8) = 0.08
Shops at
Ashley’s

For example, (1) denotes the probability of the system being in state 1 in period 1, while
7,(1) denotes the probability of the system being in state 2 in period 1. Because 7,(n) is the
probability that the system is in state i in period n, this probability is referred to as a state
probability.

The terms 77,(0) and 77,(0) will denote the probability of the system being in state 1 or
state 2 at some initial or starting period. Week 0 represents the most recent period, when we
are beginning the analysis of a Markov process. If we set 77,(0) = 1 and m,(0) = 0, we are
saying that as an initial condition the customer shopped last week at Murphy’s; alterna-
tively, if we set 77,(0) = 0 and 7,(0) = 1, we would be starting the system with a customer
who shopped last week at Ashley’s. In the tree diagram of Figure 17.1, we consider the sit-
uation in which the customer shopped last at Murphy’s. Thus,

[m(0) mO)] =[1 0]

is a vector that represents the initial state probabilities of the system. In general, we use the
notation

H(n) = [m(n) m,(n)]

to denote the vector of state probabilities for the system in period n. In the example, T1(1)
is a vector representing the state probabilities for the first week, I1(2) is a vector represent-
ing the state probabilities for the second week, and so on.

© Cengage Learning 2013
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Using this notation, we can find the state probabilities for period n + 1 by simply mul-
tiplying the known state probabilities for period n by the transition probability matrix.

Using the vector of state probabilities and the matrix of transition probabilities, the mul-
tiplication' can be expressed as follows:

[T(next period) = II(current period)P

or
M + 1) = ()P (17.1)

Beginning with the system in state 1 at period 0, we have I11(0) = [1 0]. We can com-
pute the state probabilities for period 1 as follows:

II(1) = I1(0)P
or
P Plz}

P P»
0.9 0.1 ]

= 0]{0.2 0.8

=109 0.1]

[ (1) (D] = [m,(0) 772(0)]{

The state probabilities 7r,(1) = 0.9 and 7,(1) = 0.1 are the probabilities that a customer who
shopped at Murphy’s during week O will shop at Murphy’s or at Ashley’s during week 1.

Using equation (17.1), we can compute the state probabilities for the second week as
follows:

11(2) = [(1)P
or

Pu 1712}
P P
0.9 0.1}
0.2 0.8

=[0.83 0.17]

[7(2) m(2)] = [m(1) 772(1)]{

=[0.9 0.1][

We see that the probability of shopping at Murphy’s during the second week is 0.83, while
the probability of shopping at Ashley’s during the second week is 0.17. These same results
were previously obtained using the tree diagram of Figure 17.1. By continuing to apply
equation (17.1), we can compute the state probabilities for any future period; that is,

I1(3) = I12)P

[1(4) = I1(3)P

I+ 1) = )P

Table 17.2 shows the result of carrying out these calculations for 10 periods.

'Appendix 17.1 provides the step-by-step procedure for vector and matrix multiplication.



778

Chapter 17 Markov Processes

TABLE 17.2 STATE PROBABILITIES FOR FUTURE PERTIODS BEGINNING INITIALLY
WITH A MURPHY’S CUSTOMER

State
Probability
m(n)
(1)

0

1
0

09 083 0781 0747 0723 0.706 0.694 0.686 0.680 0.676
0.1 017 0219 0253 0277 0294 0306 0314 0320 0.324

Period (n)
1 2 3 4 5 6 7 8 9 10

© Cengage Learning 2013

The vectors TI(1), T1(2), T1(3), . . . contain the probabilities that a customer who started
out as a Murphy customer will be in state 1 or state 2 in the first period, the second period,
the third period, and so on. In Table 17.2 we see that after a few periods these probabilities
do not change much from one period to the next.

If we had started with 1000 Murphy customers—that is, 1000 customers who last
shopped at Murphy’s—our analysis indicates that during the fifth weekly shopping period,
on average, 723 would be customers of Murphy’s, and 277 would be customers of Ashley’s.
Moreover, during the tenth weekly shopping period, 676 would be customers of Murphy’s,
and 324 would be customers of Ashley’s.

Now let us repeat the analysis, but this time we will begin the process with a customer
who shopped last at Ashley’s. Thus,

1) = [m(0) m(0)] =10 1]

Using equation (17.1), the probability of the system being in state 1 or state 2 in period 1 is
given by

I1(1) = 110)P

or

(1) )] = [m,(0) 772(0)][1’“ Plz}

P2 P
0.9 0.1
=10 1]{0.2 0.8]
=102 0.8]

Proceeding as before, we can calculate subsequent state probabilities. Doing so, we obtain
the results shown in Table 17.3.

In the fifth shopping period, the probability that the customer will be shopping at
Murphy’s is 0.555, and the probability that the customer will be shopping at Ashley’s is

TABLE 17.3 STATE PROBABILITIES FOR FUTURE PERIODS BEGINNING INITIALLY
WITH AN ASHLEY’S CUSTOMER

State
Probability
(n)
)

0

0
1

1 2 3 4 8 6 7 8 9 10

02 034 0438 0507 0555 0589 0612 0.628 0.640 0.648
0.8 066 0562 0493 0445 0411 0388 0372 0360 0.352

Period (n)

© Cengage Learning 2013
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0.445. In the tenth period, the probability that a customer will be shopping at Murphy’s
is 0.648, and the probability that a customer will be shopping at Ashley’s is 0.352.

As we continue the Markov process, we find that the probability of the system being in
a particular state after a large number of periods is independent of the beginning state of the
system. The probabilities that we approach after a large number of transitions are referred
to as the steady-state probabilities. We shall denote the steady-state probability for state
1 with the symbol 7, and the steady-state probability for state 2 with the symbol r,. In other
words, in the steady-state case, we simply omit the period designation from 7r(n) because
it is no longer necessary.

Analyses of Tables 17.2 and 17.3 indicate that as n gets larger, the difference between the
state probabilities for period n and period (n + 1) becomes increasingly smaller. This analy-
sis leads us to the conclusion that as n gets large, the state probabilities for period (n + 1) are
very close to those for period n. This observation provides the basis of a simple method for
computing the steady-state probabilities without having to actually carry out a large number
of calculations.

In general, we know from equation (17.1) that

P Plz]

[m(n+ 1) m@n + D] = [m() 77'2(”)][
Pa P»

Because for sufficiently large n the difference between [1(n + 1) and I1(n) is negligible, we
see that in the steady state 7 (n + 1) = 7,(n) = 7, and 7,(n + 1) = m,(n) = m,. Thus, we
have

[m ] = [m 77_2]{1?11 Plz]
P Pn
.y ]{0.9 0.1]
™02 08
After carrying out the multiplications, we obtain
7, =097, + 027, (17.2)
and
7, = 0.1, + 0.8, (17.3)

However, we also know the steady-state probabilities must sum to 1 so
mt+m=1 (17.4)

Using equation (17.4) to solve for 7, and substituting the result in equation (17.2), we
obtain

m = 097, +0.2(1 — 7))
m =097, + 02— 02m,
m — 077, =0.2

037, =0.2

771=7
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Then, using equation (17.4), we can conclude that 7, = 1 — 7, = Y;. Thus, using
equations (17.2) and (17.4), we can solve for the steady-state probabilities directly. You
can check for yourself that we could have obtained the same result using equations (17.3)
and (17.4).2

Thus, if we have 1000 customers in the system, the Markov process model tells us that
in the long run, with steady-state probabilities 7, = %; and 7, = /3, %3(1000) = 667 cus-
tomers will be Murphy’s and '/3(1000) = 333 customers will be Ashley’s. The steady-state
probabilities can be interpreted as the market shares for the two stores.

Market share information is often quite valuable in decision making. For example, sup-
pose Ashley’s Supermarket is contemplating an advertising campaign to attract more of
Murphy’s customers to its store. Let us suppose further that Ashley’s believes this promo-
tional strategy will increase the probability of a Murphy’s customer switching to Ashley’s
from 0.10 to 0.15. The revised transition probabilities are given in Table 17.4.

Given the new transition probabilities, we can modify equations (17.2) and (17.4) to
solve for the new steady-state probabilities or market shares. Thus, we obtain

m, = 0.85m, + 0.207,

Substituting 7, = 1 — 7r; from equation (17.4), we have

7y = 0.857; + 0.20(1 — 7))
, = 0.857; + 0.20 — 0.207,
; — 0.657; = 0.20
0.357;, = 0.20
m, = 0.57

and
m,=1—0.57=043

We see that the proposed promotional strategy will increase Ashley’s market share from
7, = 0.33 to 7, = 0.43. Suppose that the total market consists of 6000 customers per week.
The new promotional strategy will increase the number of customers doing their weekly
shopping at Ashley’s from 2000 to 2580. If the average weekly profit per customer is $10,
the proposed promotional strategy can be expected to increase Ashley’s profits by $5800
per week. If the cost of the promotional campaign is less than $5800 per week, Ashley’s
should consider implementing the strategy.

TABLE 17.4 REVISED TRANSITION PROBABILITIES FOR MURPHY'S AND ASHLEY’S

GROCERY STORES
Current Weekly Next Weekly Shopping Period
Shopping Period Murphy’s Foodliner Ashley’s Supermarket
Murphy’s Foodliner 0.85 0.15
Ashley’s Supermarket 0.20 0.80

2Even though equations (17.2) and (17.3) provide two equations and two unknowns, we must include equation (17.4) when
solving for m; and , to ensure that the sum of steady-state probabilities will equal 1.

© Cengage Learning 2013
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This example demonstrates how a Markov analysis of a firm’s market share can be
useful in decision making. Suppose that instead of trying to attract customers from
Murphy’s Foodliner, Ashley’s directed a promotional effort at increasing the loyalty of its
own customers. In this case, p,, would increase and p,, would decrease. Once we knew the
amount of the change, we could calculate new steady-state probabilities and compute the
impact on profits.

NOTES AND COMMENTS

1. The Markov processes presented in this section market shares for the two competitors. In

have what is called the memoryless property:
the current state of the system together with
the transition probabilities contain all the infor-
mation necessary to predict the future behavior
of the system. The prior states of the system
do not have to be considered.

. Analysis of a Markov process model is not in-
tended to optimize any particular aspect of a
system. Rather, the analysis predicts or de-
scribes the future and steady-state behavior of
the system. For instance, in the grocery store
example, the analysis of the steady-state be-
havior provided a forecast or prediction of the

other applications, quantitative analysts have
extended the study of Markov processes to
what are called Markov decision processes. In
these models, decisions can be made at each
period that affect the transition probabilities
and hence influence the future behavior of the
system. Markov decision processes have been
used in analyzing machine breakdown and
maintenance operations, determining drug
treatment strategies for patients in hospitals,
developing inspection strategies, evaluating
managerial strategies in a baseball game, and
analyzing financial investments.

@ Accounts Receivable Analysis

An accounting application in which Markov processes have produced useful results in-
volves the estimation of the allowance for doubtful accounts receivable. This allowance is
an estimate of the amount of accounts receivable that will ultimately prove to be uncol-
lectible (i.e., bad debts).

Let us consider the accounts receivable situation for Heidman’s Department Store.
Heidman’s uses two aging categories for its accounts receivable: (1) accounts that are classi-
fied as 0-30 days old, and (2) accounts that are classified as 31-90 days old. If any portion of
an account balance exceeds 90 days, that portion is written off as a bad debt. Heidman’s fol-
lows the procedure of aging the total balance in any customer’s account according to the old-
est unpaid bill. For example, suppose that one customer’s account balance on September 30
is as follows:

Date of Purchase Amount Charged
August 15 $25
September 18 10
September 28 50

Total $85

An aging of the total balance of accounts receivable performed on September 30 would
assign the total balance of $85 to the 31-90-day category because the oldest unpaid bill of
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August 15 is 46 days old. Let us assume that one week later, October 7, the customer pays
the August 15 bill of $25. The remaining total balance of $60 would now be placed in the
0-30-day category since the oldest unpaid amount, corresponding to the September 18 pur-
chase, is less than 31 days old. This method of aging accounts receivable is called the foral
balance method because the total account balance is placed in the age category correspond-
ing to the oldest unpaid amount.

Note that under the total balance method of aging accounts receivable, dollars appear-
ing in a 31-90-day category at one point in time may appear in a 0-30-day category at a
later point in time. In the preceding example, this movement between categories was true
for $60 of September billings, which shifted from a 31-90-day to a 0-30-day category after
the August bill had been paid.

Let us assume that on December 31 Heidman’s shows a total of $3000 in its accounts
receivable and that the firm’s management would like an estimate of how much of the $3000
will eventually be collected and how much will eventually result in bad debts. The estimated
amount of bad debts will appear as an allowance for doubtful accounts in the year-end
financial statements.

Let us see how we can view the accounts receivable operation as a Markov process.
First, concentrate on what happens to one dollar currently in accounts receivable. As the
firm continues to operate into the future, we can consider each week as a trial of a Markov
process with a dollar existing in one of the following states of the system:

State 1. Paid category

State 2. Bad debt category
State 3. 0-30-day category
State 4. 31-90-day category

Thus, we can track the week-by-week status of one dollar by using a Markov analysis to
identify the state of the system at a particular week or period.

Using a Markov process model with the preceding states, we define the transition prob-
abilities as follows:

p; = probability of a dollar in state i in one week moving to state j in the next week

Based on historical transitions of accounts receivable dollars, the following matrix of
transition probabilities, P, has been developed for Heidman’s Department Store:

Pt P2 P13 Pu 1.0 0.0 0.0 00
Pa Pn Ps Pu 0.0 1.0 0.0 0.0
P31 P P33 P 04 00 03 03
Pa1 Pa2 Pz Pus 04 02 03 0.1

Note that the probability of a dollar in the 0-30-day category (state 3) moving to the paid
category (state 1) in the next period is 0.4. Also, this dollar has a 0.3 probability it will
remain in the 0-30-day category (state 3) one week later, and a 0.3 probability that it will
be in the 31-90-day category (state 4) one week later. Note also that a dollar in a 0-30-day
account cannot make the transition to a bad debt (state 2) in one week.

An important property of the Markov process model for Heidman’s accounts receivable
situation is the presence of absorbing states. For example, once a dollar makes a transition
to state 1, the paid state, the probability of making a transition to any other state is zero.
Similarly, once a dollar is in state 2, the bad debt state, the probability of a transition to any
other state is zero. Thus, once a dollar reaches state 1 or state 2, the system will remain in
this state forever. We can conclude that all accounts receivable dollars will eventually be
absorbed into either the paid or the bad debt state, and hence the name absorbing state.
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Fundamental Matrix and Associated Calculations

Whenever a Markov process has absorbing states, the probability of remaining forever in a
nonabsorbing state is zero, so we are solely interested in knowing the probability that a unit
will eventually end up in each of the absorbing states. Due to the presence of absorbing states,
steady-state probabilities independent of the initial state vector do not exist. For example, in
the Heidman’s Department Store problem, a dollar currently in state 1 (paid) will never leave
state 1, and a dollar currently in state 2 (bad debt) will never leave state 2. However, we may
want to know the probability that a dollar currently in the 0-30-day age category will end up
paid (absorbing state 1) as well as the probability that a dollar in this age category will end
up a bad debt (absorbing state 2). We also want to know these absorbing-state probabilities
for a dollar currently in the 31-90-day age category.

The algebraic computation of the absorbing-state probabilities requires the determina-
tion and use of what is called a fundamental matrix. The mathematical logic underlying
the fundamental matrix is beyond the scope of this text. However, as we show, the funda-
mental matrix is derived from the matrix of transition probabilities and is relatively easy to
compute for Markov processes with a small number of states. In the following example, we
show the computation of the fundamental matrix and the determination of the absorbing-
state probabilities for Heidman’s Department Store.

We begin the computations by partitioning the matrix of transition probabilities into the
following four parts:

1.0 00 | 0.0 0.0 1.0 00 | 00 0.0
00 10 | 00 00 00 1.0 | 0.0 0.0
P=]— - — — — — =] - - - - — — — —
04 00 | 03 03 R | (0]
04 02 | 03 0.1 |
where

{0.4 0.0} {0.3 0.3}
R: Q:
04 02 03 0.1

A matrix N, called a fundamental matrix, can be calculated using the following formula:
N=U—- Q)" (17.5)

where [ is an identity matrix with 1s on the main diagonal and Os elsewhere. The superscript
—1 is used to indicate the inverse of the matrix (/ — Q). In Appendix 17.1 we present for-
mulas for finding the inverse of a matrix with two rows and two columns. In Appendix 17.2
we show how Excel’s MINVERSE function can be used to compute an inverse.

Before proceeding, we note that to use equation (17.5), the identity matrix / must be
chosen such that it has the same size or dimensionality as the matrix Q. In our example
problem, Q has two rows and two columns, so we must choose

/- [1.0 0.0]
00 1.0
Let us now continue with the example problem by computing the fundamental matrix:
I—0-= [1.0 0.0] _ {0.3 0.3}
0.0 1.0 0.3 0.1

{ 0.7 —0.3}
-03 09
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and (see Appendix 17.1)

1.67 0.56}

— 7T — Ml =
N=0-0 {0.56 1.30

If we multiply the fundamental matrix N times the R portion of the P matrix, we obtain
the probabilities that accounts receivable dollars initially in states 3 or 4 will eventually
reach each of the absorbing states. The multiplication of N times R for the Heidman’s
Department Store problem provides the following results (again, see Appendix 17.1 for the
steps of this matrix multiplication):

N _{1.67 0.56“0.4 0.0]_{O.89 0.11]
0.56 1.30/L04 0.2 0.74 0.26

The first row of the product NR is the probability that a dollar in the 0-30-day age category
will end up in each absorbing state. Thus, we see a 0.89 probability that a dollar in the
0-30-day category will eventually be paid and a 0.11 probability that it will become a bad
debt. Similarly, the second row shows the probabilities associated with a dollar in the
31-90-day category; that is, a dollar in the 31-90-day category has a 0.74 probability of
eventually being paid and a 0.26 probability of proving to be uncollectible. Using this in-
formation, we can predict the amount of money that will be paid and the amount that will
be lost as bad debts.

Establishing the Allowance for Doubtful Accounts

Let B represent a two-element vector that contains the current accounts receivable balances
in the 0-30-day and the 31-90-day categories; that is,

B =1[b, b))
Total dollars in the Total dollars in the
0-30-day category 31-90-day category

Suppose that the December 31 balance of accounts receivable for Heidman’s shows $1000
in the 0-30-day category (state 3) and $2000 in the 31-90-day category (state 4).

B =[1000 2000]

We can multiply B times NR to determine how much of the $3000 will be collected and how
much will be lost. For example,

0.89 0.11
BNR = [1000 2000][ ]

0.74 0.26
= [2370 630]

Thus, we see that $2370 of the accounts receivable balances will be collected and $630 will
be written off as a bad debt expense. Based on this analysis, the accounting department
would set up an allowance for doubtful accounts of $630.

The matrix multiplication of BNR is simply a convenient way of computing the even-
tual collections and bad debts of the accounts receivable. Recall that the NR matrix showed
a 0.89 probability of collecting dollars in the 0-30-day category and a 0.74 probability of
collecting dollars in the 31-90-day category. Thus, as was shown by the BNR calculation,
we expect to collect a total of (1000)0.89 + (2000)0.74 = 890 + 1480 = $2370.
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Suppose that on the basis of the previous analysis Heidman’s would like to investigate
the possibility of reducing the amount of bad debts. Recall that the analysis indicated that
11% of the amount in the 0-30-day age category and 26% of the amount in the 31-90-day
age category will prove to be uncollectible. Let us assume that Heidman’s is considering
instituting a new credit policy involving a discount for prompt payment.

Management believes that the policy under consideration will increase the probability
of a transition from the 0-30-day age category to the paid category and decrease the prob-
ability of a transition from the 0-30-day to the 31-90-day age category. Let us assume that
a careful study of the effects of this new policy leads management to conclude that the fol-
lowing transition matrix would be applicable:

1.0 00 | 00 0.0
00 1.0 | 00 0.0

04 02 | 03 0.1

We see that the probability of a dollar in the 0-30-day age category making a transition
to the paid category in the next period has increased to 0.6, and that the probability of a dollar
in the 0-30-day age category making a transition to the 31-90-day category has decreased
to 0.1. To determine the effect of these changes on bad debt expense, we must calculate N,
NR, and BNR. We begin by using equation (17.5) to calculate the fundamental matrix N:

10 00] [03 017"
NZ(I_Q)IZ{L).O 1.0}_[0.3 0.1]}
[ 07 —01]"

_{—0.3 0.9]
15 0.17
{0.5 1.17}

By multiplying N times R, we obtain the new probabilities that the dollars in each age
category will end up in the two absorbing states:

NR:[LS 0.17“0.6 o.o]

05 1.17][04 02
B {0.97 0.03]
1077 023

We see that with the new credit policy we would expect only 3% of the funds in the 0-30-
day age category and 23% of the funds in the 31-90-day age category to prove to be uncol-
lectible. If, as before, we assume a current balance of $1000 in the 0-30-day age category and
$2000 in the 31-90-day age category, we can calculate the total amount of accounts receiv-

able that will end up in the two absorbing states by multiplying B times NR. We obtain
0.97 0.03
BNR = [1000 2000] { }

0.77 0.23

= [2510 490]

Thus, the new credit policy shows a bad debt expense of $490. Under the previous credit pol-
icy, we found the bad debt expense to be $630. Thus, a savings of $630 — $490 = $140 could
be expected as a result of the new credit policy. Given the total accounts receivable balance
ol $3000, this savings represents a $140/$3000 = 4.7% reduction in bad debt expense.
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After considering the costs involved, management can evaluate the economics of adopting
the new credit policy. If the cost, including discounts, is less than 4.7% of the accounts
receivable balance, we would expect the new policy to lead to increased profits for Heidman’s
Department Store.

In this chapter we presented Markov process models as well as examples of their applica-
tion. We saw that a Markov analysis could provide helpful decision-making information
about a situation that involves a sequence of repeated trials with a finite number of possi-
ble states on each trial. A primary objective is obtaining information about the probability
of each state after a large number of transitions or time periods.

A market share application showed the computational procedure for determining
the steady-state probabilities that could be interpreted as market shares for two competing
supermarkets. In an accounts receivable application, we introduced the notion of absorb-
ing states; for the two absorbing states, referred to as the paid and bad debt categories,
we showed how to determine the percentage of an accounts receivable balance that would
be absorbed in each of these states.

Markov process models have also been used to analyze strategies in sporting events.
The Q.M. in Action, Markov Processes and Canadian Curling, describes the advantage
gained in the sport of curling from winning the opening coin toss.

@ACHON

MARKOV PROCESSES AND CANADIAN CURLING*
Curling is a sport played on a strip of ice 14 feet wide and
146 feet long—about half the length of a football field.
At the end of each strip is a “house” composed of four
concentric circles etched in the ice, much like the target
in a dartboard. The object is to slide a curling stone—
called a rock—down the strip of ice and have it finish
as close to the center of the house (the bulls-eye) as
possible. A game consists of 10 ends. In an end, each
team slides eight rocks down the strip and then the score
is tallied. The team with the rock closest to the center of
the house wins one or more points. A point is scored for
every rock inside the closest rock for the other team. No
rocks in the house means no score for the end.

The team that goes last has an advantage. For in-
stance, that team has the opportunity to execute a “take
out” by knocking the other team’s rock(s) out of the
house with its last shot. The team that goes last in an end
is said to have the hammer. At the beginning of the game
a coin toss determines which team starts with the

*Based on Kent J. Kostuk and Keith A. Willoughby, “OR/MS ‘Rocks’ the
‘House,"” OR/MS Today (December 1999): 36-39.

hammer. As the game progresses, the hammer switches
sides after any end in which the team with the hammer
scores. If no score is made in an end, the hammer does
not switch sides.

A Markov model was developed to determine the ex-
pected value of winning the coin toss to start the game
with the hammer. Data were obtained for 8421 games
played in the Canadian Men’s Curling Championship
over the 13 years from 1985 to 1997. The transition prob-
abilities were based on the probability distributions for
points scored in each of the 10 ends. An interesting find-
ing was that the transition probabilities for the first end
and the last end (and any extra ends) differed from those
for the middle ends (ends 2 through 9).

Results of the Markov analysis showed that the
expected score differential in favor of the team winning
the opening coin toss was 1.115 when using three separate
sets of transition probabilities. When one set of aggregate
transition probabilities was used for all ends, the expected
score differential in favor of the team winning the open-
ing toss was 1.006. These results clearly indicate a signif-
icant advantage in winning the opening toss.
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Markov chain with stationary transition probabilities A Markov process where the tran-
sition probabilities remain constant over time and the probability of being in a particular state
at any one time period depends only on the state in the immediately preceding time period.
Trials of the process The events that trigger transitions of the system from one state to
another. In many applications, successive time periods represent the trials of the process.
State of the system The condition of the system at any particular trial or time period.
Transition probability Given that the system is in state i during one period, the transition
probability p;; is the probability that the system will be in state j during the next period.
State probability The probability that the system will be in any particular state. (That is,
a(n) is the probability of the system being in state i in period n.)

Steady-state probability The probability that the system will be in any particular state
after a large number of transitions. Once steady state has been reached, the state probabili-
ties do not change from period to period.

Absorbing state A state is said to be absorbing if the probability of making a transition
out of that state is zero. Thus, once the system has made a transition into an absorbing state,
it will remain there.

Fundamental matrix A matrix necessary for the computation of probabilities associated
with absorbing states of a Markov process.

1. Inthe market share analysis of Section 17.1, suppose that we are considering the Markov
process associated with the shopping trips of one customer, but we do not know where the
customer shopped during the last week. Thus, we might assume a 0.5 probability that the
customer shopped at Murphy’s and a 0.5 probability that the customer shopped at Ashley’s
at period 0; that is, 7,(0) = 0.5 and m,(0) = 0.5. Given these initial state probabilities, de-
velop a table similar to Table 17.2, showing the probability of each state in future periods.
What do you observe about the long-run probabilities of each state?

2. Management of the New Fangled Softdrink Company believes that the probability of a cus-
tomer purchasing Red Pop or the company’s major competition, Super Cola, is based on
the customer’s most recent purchase. Suppose that the following transition probabilities
are appropriate:

To
From Red Pop Super Cola
Red Pop 0.9 0.1
Super Cola 0.1 0.9

a.  Show the two-period tree diagram for a customer who last purchased Red Pop. What
is the probability that this customer purchases Red Pop on the second purchase?
What is the long-run market share for each of these two products?

c. A Red Pop advertising campaign is being planned to increase the probability of
attracting Super Cola customers. Management believes that the new campaign will
increase to 0.15 the probability of a customer switching from Super Cola to Red Pop.
What is the projected effect of the advertising campaign on the market shares?

3. The email server at Rockbottom University has been experiencing downtime. Let us assume
that the trials of an associated Markov process are defined as one-hour periods and that the
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probability of the system being in a running state or a down state is based on the state of the
system in the previous period. Historical data show the following transition probabilities:

To
From Running Down
Running 0.90 0.10
Down 0.30 0.70

a. If the system is initially running, what is the probability of the system being down in
the next hour of operation?

b.  What are the steady-state probabilities of the system being in the running state and in
the down state?

4. One cause of the downtime in Problem 3 was traced to a specific piece of computer
hardware. Management believes that switching to a different hardware component will
result in the following transition probabilities:

To
From Running Down
Running 0.95 0.05
Down 0.60 0.40

a. Whatare the steady-state probabilities of the system being in the running and down states?

b. If the cost of the system being down for any period is estimated to be $500 (including
lost productivity and maintenance costs), what is the breakeven cost for the new hard-
ware component on a time-period basis?

5. A major traffic problem in the Greater Cincinnati area involves traffic attempting to cross
the Ohio River from Cincinnati to Kentucky using Interstate 75. Let us assume that the
probability of no traffic delay in one period, given no traffic delay in the preceding period,
is 0.85 and that the probability of finding a traffic delay in one period, given a delay in the
preceding period, is 0.75. Traffic is classified as having either a delay or a no-delay state,
and the period considered is 30 minutes.

a.  Assume that you are a motorist entering the traffic system and receive a radio report of
a traffic delay. What is the probability that for the next 60 minutes (two time periods)
the system will be in the delay state? Note that this result is the probability of being in
the delay state for two consecutive periods.

b.  What is the probability that in the long run the traffic will not be in the delay state?

¢. An important assumption of the Markov process models presented in this chapter has
been the constant or stationary transition probabilities as the system operates in the future.
Do you believe this assumption should be questioned for this traffic problem? Explain.

6. Rock-Paper-Scissors is a simple game in which two players compete by simultaneously
choosing rock, paper, or scissors. According to the classic rules of the game, paper beats
rock, scissors beats paper, and rock beats scissors. After watching one particular player
compete in this game for many rounds, you have observed that she chooses rock, paper, or
scissors based on her previous choice according to the following transition probabilities:

Next Choice

Previous Choice Rock Paper Scissors
Rock 0.27 0.42 0.31
Paper 0.36 0.15 0.49

Scissors 0.18 0.55 0.27
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Assume you are competing against this player and that you must decide on all future
choices now (before seeing any additional opponent choices).
a. Given the opposing player last chose Rock, what is your best choice in the next round
as her opponent?
. Given the opposing player last chose Rock, show the two-period tree diagram.
c. Calculate I1(2) and use this to find the probability that the opposing player will choose
Paper in the second round.

7. Data collected from selected major metropolitan areas in the eastern United States show
that 2% of individuals living within the city limits move to the suburbs during a one-year
period while 1% of individuals living in the suburbs move to the city during a one-year pe-
riod. Answer the [ollowing questions, assuming that this process is modeled by a Markov
process with two states: city and suburbs:

a. Prepare the matrix of transition probabilities.

b. Compute the steady-state probabilities.

c. In a particular metropolitan area, 40% of the population lives in the city, and 60% of
the population lives in the suburbs. What population changes do your steady-state
probabilities project for this metropolitan area?

8. Assume that a third grocery store, Quick Stop Groceries, enters the market share and cus-
SELF test tomer loyalty situation described in Section 17.1. Quick Stop Groceries is smaller than
either Murphy’s Foodliner or Ashley’s Supermarket. However, Quick Stop’s convenience
with faster service and gasoline for automobiles can be expected to attract some customers
who currently make weekly shopping visits to either Murphy’s or Ashley’s. Assume that
the transition probabilities are as follows:

To
From Murphy’s Ashley’s Quick Stop
Murphy’s Foodliner 0.85 0.10 0.05
Ashley’s Supermarket 0.20 0.75 0.05
Quick Stop Groceries 0.15 0.10 0.75

a. Compute the steady-state probabilities for this three-state Markov process.
. What market share will Quick Stop obtain?

c.  With 1000 customers, the original two-state Markov process in Section 17.1 projected
667 weekly customer trips to Murphy’s Foodliner and 333 weekly customer trips to
Ashley’s Supermarket. What impact will Quick Stop have on the customer visits at
Murphy’s and Ashley’s? Explain.

9. The purchase patterns for two brands of toothpaste can be expressed as a Markov process
with the following transition probabilities:

To
From Special B MDA
Special B 0.90 0.10
MDA 0.05 0.95

a.  Which brand appears to have the most loyal customers? Explain.
b.  What are the projected market shares for the two brands?
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10.  Suppose that in Problem 9 a new toothpaste brand enters the market such that the follow-

11.

12.

13.

ing transition probabilities exist:

To
From Special B MDA T-White
Special B 0.80 0.10 0.10
MDA 0.05 0.75 0.20
T-White 0.40 0.30 0.30

What are the new long-run market shares? Which brand will suffer most from the intro-
duction of the new brand of toothpaste?

In American football, touchdowns are worth 6 points. After scoring a touchdown, the scor-
ing team may subsequently attempt to score one or two additional points. Going for one
point is virtually an assured success, while going for two points is successful only with
probability p. Consider the following game situation. The Temple Wildcats are losing by

14 points to the Killeen Tigers near the end of regulation time. The only way for Temple

to win (or tie) this game is to score two touchdowns while not allowing Killeen to score

again. The Temple coach must decide whether to attempt a 1-point or 2-point conversion
after each touchdown. If the score is tied at the end of regulation time, the game goes into

overtime where the first team to score wins. The Temple coach believes that there is a 50%

chance that Temple will win if the game goes into overtime. The probability of success-

fully converting a 1-point conversion is 1.0. The probability of successfully converting a

2-point conversion is p.

a.  Assume Temple will score two touchdowns and Killeen will not score. Define the state
of the system as the number of points by which Temple is currently trailing. Create a
tree diagram for the situation in which Temple’s coach attempts a 2-point conversion
after the first touchdown. If the 2-point conversion is successful, Temple will go for
1 point after the second touchdown to win the game. If the 2-point conversion is
unsuccessful, Temple will go for 2 points after the second touchdown in an attempt to
tie the game and go to overtime.

Create the transition probability matrix for this decision problem.

c. If Temple’s coach goes for a 1-point conversion after each touchdown, the game is as-
sured of going to overtime and Temple will win with probability 0.5. For what values
of p is the strategy defined in part a superior to going for 1 point after each touchdown?

Given the following transition matrix with states 1 and 2 as absorbing states, what is the
probability that units in states 3 and 4 end up in cach of the absorbing states?

1.0 0.0 0.0 0.0
00 1.0 0.0 00
02 0.1 04 03
02 02 0.1 05

In the Heidman’s Department Store problem of Section 17.2, suppose that the following
transition matrix is appropriate:

1.0 0.0 0.0 0.0
00 1.0 00 00
05 00 025 0.25
05 02 0.05 0.25

If Heidman’s has $4000 in the 0-30-day category and $5000 in the 31-90-day category,
what is your estimate of the amount of bad debts the company will experience?
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14.

15.

16.

The KLM Christmas Tree Farm owns a plot of land with 5000 evergreen trees. Each year
KLM allows retailers of Christmas trees to select and cut trees for sale to individual
customers. KLM protects small trees (usually less than 4 feet tall) so that they will be
available for sale in future years. Currently, 1500 trees are classified as protected trees,
while the remaining 3500 are available for cutting. However, even though a tree is avail-
able for cutting in a given year, it may not be selected for cutting until future years.
Most trees not cut in a given year live until the next year, but some diseased trees are lost
every year.

In viewing the KLM Christmas tree operation as a Markov process with yearly periods,
we define the following four states:

State 1. Cut and sold

State 2. Lost to disease

State 3. Too small for cutting

State 4. Available for cutting but not cut and sold

The following transition matrix is appropriate:

1.0 0.0 0.0 00
00 1.0 0.0 0.0
0.1 02 05 02
04 0.1 00 05

How many of the farm’s 5000 trees will be sold eventually, and how many will be lost?

A large corporation collected data on the reasons both middle managers and senior man-
agers leave the company. Some managers eventually retire, but others leave the company
prior to retirement for personal reasons, including more attractive positions with other
firms. Assume that the following matrix of one-year transition probabilities applies with
the four states of the Markov process being retirement, leaves prior to retirement for per-
sonal reasons, stays as a middle manager, and stays as a senior manager.

Leaves— Middle Senior
Retirement Personal Manager Manager
Retirement 1.00 0.00 0.00 0.00
Leaves—Personal 0.00 1.00 0.00 0.00
Middle Manager 0.03 0.07 0.80 0.10
Senior Manager 0.08 0.01 0.03 0.88

What states are considered absorbing states? Why?

Interpret the transition probabilities for the middle managers.

Interpret the transition probabilities for the senior managers.

What percentage of the current middle managers will eventually retire {rom the
company? What percentage will leave the company for personal reasons?

e. The company currently has 920 managers: 640 middle managers and 280 senior man-
agers. How many of these managers will eventually retire from the company? How
many will leave the company for personal reasons?

& o o

Players in a particular sports league are classified based on the amount of time they play
as backups or starters. Players can also become seriously injured or they can retire from
competition. Consider the following transition probability matrix.
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Backup Starter Injured Retired
Backup 0.4 0.4 0.1 0.1
Starter 0.1 0.5 0.15 0.25
Injured 0 0 1 0
Retired 0 0 0 1

a.  What state(s) are absorbing states?
What percentage of current starters will eventually be injured?

c. Currently a team called The Sharks has eight backups and five starters. How many of
the players do you expect to end up injured? Retired?

Case Problem Dealer’s Absorbing State Probabilities

in Blackjack

The game of blackjack (sometimes called “21”) is a popular casino game. The goal is to
have a hand with a value of 21 or as close to 21 as possible without exceeding 21. The player
and the dealer are each dealt two cards initially. Both the player and dealer may draw addi-
tional cards (called “taking a hit”) in order to improve their hand. If either the player or
dealer takes a hit and the value of the hand exceeds 21, the player or dealer is said to have
gone broke and loses. Face cards and tens count 10 points, aces can be counted as 1 or 11,
and all other cards count at their face value. The dealer’s advantage is that the player must
decide on whether to take a hit first. The player who takes a hit and goes over 21 goes broke
and loses, even if the dealer later goes broke. For instance, if the player has 16 and draws
any card with a value higher than a 5, the player goes broke and loses. For this reason,
players will often decide not to take a hit when the value of their hand is 12 or greater.

The dealer’s hand is dealt with one card up and one card down. So, the player’s deci-
sion of whether to take a hit is based on knowledge of the dealer’s up card. A gambling
professional asks you to help determine the probability of the ending value of the dealer’s
hand given different up cards. House rules at casinos require that the dealer continue to take
a hit until the dealer’s hand reaches a value of 17 or higher. Having just studied Markov
processes, you suggest that the dealer’s process of taking hits can be modeled as a Markov
process with absorbing states.

Managerial Report

Prepare a report for the professional gambler that summarizes your findings. Include the
following:

1. At some casinos, the dealer is required to stay (stop taking hits) when the dealer
hand reaches soft or hard 17. A hand of soft 17 is one including an ace that may be
counted as 1 or 11. In all casinos, the dealer is required to stay with soft 18, 19, 20,
or 21. For each possible up card, determine the probability that the ending value of
the dealer’s hand is 17, 18, 19, 20, 21, or broke.

2. At other casinos, the dealer is required to take a hit on soft 17, but must stay on all
other hands with a value of 17, 18, 19, 20, or 21. For this situation, determine the
probability of the ending value of the dealer’s hand.

3. Comment on whether the house rule of staying on soft 17 or hitting on soft 17
appears better for the player.
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Matrix Notation and Operations

Matrix Notation

A matrix is a rectangular arrangement of numbers. For example, consider the following
matrix that we have named D:
[1 3 2]
D =
0 4 5

The matrix D is said to consist of six elements, where each element of D is a number. To
identify a particular element of a matrix, we have to specify its location. Therefore, we
introduce the concepts of rows and columns.

All elements across some horizontal line in a matrix are said to be in a row of the ma-
trix. For example, elements 1, 3, and 2 in D are in the first row, and elements 0, 4, and 5 are
in the second row. By convention, we refer to the top row as row 1, the second row from the
top as row 2, and so on.

All elements along some vertical line are said to be in a column of the matrix. Elements 1
and O in D are elements in the first column, elements 3 and 4 are elements of the second
column, and elements 2 and 5 are elements of the third column. By convention, we refer to
the leftmost column as column 1, the next column to the right as column 2, and so on.

We can identify a particular element in a matrix by specifying its row and column po-
sition. For example, the element in row 1 and column 2 of D is the number 3. This position
is written as

d,=3
In general, we use the following notation to refer to the specific elements of D:
d; = element located in the ith row and jth column of D

We always use capital letters for the names of matrixes and the corresponding lowercase
letters with two subscripts to denote the elements.

The size of a matrix is the number of rows and columns in the matrix and is written as
the number of rows X the number of columns. Thus, the size of D is 2 X 3.

Frequently we will encounter matrixes that have only one row or one column. For
example,

(OSSN S e

is a matrix that has only one column. Whenever a matrix has only one column, we call the
matrix a column vector. In a similar manner, any matrix that has only one row is called a
row vector. Using our previous notation for the elements of a matrix, we could refer to spe-
cific elements in G by writing g;. However, since G has only one column, the column po-
sition is unimportant, and we need only specify the row the element of interest is in. That
is, instead of referring to elements in a vector using g;;, we specify only one subscript, which
denotes the position of the element in the vector. For example,

8 =6 & =4 8 =2 & =3
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Matrix Operations

Matrix Transpose The transpose of a matrix is formed by making the rows in the origi-
nal matrix the columns in the transpose matrix, and by making the columns in the original
matrix the rows in the transpose matrix. For example, the transpose of the matrix

[132}
D:
0 4 5
is
1 0
D'=1|3 4
2 5

Note that we use the superscript # to denote the transpose of a matrix.

Matrix Multiplication We demonstrate how to perform two types of matrix multiplication:
(1) multiplying two vectors, and (2) multiplying a matrix times a matrix.

The product of a row vector of size 1 X n times a column vector of size n X 1 is the
number obtained by multiplying the first element in the row vector times the first element
in the column vector, the second element in the row vector times the second element in the
column vector, continuing on through the last element in the row vector times the last
element in the column vector, and then summing the products. Suppose, for example, that
we wanted to multiply the row vector H times the column vector G, where

6

H=[2 1 5 0land G =

W N A

The product HG, referred to as a vector product, is given by
HG = 2(6) + 1(4) + 5(2) + 0(3) = 26

The product of a matrix of size p X n and a matrix of size n X m is a new matrix of size
p X m. The element in the ith row and jth column of the new matrix is given by the vector
product of the ith row of the p X n matrix times the jth column of the n X m matrix. Suppose,
for example, that we want to multiply D times A, where

1 35
1 3 2
= A=12 0 4
0 4 5
1 5 2

Let C = DA denote the product of D times A. The element in row 1 and column 1 of C is
given by the vector product of the first row of D times the first column of A. Thus,
1
cn=101 3 2][2]|=10)+32) +2(1)=9
1
The element in row 2 and column 1 of C is given by the vector product of the second row
of D times the first column of A. Thus,
1
¢ =10 4 5]|2|=0(1)+42) +51)=13
1
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Calculating the remaining elements of C in a similar fashion, we obtain

C_{9 13 21}
13 25 26

Clearly, the product of a matrix and a vector is just a special case of multiplying a matrix
times a matrix. For example, the product of a matrix of size m X n and a vector of size n X 1
is anew vector of size m X 1. The element in the ith position of the new vector is given by the
vector product of the ith row of the m X n matrix times the n X 1 column vector. Suppose, for
example, that we want to multiply D times K, where

1

1 3 2
D=[ ]K=4
0 4 5 5

The first element of DK is given by the vector product of the first row of D times K. Thus,

1
[ 3 2]{4|=1(1)+34 +22) =17
2

The second element of DK is given by the vector product of the second row of D and K.
Thus,
1
[0 4 5]{4]|=0(1)+44) +52) =26
2

Hence, we see that the product of the matrix D times the vector K is given by

1

1 3 2 17
DK = 4| =
{0 4 5] ) [26}

Can any two matrixes be multiplied? The answer is no. To multiply two matrixes, the
number of the columns in the first matrix must equal the number of rows in the second. If
this property is satisfied, the matrixes are said to conform for multiplication. Thus, in our
example, D and K could be multiplied because D had three columns and K had three rows.

Matrix Inverse The inverse of a matrix A is another matrix, denoted A™!, such that
A7'A =Tand AA~" = 1. The inverse of any square matrix A consisting of two rows and two
columns is computed as follows:
a, a
A = |: 11 12:|
Ay Ay

Al = [ axn/d _alz/d}
—ay/d an/d
where d = ay,a,, — a,,a,, is the determinant of the 2 X 2 matrix A. For example, if
0.7 —0.
A [ 0.3
—0.3 0.9

then
d = (0.7)(0.9) — (—=0.3)(=0.3) = 0.54
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and
-, _ 10.9/0.54 0.3/0.54} _ {].67 0.56}
0.3/0.54 0.7/0.54 0.56 1.30

Matrix Inversion with Excel

Excel provides a function called MINVERSE that can be used to compute the inverse of a
matrix. This function is extremely useful when the inverse of a matrix of size 3 X 3 or larger
is desired. To see how it is used, suppose we want to invert the following 3 X 3 matrix:

350
0 1 1
8 5 0

Enter the matrix into cells B3:D5 of an Excel worksheet. The following steps will compute
the inverse and place it in cells B7:D9:

Step 1. Select cells B7:D9
Step 2. Type =MINVERSE(B3:D5)
Step 3. Press Ctrl + Shift + Enter

Step 3 may appear strange. Excel’s MINVERSE function returns an array (matrix) and
must be used in what Excel calls an array formula. In step 3, we must press the Ctrl and
Shift keys while we press Enter. The inverse matrix will then appear in cells B7:D9. It is

—020 0 0.20

032 0 —0.12
—-032 1 0.12



