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Probability provides a more
precise description of
uncertainty than expressions
such as chances are “pretty
good,” chances are “fair,”
and so on.

Chapter 2 Introduction to Probability

Business decisions are often based on an analysis of uncertainties such as the following:

1. What are the “chances” that sales will decrease if we increase prices?

2. What is the “likelihood” that a new assembly method will increase productivity?
3. How “likely” is it that the project will be completed on time?

4. What are the “odds” that a new investment will be profitable?

Probability is a numeric measure of the likelihood that an event will occur. Thus, proba-
bilities could be used as measures of the degree of uncertainty associated with the four
events previously listed. If probabilities were available, we could determine the likelihood
of each event occurring.

Probability values are always assigned on a scale from 0 to 1. A probability of 0 indi-
cates that an event will not occur (is an impossible event); a probability of 1 indicates that
an event is certain to occur (is a certain event). Other probabilities between 0 and 1 repre-
sent varying degrees of likelihood that an event will occur. The closer a probability is to 0,
the less likely the associated event is to occur; the closer a probability is to 1, the more likely
the associated event is to occur. Figure 2.1 depicts this view of probability.

Probability is important in decision making because it provides a way to measure, ex-
press, and analyze the uncertainties associated with future events. The Q.M. in Action,
Probability to the Rescue, describes the role that probability played in the efforts to rescue
33 Chilean miners.

FIGURE 2.1 PROBABILITY AS A NUMERIC MEASURE OF THE LIKELIHOOD OF AN

EVENT OCCURRING
Increasing Likelihood
of Occurrence -
0 5 1.0
Probability: | l |

The Occurrence of the Event
Is Just as Likely as It Is Unlikely

@ACTlON

PROBABILITY TO THE RESCUE*

On August 5, 2010, the San José copper and gold mine  were grim, several attempts were made to locate the min-
suffered a cave-in. Thirty-three men were trapped over  ers and determine if they were still alive. Seventeen days
2000 feet underground in the Atacama Desert near Copi- later, rescuers reached the men with a 5%-inch borehole
ap0, Chile. While most feared that these men’s prospects  and ascertained that they were still alive.

*The authors are indebted to Dr. Michael Duncan and Clinton Cragg of )
NASA for providing input for this Q.M. in Action. (continued)
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2.1

After locating the men and establishing the means to
communicate and deliver food, water, and medical sup-
plies to them, the rescue effort could proceed in earnest.
While it was important to bring these men safely to the
surface as quickly as possible, it was imperative that the
rescue effort also proceed cautiously. “The mine is old
and there is concern of further collapses,” Murray &
Roberts Cementation Managing Director Henry Laas said
in an interview with the Santiago Times. “The rescue
methodology therefore has to be carefully designed and
implemented.”

The Chilean government asked NASA to consult
on the rescue operation. In response, NASA sent a four-
person team consisting of an engineer (Clinton Cragg),
two physicians (Michael Duncan and J. D. Polk), and a
psychologist (Al Holland). When asked why a space
agency was brought in to consult on the rescue of trapped
miners, Duncan stated, “We brought our experience in
vehicle design and long duration confinement to our
Chilean counterparts.”

The probability of failure was prominent in the
thoughts of everyone involved. “We were thinking that
the rescue vehicle would have to make over forty round
trips, so in consideration of the probability of part fail-
ures we suggested the rescue team have three rigs and
several sets of replacement parts available.” said Cragg.
“We also tried to increase the probability of success by
placing spring loaded rollers on the sides of the cage so
the cage itself would not be damaged through direct
contact with the rock wall as it moved through the res-
cue portal.”

Duncan added, “While we and the Chileans would
have preferred to have precise estimates of various
probabilities based on historical data, the uniqueness of
the situation made this infeasible. For example, a miner
had to stand virtually straight up in the cage on an ascent

&)

Experiments and the Sample Space

that was originally estimated to last two to four hours
per miner, so we had to be concerned about fainting. All
we could do was consider what we thought to be the
facts and apply what we had learned from astronauts’
experiences in their returns from short and long duration
space missions.” Duncan continued, “We recommended
the miners wear compression hosiery on lower extrem-
ities to prevent blood pooling, and that they load up on
salty solutions such as chicken consommé prior to their
ascents. We used all of this information to develop a
subjective estimate of the probability a miner would
faint on ascent,” Duncan then concluded. “It actually
took fifteen minutes to bring the cage up from the bot-
tom of the mine, so our estimates in this case were very
conservative. Considering the risk involved, that is ex-
actly what we wanted.”

Ultimately the rescue approach designed by the
Chileans in consultation with the NASA team was suc-
cessful. On October 13, 2010, the last of the 33 miners
emerged; the 13-foot-long, 924-pound steel Fénix 2 res-
cue capsule withstood over 40 trips into and out of the
mine, and no miner suffered from syncope (i.e., fainting)
on his ascent.

The use of subjective probabilities in unique situa-
tions is common for NASA. How else could NASA es-
timate the probability that micrometeoroids or space
debris will damage a space vehicle? With the limited
space available on a space vehicle, assessing probability
of failure for various components and the risks associ-
ated with these potential failures becomes critical to how
NASA decides which spare components will be included
on a space flight. NASA also employs probability to
estimate the likelihood of crew health and performance
issues arising on space exploration missions. Risk as-
sessment teams then use these estimates in their mission
design.

Experiments and the Sample Space
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In discussing probability, we define an experiment to be any process that generates well-
defined outcomes. On any single repetition of an experiment, one and only one of the pos-
sible experimental outcomes will occur. Several examples of experiments and their

associated outcomes follow.
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Try Problem 1, parts (a)
and (b), for practice in
listing the experimental
outcomes (sample points)
for an experiment.

Introduction to Probability

Experiment

Toss a coin

Select a part for inspection
Conduct a sales call

Roll a standard die

Play a football game

Experimental Outcomes
Head, tail

Defective, nondefective
Purchase, no purchase
1,2,3,4,5,6

Win, lose, tie

The first step in analyzing a particular experiment is to carefully define the experimen-
tal outcomes. When we define all possible experimental outcomes, we identify the sample
space for the experiment; that is, the set of all possible experimental outcomes. Any one
particular experimental outcome is also referred to as a sample point and is an element of
the sample space.

Consider the experiment of tossing a coin. The experimental outcomes are defined by
the upward face of the coin—a head or a tail. If we let S denote the sample space, we can
use the following notation to describe the sample space and sample points for the coin-
tossing experiment:

S = {Hecad, Tail}

Using this notation for the second experiment in the preceding table, sclecting a part for in-
spection, provides a sample space with sample points as follows:

S = {Decfective, Nondefective }

Finally, suppose that we consider the fourth experiment in the table, rolling a standard
dic. The experimental outcomes are defined as the number of dots appearing on the
upward face of the dic. In this experiment, the numeric values 1, 2, 3, 4, 5, and 6 rep-
resent the possible experimental outcomes or sample points. Thus the sample space is
denoted

§=1{1,2,3,4,5,6}

NOTES AND COMMENTS

1. In probability, the notion of an experiment is
somewhat different from the laboratory sci-
ences. In the laboratory sciences, the researcher
assumes that each time an experiment is re-
peated in exactly the same way, the same out-
come will occur. For the type of experiment we

study in probability, the outcome is determined
by chance. Even though the experiment might
be repeated in exactly the same way, a different
outcome may occur. Because of this difference,
the experiments we study in probability are
sometimes called random experiments.
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Assigning Probabilities to Experimental
Outcomes

With an understanding of an experiment and the sample space, let us now see how proba-
bilities for the experimental outcomes can be determined. The probability of an experi-
mental outcome is a numeric measure of the likelihood that the experimental outcome will
occur on a single repetition of the experiment. In assigning probabilities to experimental
outcomes, two basic requirements of probability must be satisfied:

1. The probability values assigned to each experimental outcome (sample point) must
be between O and 1. If we let E; indicate the ith experimental outcome and P(E))
indicate the probability of this experimental outcome, we must have

0 = P(E) = 1 (for all i) (2.1)

2. The sum of all of the experimental outcome probabilities must be 1. For example, if a
sample space has k experimental outcomes, we must have

P(E)) + P(E,)) + -+ + P(E) =1 (2.2)

Any method of assigning probability values to the experimental outcomes that satisfies
these two requirements and results in reasonable numeric measures of the likelihood of the
outcomes is acceptable. In practice, the classical method, the relative frequency method, or
the subjective method is often used.

Classical Method

To illustrate the classical method of assigning probabilities, let us again consider the ex-
periment of flipping a coin. On any one flip, we will observe one of two experimental out-
comes: head or tail. It is reasonable to assume the two possible outcomes are equally likely.
Therefore, as one of the two equally likely outcomes is a head, we logically should conclude
that the probability of observing a head is '/,, or 0.50. Similarly, the probability of observ-
ing a tail is 0.50. When the assumption of equally likely outcomes is used as a basis for as-
signing probabilities, the approach is referred to as the classical method. If an experiment
has n possible outcomes, application of the classical method would lead us to assign a prob-
ability of 1/n to each experimental outcome.

As another illustration of the classical method, consider again the experiment of rolling
a standard die. In Section 2.1 we described the sample space and sample points for this ex-
periment with the notation

§=1{1,2,3,4,5, 6}

A standard die is designed so that the six experimental outcomes are equally likely, and
hence each outcome is assigned a probability of /g. Thus, if P(1) denotes the probability
that one dot appears on the upward face of the die, then P(1) = 4. Similarly, P(2) = Y,
P3) =Yg, P(4) = Y, P(5) = g, and P(6) = 5. Note that this probability assignment sat-
isfies the two basic requirements for assigning probabilities. In fact, requirements (2.1)
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Try Problem 2, part (b), for
practice with the classical
method.

Try Problem 2, part (c),

for practice in assigning
probabilities to experimental
outcomes using the relative
[frequency approach.
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and (2.2) are automatically satisfied when the classical method is used, because each of the
n sample points is assigned a probability of 1/n.

The classical method was developed originally to analyze gambling probabilities for
which the assumption of equally likely outcomes often is reasonable. In many business
problems, however, this assumption is not valid. Hence, alternative methods of assigning
probabilities are required.

Relative Frequency Method

Consider a firm that is preparing to market a new product. In order to estimate the proba-
bility that a customer will purchase the product, a test market evaluation has been set up
wherein salespeople call on potential customers. Each sales call conducted has two possi-
ble outcomes: The customer purchases the product, or the customer does not purchase the
product. With no reason to assume that the two experimental outcomes are equally likely,
the classical method of assigning probabilities is inappropriate.

Suppose that in the test market evaluation of the product, 400 potential customers were
contacted; 100 purchased the product, but 300 did not. In effect, we have repeated the ex-
periment of contacting a customer 400 times and have found that the product was purchased
100 times. Thus, we might decide to use the relative frequency of the number of customers
that purchased the product as an estimate of the probability of a customer making a pur-
chase. We could assign a probability of 100/400 = 0.25 to the experimental outcome of pur-
chasing the product. Similarly, 300/400 = 0.75 could be assigned to the experimental
outcome of not purchasing the product. This approach to assigning probabilities is referred
to as the relative frequency method. It is important to note that if we repeated this experi-
ment 400 additional times, we may not obtain exactly the same probability estimate that we
obtained from the first 400 trials of the experiment. The relative frequency approach only
generates an empirical estimate of the actual probability of an experimental outcome, and
different executions of the relative frequency approach can yield differing estimates of the
probability of the same experimental outcome.

Subjective Method

The subjective method of assigning probabilities is most appropriate when we cannot re-
alistically assume that the experimental outcomes are equally likely and when little rele-
vant data are available. When the subjective method is used to assign probabilities to the
experimental outcomes, we may use any information available, such as our experience or
intuition. After considering all available information, a probability value that expresses our
degree of belief (on a scale from 0 to 1) that the experimental outcome will occur is speci-
fied. Because subjective probability expresses a person’s degree of belief, it is personal. Us-
ing the subjective method, different people may assign different probabilities to the same
experimental outcome.

The subjective method requires extra care to ensure that the two basic requirements of
equations (2.1) and (2.2) are satisfied. Regardless of a person’s degree of belief, the prob-
ability value assigned to each experimental outcome must be between 0 and 1, inclusive,
and the sum of all the probabilities for the experimental outcomes must equal 1.

Consider the case in which Tom and Judy Elsbernd just made an offer to purchase a
house. Two outcomes are possible:

E, = their offer is accepted
E,

their offer is rejected



Bayes’ theorem (see
Section 2.5) provides a
means for combining
subjectively determined
prior probabilities with
probabilities obtained by
other means to obtain
revised, or posterior,

probabilities.

Try Problem 6 for practice
in assigning probabilities to
events.
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Judy believes that the probability that their offer will be accepted is 0.8; thus, Judy would
set P(E,) = 0.8 and P(E,) = 0.2. Tom, however, believes that the probability that their
offer will be accepted is 0.6; hence, Tom would set P(E,) = 0.6 and P(E,) = 0.4. Note
that Tom’s probability estimate for E| reflects a greater pessimism that their offer will be
accepted.

Both Judy and Tom assigned probabilities that satisfy the two basic requirements. The
fact that their probability estimates differ reflects the personal nature of the subjective
method.

These three approaches for assigning probabilities to experimental outcomes are often
used in various combinations. For example, in some business situations managers may
combine estimates from the classical or relative frequency approach with subjective prob-
ability estimates to obtain improved probability estimates.

Events and Their Probabilities

An event is a collection of sample points (experimental outcomes). For example, in the
experiment of rolling a standard die, the sample space has six sample points and is denoted
S={1,2,3,4,5,6}. Now consider the event that the number of dots shown on the upward
face of the die is an even number. The three sample points in this event are 2, 4, and 6. Using
the letter A to denote this event, we write A as a collection of sample points:

A={2,4,6}

Thus, if the experimental outcome or sample point were 2, 4, or 6, we would say that the
event A has occurred.

Much of the focus of probability analysis is involved with computing probabilities for
various events that are of interest to a decision maker. If the probabilities of the sample
points are defined, the probability of an event is equal to the sum of the probabilities of the
sample points in the event.

Returning to the experiment of rolling a standard die, we used the classical method to
conclude that the probability associated with each sample point is 5. Thus, the probability
of rolling a 2 is 4, the probability of rolling a 4 is /s, and the probability of rolling a 6 is
!/¢. The probability of event A—an even number of dots on the upward face of the die—is

P(A) = P(2) + P(4) + P(6)
11 1 3 1

6 6 6 6 2

Any time that we can identify all the sample points of an experiment and assign the cor-
responding sample point probabilities, we can use the preceding approach to compute the
probability of an event. However, in many experiments the number of sample points is
large, and the identification of the sample points, as well as determining their associated
probabilities, becomes extremely cumbersome if not impossible. In the remainder of this
chapter we present some basic probability relationships that can be used to compute the
probability of an event without knowing all the individual sample point probabilities. These
probability relationships require a knowledge of the probabilities for some events in the ex-
periment. Probabilities of other events are then computed from these known probabilities
using one or more of the probability relationships.
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NOTES AND COMMENTS

1. The sample space, S, is itself an event. It con- mental outcomes are equally likely. In such
tains all the experimental outcomes, so it has a cases, the probability of an event can be com-
probability of 1; that is, P(S) = 1. puted by counting the number of experimental

2. When the classical method is used to assign outcomes in the event and dividing the result by
probabilities, the assumption is that the experi- the total number of experimental outcomes.

@ Some Basic Relationships of Probability

In this section we present several relationships that will be helpful in computing probabil-
ities. The relationships are the complement of an event, the addition law, conditional prob-
ability, and the multiplication law.

Complement of an Event

For an event A, the complement of event A is the event consisting of all sample points in
sample space S that are not in A. The complement of A is denoted by A°. Figure 2.2 pro-
vides a diagram, known as a Venn diagram, that illustrates the concept of a complement.
The rectangular area represents the sample space for the experiment and as such contains
all possible sample points. The circle represents event A and contains only the sample points
that belong to A. The remainder of the rectangle contains all sample points not in event A,
which by definition is the complement of A.

In any probability application, event A and its complement A° must satisfy the condition

P(A) + P(AY) =1
Solving for P(A), we have

P(A) = 1 — P(A°) (2.3)

FIGURE 2.2 COMPLEMENT OF EVENT A

Sample Space S

Event A > A€

Note:  The shaded region depicts
the complement of A,
denoted A€.
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Key words for the union of
events (AU B) are “either
A or B occurs” or “at least
one of the two events
occurs.” Note that the
conjunction “or” commonly
indicates a union of events.

Key words for the
intersection of events

(AN B) are “both A and B
occur.” Note that the
conjunction “and”
commonly indicates an
intersection of events.
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Equation (2.3) shows that the probability of an event A can be computed by subtraction if
the probability of its complement, P(A), is known. Similarly, subtraction can be used to
compute the probability of the compliment A° of an event A if the probability of the event
P(A), is known.

Consider the case of a sales manager who, after reviewing sales reports, states that 80%
of new customer contacts result in no sale. By letting A denote the event of a sale and A“
denote the event of no sale, the manager is stating that P(A“) = 0.80. Using equation (2.3),
we see that

PA)=1—-PA)=1-0.80=0.20

which shows that there is a 0.20 probability that a sale will be made on a new customer
contact.

In another case, a purchasing agent states a 0.90 probability that a supplier will send a ship-
ment that is free of defective parts. Using the complement, we can concludea 1 — 0.90 = 0.10
probability that the shipment will contain some defective parts.

Addition Law

The addition law is a useful relationship when we have two events and are interested in
knowing the probability that at least one of the events occurs. That is, with events A and B,
we are interested in knowing the probability that event A or event B or both will occur.
Before we present the addition law, we need to discuss two concepts concerning combina-
tions of events: the union of events and the intersection of events.

For two events A and B, the union of events A and B is the event containing all sam-
ple points belonging to A or B or both. The union is denoted A U B. The Venn diagram
shown in Figure 2.3 depicts the union of events A and B; the shaded region contains all the
sample points in event A, as well as all the sample points in event B. The fact that the cir-
cles overlap (or intersect) indicates that some sample points are contained in both A and B.

For two events A and B, the intersection of events A and B is the event containing the
sample points belonging to both A and B. The intersection is denoted by A M B. The Venn
diagram depicting the intersection of the two events is shown in Figure 2.4. The area where
the two circles overlap is the intersection; it contains the sample points that are in both A
and B.

FIGURE 2.3 UNION OF EVENTS A AND B (SHADED REGION)

Sample Space S

Event A Event B
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FIGURE 2.4 INTERSECTION OF EVENTS A AND B (SHADED REGION)
Sample Space S
EventA N B
EventA Event B

Note that P(AU B) =
P(BU A); that is, the order
of events in a union does
not affect the probability of
the union.

Note that P(GAN B) =
P(BN A), that is, the order
of events in an intersection
does not affect the
probability of the
intersection.

The addition law provides a way to compute the probability of event A or B or both oc-
curring. In other words, the addition law is used to compute the probability of the union of
two events, A U B. The addition law is formally stated as follows:

P(A U B) = P(A) + P(B) — P(A N B) (2.4)

To obtain an intuitive understanding of the addition law, note that the first two terms in
the addition law, P(A) + P(B), account for all the sample points in A U B. However, as the
sample points in the intersection A M B are in both A and B, when we compute P(A) + P(B),
we in effect are counting each of the sample points in A N B twice. We correct for this dou-
ble counting by subtracting P(A M B).

To apply the addition law, let us consider the following situations in a college course in
quantitative methods for decision making. Of 200 students taking the course, 160 passed
the midterm examination and 140 passed the final examination; 124 students passed both
exams. Let

A = event of passing the midterm exam

B = event of passing the final exam

This relative frequency information leads to the following probabilities:

160
P(A) = 5 = 0.80
P(B) = 140 _ 690
200
PanB = 2 _ o0
200

After reviewing the grades, the instructor decided to give a passing grade to any student
who passed at least one of the two exams; note that this implies the instructor will give a
passing grade to any student who passed the midterm exam or passed the final exam. That
is, any student who passed the midterm, any student who passed the final, and any student
who passed both exams would receive a passing grade. What is the probability of a student
receiving a passing grade in this course?

© Cengage Learning 2013



An event and its
complement are mutually
exclusive and their union is
the entire sample space.
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Your first reaction may be to try to count how many of the 200 students passed at least
one exam, but note that the probability question is about the union of the events A and B.
That is, we want to know the probability that a student passed the midterm (A), passed the
final (B), or passed both. Thus we want to know P(A U B). Using the addition law (2.4) for
the events A and B, we have

P(A U B) = P(A) + P(B) — P(A N B)
Knowing the three probabilities on the right-hand side of this equation, we obtain
P(A U B)=0.80 + 0.70 — 0.62 = 0.88

This result indicates an 88% chance of a student passing the course because of the 0.88
probability of passing at least one of the exams.

Now consider a study involving the television-viewing habits of married couples. It was
reported that 30% of the husbands and 20% of the wives were regular viewers of a partic-
ular Friday evening program. For 12% of the couples in the study, both husband and wife
were regular viewers of the program. What is the probability that at least one member of a
married couple is a regular viewer of the program?

Let

H = husband is a regular viewer

W = wife is a regular viewer

We have P(H) = 0.30, P(W) = 0.20, and P(H N W) = 0.12; thus, the addition law yields
P(HU W)= PH) + P(W)— P(HN W) =0.30 + 020 — 0.12 = 0.38

This result shows a 0.38 probability that at least one member of a married couple is a reg-
ular viewer of the program.

Before proceeding, let us consider how the addition law is applied to mutually exclu-
sive events. Two or more events are said to be mutually exclusive if the events do not have
any sample points in common—that is, there are no sample points in the intersection of the
events. For two events A and B to be mutually exclusive, P(A M B) = 0. Figure 2.5 provides

FIGURE 2.5 MUTUALLY EXCLUSIVE EVENTS

Event A > <« Event B
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For practice, try solving a Venn diagram depicting two mutually exclusive events. Because P(A M B) = 0 for the

Problem 7.

special case of mutually exclusive events, the addition law becomes
P(A U B) = P(A) + P(B) (2.5)

To compute the probability of the union of two mutually exclusive events, we simply add
the corresponding probabilities.

Conditional Probability

In many probability situations, being able to determine the probability of one event when
another related event is known to have occurred is important. Suppose that we have an event
A with probability P(A) and that we obtain new information or learn that another event, de-
noted B, has occurred. If A is related to B, we will want to take advantage of this informa-
tion in computing a new or revised probability for event A.

For a conditional probability This new probability of event A is written P(A | B). The “/” denotes the fact that we are

suchas P(A1B) = 0.25,
the probability value of
0.25 refers only to the

considering the probability of event A given the condition that event B has occurred. Thus,
the notation P(A | B) is read “the probability of A given B.”

probability of event A. No With two events A and B, the general definitions of conditional probability for A given
information is provided B and for B given A are as follows:
about the probability of

event B.

_PANB)

PA|B) = TPE) (2.6)
_ P(ANB)

P(B|A) = ol (2.7)

Note that for these expressions to have meaning, P(B) cannot equal O in equation (2.6) and
P(A) cannot equal 0 in equation (2.7). Also note that P(A| B) # P(B|A), unless P(A) = P(B).

To obtain an intuitive understanding of the use of equation (2.6), consider the Venn
diagram in Figure 2.6. The shaded region (both light gray and dark gray) denotes that

FIGURE 2.6 CONDITIONAL PROBABILITY P(A | B) = P(A N B)/P(B)

EventA N B
|

Event A Event B

T~ L
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TABLE 2.1 CONTINGENCY TABLE FOR PROMOTIONAL STATUS OF POLICE OFFICERS
DURING THE PAST TWO YEARS
Promoted Not Promoted Total
Men 288 672 960
Women 36 204 240
Total 324 876 1200

Try Problem 12 for practice
computing conditional
probabilities.

event B has occurred; the dark gray shaded region denotes the event (A M B). We know
that once B has occurred, the only way that we can also observe event A is for event (A M B)
to occur. Thus, the ratio P(A M B)/P(B) provides the probability that we will observe event
A when event B has already occurred.

We can apply conditional probability to the promotional status of male and female of-
ficers of a major metropolitan police force. The force consists of 1200 officers: 960 men
and 240 women. Over the past two years, 324 officers have been promoted. Table 2.1 shows
the specific breakdown of promotions for male and female officers. Such a table is often
called a contingency table or a crosstabulation.

After reviewing the promotional record, a committee of female officers filed a dis-
crimination case on the basis that only 36 female officers had received promotions during
the past two years. The police administration argued that the relatively low number of pro-
motions for female officers is due not to discrimination but to the fact that few female
officers are on the force. We use conditional probability to evaluate the discrimination
charge.

Let

M = event an officer is a man
W = event an officer is a woman

B = event an officer is promoted

Dividing the data values in Table 2.1 by the total of 1200 officers permits us to summarize
the available information as follows:

P(M N B) = 288 _ 024 probgbility that an officer is a man
1200 and is promoted
P(M N B) = % ~ 056 gzc;b;asblillci;yp;lgitl f:le c(;fﬁcer is a man
POV B = =003 D
- B Loy iy ot

Because each of these values gives the probability of the intersection of two events, these
probabilities are called joint probabilities. Table 2.2, which provides a summary of the
probability information for the police officer promotion situation, is referred to as a joint
probability table.

© Cengage Learning 2013



40

Chapter 2 Introduction to Probability

TABLE 2.2 JOINT PROBABILITY TABLE FOR POLICE OFFICER PROMOTIONS

Promoted Not Promoted Total
Men 0.24 0.56 0.80
Women " 0.03 0.17 . 020
Total 0.27 / 0.73 1.00
Joint probabilities Marginal probabilities
appear in the body appear in the margins
of the table. of the table.

The values in the margins of the joint probability table provide the probabilities of each
single event separately: P(M) = 0.80, P(W) = 0.20, P(B) = 0.27, and P(B) = 0.73, which
indicate that 80% of the force is male, 20% of the force is female, 27% of all officers
received promotions, and 73% were not promoted. These probabilities are referred to as
marginal probabilities because of their location in the margins of the joint probability
table. Returning to the issue of discrimination against the female officers, we see that the
probability of promotion of an officer is P(B) = 0.27 (regardless of whether that officer is
male or female). However, the critical issue in the discrimination case involves the two con-
ditional probabilities P(B | M) and P(B | W); that is, what is the probability of a promotion
given that the officer is a man and what is the probability of a promotion given that the
officer is a woman? If these two probabilities are equal, the discrimination case has no basis
because the chances of a promotion are the same for male and female officers. However,
different conditional probabilities will support the position that male and female officers
are treated differently in terms of promotion.

Using equation (2.7), the conditional probability relationship, we obtain

PBNM) 024 288/1200 288
P(M) 0.80 960/1200 960

Py~ PEO W) _ 003 <_ 36/1200 36)
P(W) 0.20 240/1200 240

What conclusions do you draw? The probability of a promotion for a male officer is 0.30,
which is twice the 0.15 probability of a promotion for a female officer. Although the use of
conditional probability does not in itself prove that discrimination exists in this case, the
conditional probability values strongly support the argument presented by the female
officers.

In this illustration, P(B) = 0.27, P(B | M) = 0.30, and P(B | W) = 0.15. Clearly, the
probability of promotion (event B) differs by gender. In particular, as P(B | M) # P(B),
events B and M are dependent events. The probability of event B (promotion) is higher
when M (the officer is male) occurs. Similarly, with P(B | W) # P(B), events B and W are
dependent events. But, if the probability of event B was not changed by the existence of
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For practice, try solving
Problem 13.

event M—that is, P(B | M) = P(B)—events B and M would be independent events. Two
events A and B are independent if

or

P(B|A) = P(B)

P(A|B) = P(A)

Otherwise, the events are dependent.

The Q.M. in Action, Product Testing for Quality Control at Morton International,
describes how a subsidiary of Morton International used conditional probability to help
decide to implement a quality control test.

@ACHON

PRODUCT TESTING FOR QUALITY CONTROL AT MORTON INTERNATIONAL*

Morton International is a company with businesses in
salt, household products, rocket motors, and specialty
chemicals. Carstab Corporation, a subsidiary of Morton,
produces a variety of specialty chemical products de-
signed to meet the unique specifications of its customers.
For one particular customer, Carstab produced an ex-
pensive catalyst used in chemical processing. Some, but
not all, of the product produced by Carstab met the cus-
tomer’s specifications.

Carstab’s customer agreed to test each lot after re-
ceiving it to determine whether the catalyst would per-
form the desired function. Lots that did not pass the
customer’s test would be returned to Carstab. Over lime,
Carstab found that the customer was accepting 60% of the
lots and returning 40%. In probability terms, each Carstab
shipment to the customer had a 0.60 probability of being
accepted and a 0.40 probability of being returned.

Neither Carstab nor its customer was pleased with
these results. In an effort to improve service, Carstab ex-
plored the possibility of duplicating the customer’s test
prior to shipment. However, the high cost of the special
testing equipment made that alternative infeasible.
Carstab’s chemists then proposed a new, relatively low-
cost test designed to indicate whether a lot would pass the
customer’s test. The probability question of interest was:
What is the probability that a lot will pass the customer’s
test given that it passed the new Carstab test?

*Based on information provided by Michael Haskell of Morton International.

A sample of lots was tested under both the customer’s
procedure and Carstab’s proposed procedure. Results
were that 55% of the lots passed Carstab’s test, and 50%
of the lots passed both the customer’s and Carstab’s test.
In probability notation, we have

A = the event the lot passes the customer’s test
B = the event the lot passes Carstab’s test

where
P(B) = 0.55 and P(A N B) = 0.50

The probability information sought was the conditional
probability P(A | B) given by

P(ANB) _ 0.50

—= = 0.909
P(B)

P(A|B) = = 055

Prior to Carstab’s new test, the probability that a lot
would pass the customer’s test was 0.60. However, the
new results showed that given that a lot passed Carstab’s
new test, it had a 0.909 probability of passing the cus-
tomer’s test. This result was good supporting evidence
for the use of the test prior to shipment. Based on this
probability analysis, the preshipment testing procedure
was implemented at the company. Immediate results
showed an improved level of customer service. A few
lots were still being returned; however, the percentage
was greatly reduced. The customer was more satisfied
and return shipping costs were reduced.
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Multiplication Law

The multiplication law can be used to find the probability of an intersection of two events.
The multiplication law is derived from the definition of conditional probability. Using equa-
tions (2.6) and (2.7) and solving for P(A M B), we obtain the multiplication law:

P(A N B) = P(A| B)P(B) (2.8)
P(A N B) = P(B|A)P(A) (2.9)

The multiplication law is useful in situations for which probabilities such as P(A), P(B),
P(A | B), and/or P(B | A) are known but P(A N B) is not. For example, suppose that a news-
paper circulation department knows that 84% of its customers subscribe to the daily edition
of the paper. Let D denote the event that a customer subscribes to the daily edition; hence,
P(D) = 0.84. In addition, the department knows that the conditional probability that a cus-
tomer who already holds a daily subscription also subscribes to the Sunday edition (event )
is 0.75; that is, P(S| D) = 0.75. What is the probability that a customer subscribes to both the
daily and Sunday editions of the newspaper? Using equation (2.9), we compute P(D M S):

P(DNS) = P(S| D)P(D) = 0.75(0.84) = 0.63

This result tells us that 63% of the newspaper’s customers subscribe to both the daily and
Sunday editions.

Before concluding this section, let us consider the special case of the multiplication law
when the events involved are independent. Recall that independent events exist whenever
P(B|A) = P(B) or P(A| B) = P(A). Returning to the multiplication law, equations (2.8) and
(2.9), we can substitute P(A) for P(A | B) and P(B) for P(B | A). Hence, for the special case
of independent events, the multiplication law becomes

P(A N B) = P(A)P(B) (2.10)

Thus, to compute the probability of the intersection of two independent events, we sim-
ply multiply the corresponding probabilities. For example, a service station manager knows
from past experience that 40% of her customers use a credit card when purchasing gaso-
line. What is the probability that the next two customers purchasing gasoline will both use
a credit card? If we let

A = the event that the first customer uses a credit card
B = the event that the second customer uses a credit card

the event of interest is A M B. With no other information, it is reasonable to assume A and
B are independent events. Thus,

P(A N B) = P(A)P(B) = (.40)(.40) = 0.16

NOTES AND COMMENTS

1. Do not confuse mutually exclusive events with is known to occur, the probability of the other oc-
independent events. Two events with nonzero curring is reduced to zero. Thus, they cannot be
probabilities cannot be both mutually exclusive independent.

and independent. If one mutually exclusive event
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Bayes’ Theorem

In the discussion of conditional probability, we indicated that revising probabilities when new
information is obtained is an important phase of probability analysis. Often, we begin an
analysis with initial or prior probability estimates for specific events of interest; these initial
estimates are generally developed using either the relative frequency approach (applied to his-
torical data) or the subjective approach. Then, from sources such as a sample, a special report,
or a product test, we obtain some additional information about the events. With this new in-
formation, we update the prior probability values by calculating revised probabilities, referred
to as posterior probabilities. Bayes’ theorem provides a means for making these probabil-
ity revisions. The steps in this probability revision process are shown in Figure 2.7.

We can apply Bayes’ theorem to a manufacturing firm that receives shipments of parts
from two different suppliers. Let A; denote the event that a part is from supplier 1 and A,
denote the event that a part is from supplier 2. Currently, 65% of the parts purchased by the
company are from supplier 1, and the remaining 35% are from supplier 2. Thus, if a part is
selected at random, we would assign the prior probabilities P(A;) = 0.65 and P(A,) = 0.35.

The quality of the purchased parts varies with the source of supply. Based on historical
data, the conditional probabilities of receiving good and bad parts from the two suppliers
are shown in Table 2.3. Thus, if we let G denote the event that a part is good and B denote
the event that a part is bad, the information in Table 2.3 provides the following conditional
probability values:

P(G|A) =098 P(B|A) =002
P(G|A,) =095 P(B|A,) = 0.05

The tree diagram shown in Figure 2.8 depicts the process of the firm receiving a part
from one of the two suppliers and then discovering that the part is good or bad as a two-
step experiment. Of the four possible experimental outcomes, two correspond to the part
being good, and two correspond to the part being bad.

Each of the experimental outcomes is the intersection of two events, so we can use the
multiplication rule to compute the probabilities. For instance,

P(A,N G) = P(A)P(G| A,)

FIGURE 2.7 PROBABILITY REVISION USING BAYES’ THEOREM

Prior New Application Posterior

Probabilities " Information " of Bayes I Probabilities
Theorem

© Cengage Learning 2013

TABLE 2.3 CONDITIONAL PROBABILITIES OF RECEIVING GOOD AND BAD PARTS

FROM TWO SUPPLIERS
Good Parts Bad Parts
Supplier 1 0.98 0.02 ~——PBIA)
Supplier 2 0.95 0.05

© Cengage Learning 2013
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FIGURE 2.8 TWO-STEP TREE DIAGRAM

Step 1 Step 2 Experimental
(Condition) ] Outcome

(AI’ G)

(A1, B)

(AZ’ G)

(A2, B)

Note: Step 1 shows that the part comes from one of two suppliers,
and step 2 shows whether the part is good or bad.

© Cengage Learning 2013

The process of computing these joint probabilities can be depicted in what is sometimes
called a probability tree, as shown in Figure 2.9. From left to right in the tree, the proba-
bilities for each of the branches at step 1 are the prior probabilities, and the probabilities for
each branch at step 2 are conditional probabilities. To find the probabilities of each exper-
imental outcome, we simply multiply the probabilities on the branches leading to the out-
come. Each of these joint probabilities is shown in Figure 2.9, along with the known

probabilities for each branch. Note that the probabilities of the four experimental outcomes
sum to 1.

FIGURE 2.9 PROBABILITY TREE FOR TWO-SUPPLIER EXAMPLE

Step 1 Step 2 Probability of Outcome
(Supplier)

(Condition)

P(GIA))

P(A;NG) = P(ADP(G | Ay) = 0.6370

P(A;NB)=PA)DPBIA;) =0.0130
P(A;N G) = P(A))P(G | Ay) = 0.3325

i P(A,NB)=PA)P(B1A,)=0.0175
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The Reverend Thomas
Bayes (1702-1761), a
Presbyterian minister, is
credited with the original
work leading to the version
of Bayes’ theorem in use
today.
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Now suppose that the parts from the two suppliers are used in the firm’s manufactur-
ing process and that a bad part causes a machine to break down. What is the probability that
the bad part came from supplier 1, and what is the probability that it came from supplier 2?
With the information in the probability tree (Figure 2.9), we can use Bayes’ theorem to an-
swer these questions.

Letting B denote the event the part is bad, we are looking for the posterior probabilities
P(A, | B) and P(A, | B). From the definition of conditional probability, we know that

P(A |B) = M (2 -|-|)
(A B) = P(B) .
Referring to the probability tree, we see that
P(A, N B) = P(A)P(B|A) (2.12)

To find P(B), we note that event B can occur in only two ways: (A, M B) and (A, N B). There-
fore, we have

P(B) = P(A, N B) + P(A, N B)
= P(A)P(B|A)) + P(A;)P(B| Ay) (2.13)

Substituting from equations (2.12) and (2.13) into equation (2.11) and writing a simi-
lar result for P(A, | B), we obtain Bayes’ theorem for the case of two events.

P(ADP(B|A))
P(ADP(B|A)) + P(A)P(B| A,)
P(A)P(B | A;)
P(A)P(B|A)) + P(A)P(B | Ay)

P(A,|B) = (2.14)

P(A,| B) = (2.15)

Using equation (2.14) and the probability values provided in our example, we have

P(ADP(B|A))

P(A, | B) =
(A1 5) P(A)P(B|A)) + P(A,)P(B| A,)
B (0.65)(0.02) B 0.0130
(0.65)(0.02) + (0.35)(0.05)  0.0130 + 0.0175
_ 00130 _ o
©0.0305

In addition, using equation (2.15), we obtain P(A, | B):

P | B) = (0.35)(0.05)

(0.65)(0.02) + (0.35)(0.05)
B 0.0175 00175
©0.0130 + 0.0175  0.0305

= 0.5738
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TABLE 2.4 SUMMARY OF BAYES’ THEOREM CALCULATIONS FOR THE

TWO-SUPPLIER PROBLEM

1 (2) 3) €] (5)
Prior Conditional Joint Posterior
Events Probabilities Probabilities Probabilities Probabilities
A, P, P(B|A) P(4; N B) P(,|B)
A 0.65 0.02 0.0130 0.0130/0.0305 = 0.4262
A, 0.35 0.05 0.0175 0.0175/0.0305 = 0.5738
1.00 P(B) = 0.0305 1.0000

Try Problem 20 for practice
using Bayes’ theorem to
compute posterior
probabilities.

Note that in this application we initially started with a probability of 0.65 that a part selected
at random was from supplier 1. However, given information that the part is bad, we deter-
mine the probability that the part is from supplier 1 drops to 0.4262. If the part is bad,
the probability that the part was from supplier 2 increases from 0.35 to 0.5738; that is,
P(A,| B) = 0.5738.

Bayes’ theorem is applicable when the events for which we want to compute posterior
probabilities are mutually exclusive and their union is the entire sample space.! Bayes’ the-
orem can be extended to the case of n mutually exclusive events A, A,, . . ., A,, whose
union is the entire sample space. In such a case Bayes’ theorem for the computation of any
posterior probability P(A, | B) becomes

P(A)P(B|A;)
PADP(B|A) + P(A))P(B|Ay) + -+ + P(A,)P(B|A,)

P(A;|B) = (2.16)

With prior probabilities P(A,), P(A,), . . ., P(A,) and the appropriate conditional probabil-
ities P(B|A)), P(B|A,), ..., P(B|A,), equation (2.16) can be used to compute the poste-
rior probability of the events A}, A,, ..., A,.

The Tabular Approach

The tabular approach is helpful in conducting the Bayes’ theorem calculations simultane-
ously for all events A,. Such an approach is shown in Table 2.4. The computations shown
there involve the following steps.

Step 1. Prepare three columns:
Column 1—The mutually exclusive events for which posterior probabilities are
desired
Column 2—The prior probabilities for the events
Column 3—The conditional probabilities of the new information given each
event
Step 2. In column 4, compute the joint probabilities for each event and the new infor-
mation B by using the multiplication law. To get these joint probabilities, mul-
tiply the prior probabilities in column 2 by the corresponding conditional
probabilities in column 3—that is, P(A; N B) = P(A)P(B| A)).
Step 3. Sum the joint probabilities in column 4 to obtain the probability of the new in-
formation, P(B). In the example there is a 0.0130 probability that a part is from

'If the union of events is the entire sample space, the events are often called collectively exhausted.
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Try Problem 25 for an
application of Bayes’

theorem involving the
tabular approach.
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supplier 1 and is bad and a 0.0175 probability that a part is from supplier 2 and
is bad. These are the only two ways by which a bad part can be obtained, so
the sum 0.0130 + 0.0175 shows an overall probability of 0.0305 of finding a
bad part from the combined shipments of both suppliers.

Step 4. In column 5, compute the posterior probabilities by using the basic relation-
ship of conditional probability:

P(A; N B)

PA;|B) = P(B)

Note that the joint probabilities P(A; N B) appear in column 4, whereas P(B) is the sum of
the column 4 values.

NOTES AND COMMENTS

1. Bayes’ theorem is used in decision analysis (see 2. An event and its complement are mutually

Chapter 4). The prior probabilities often are sub- exclusive, and their union is the entire sample
jective estimates provided by a decision maker. space. Thus, Bayes’ theorem is always applica-
Sample information is obtained and posterior ble for computing posterior probabilities of an
probabilities are computed for use in developing event and its complement.

a decision strategy.

D

Simpson’s Paradox

As we have discussed in Sections 2.4 and 2.5, the concept of conditional probability quanti-
fies the effect of an event B on the likelihood of another event A. It is possible for the appar-
ent association between two cvents to be reversed upon considering a third event; this
phenomenon is referred to as Simpson’s paradox. Simpson’s paradox often occurs when
data from two or more subsets of a population are combined or aggregated to produce a sum-
mary crosstabulation in an attempt to show how two cvents are related. In such cases, we
must be careful in drawing conclusions from the aggregated data about the relationship
between the two events because the conclusions based upon the aggregated data can be com-
pletely reversed if we look at the disaggregated data. To provide an illustration of Simpson’s
paradox, we consider an example involving the analysis of verdicts for two judges.

Judges Ron Luckett and Dennis Kendall presided over cases in Common Pleas Court
and Municipal Court during the past three years. Some of the verdicts they rendered were
appealed. In most of these cases the appeals court upheld the original verdicts, but in some
cascs those verdicts were reversed. Table 2.5 illustrates the crosstabulation of cases broken
down by verdict (upheld or reversed) and judge (Luckett or Kendall). This crosstabulation
shows the number of appeals for which the verdict was upheld and the number of appeals
for which the verdict was reversed for each judge (the column percentages in parentheses
next to each value).

A review of the column percentages shows that 14% of the verdicts were reversed for
Judge Luckett, but only 12% of the verdicts were reversed for Judge Kendall. That is,
P(reversed | Luckett) = 0.14 and P(reversed | Kendall) = 0.12. Based on this data, we might
conclude that Judge Kendall is doing a better job because a lower percentage of his verdicts
are being reversed upon appeal.
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TABLE 2.5 SUMMARY OF VERDICTS UPHELD AND REVERSED FOR JUDGES

LUCKETT AND KENDALL

Judge

Verdict Luckett Kendall Total
Upheld 129 (86%) 110 (88%) 239
Reversed 21 (14%) 15 (12%) 36

Total (%) 150 (100%) 125 (100%) 275

© Cengage Learning 2013

A closer look at the data, however, suggests there may be a problem with the conclusion
that Judge Kendall’s verdicts are reversed less often. If we further break down the verdict
data by the type of court (Common Pleas or Municipal) in which the cases were heard, we
obtain the crosstabulations in Table 2.6; column percentages are also shown in parentheses
next to each value.

From the crosstabulation and column percentages for Luckett, we see that his verdicts
were reversed in 9% of the Common Pleas Court cases and in 15% of the Municipal Court
cases. That is, P(reversed | Luckett and Common Pleas Court) = 0.09 and P(reversed |
Luckett and Municipal Court) = 0.15. From the crosstabulation and column percentages
for Kendall, we see that his verdicts were reversed in 10% of the Common Pleas Court cases
and in 20% of the Municipal Court cases. That is, P(reversed | Kendall and Common Pleas
Court) = 0.10 and P(reversed | Kendall and Municipal Court) = 0.20. Since P(reversed |
Luckett and Common Pleas Court) < P(reversed | Kendall and Common Pleas Court) and
P(reversed | Luckett and Municipal Court) < P(reversed | Kendall and Municipal Court),
we see that Judge Luckett demonstrates a better record than Judge Kendall in each court.
This result contradicts the conclusion we reached when we aggregated the data across both
courts for the original crosstabulation. It appeared then that Judge Kendall had the better
record. This example illustrates Simpson’s paradox.

TABLE 2.6 SUMMARY OF VERDICTS UPHELD AND REVERSED IN COMMON PLEAS

AND MUNICIPAL COURT FOR JUDGES LUCKETT AND KENDALL

Judge Luckett

Common Municipal
Verdict Pleas Court Total
Upheld 29 (91%) 100 (85%) 129
Reversed 3 (9%) 18 (15%) 21
Total (%) 32 (100%) 118 (100%) 150
Judge Kendall
Common Municipal z
Verdict Pleas Court Total E“
Upheld 90 (90%) 20 (80%) 110 g
Reversed 10 (10%) 5 (20%) 15 Eib
Total (%) 100 (100%) 25 (100%) 125 §D
o
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The original crosstabulation was obtained by aggregating the data in the separate
crosstabulations for the two courts. Note that for both judges the percentage of appeals that
resulted in reversals was much higher in Municipal Court than in Common Pleas Court.
Because Judge Luckett tried a much higher percentage of his cases in Municipal Court, the
aggregated data favored Judge Kendall. When we look at the crosstabulations for the two
courts separately, however, Judge Luckett clearly shows the better record. Thus, for the orig-
inal crosstabulation, we see that the type of court is a hidden variable that cannot be ignored
when evaluating the records of the two judges.

Because of Simpson’s paradox, we need to be particularly careful when drawing
conclusions using aggregated data. Before drawing any conclusions about the relationship
between two events shown for a crosstabulation involving aggregated data, you should
investigate whether any hidden variables could affect the results. The QM in Action,
Accurate Comparison of Unemployment Rates, provides an interesting and real example

of Simpson’s paradox.

NOTES AND COMMENTS

1. While Simpson’s paradox is named for Edward 1899 and again by Yule in 1903. For this reason

Simpson (who described the paradox in 1951), some refer to Simpson’s paradox as the reversal
the phenomenon was previously documented in paradox, the amalgamation paradox, or the
papers by Pearson, Lee, and Bramley-Moore in Yule—Simpson effect.

@ACTlON

ACCURATE COMPARISON OF UNEMPLOYMENT RATES—WHICH RECESSION WAS MORE SEVERE?*

In a December 2009 article in The Wall Street Journal,
Cari Tuna asked, “Is the current economic slump worse
than the recession of the early 1980s?” Tuna observed
that if one uses the unemployment rate as the standard,
on the surface the answer to this question appears to be
no; the jobless rate was 10.2% in October of 2009, which
is substantially below the peak of 10.8% in November
and December of 1982.

Tuna then considers the question seperately for each
of several education groups. Surprisingly, the unemploy-
ment rate among workers in each education group (high-
school dropouts, high-school graduates, some college,
and college graduates) was higher in October of 2009
than it was during the 1980s recession.

*Based on C. Tuna, “When Combined Data Reveal the Flaw of Aver-
ages in a Statistical Anomaly Dubbed Simpson‘s Paradox: Aggregated
Numbers Obscure Trends in Job Market, Medicine and Baseball,” The
Wall Street Journal, December 2, 2009 (http://online.wsj.com/article/
SB125970744553071829.html).

How can this be? How could the overall unemploy-
ment rate be lower in 2009 than it was during the reces-
sion of the early 1980s, while the unemployment rate for
each of these groups was higher in 2009 than it was dur-
ing the early 1980s recession? The anomaly is an exam-
ple of Simpson’s paradox—the phenomenon by which
the apparent association between two events is reversed
upon consideration of a third event.

As Tuna explains, the 2009 overall unemployment
rate appears to be lower because college graduates (who
have the lowest unemployment rate among education
groups) were a larger proportion of the workforce in
2009 than they were in the early 1980s (they were ap-
proximately one-third of the 2009 workforce and 25% in
the early 1980s). At the same time, the proportion of
high-school dropouts fell from almost 20% in the early
1980s to approximately 10% in 2009. Even though the
2009 unemployment rate was higher among both groups
than it was during the recession of the early 1980s, the

(continued)
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discrepancies in contributions to the composition of the
labor force by these two groups reverses the result when
data from the two groups are aggregated.

In this case the data aggregated across education
groups suggests the opposite of what the disaggregated
data imply, and consideration of the aggregated data

Introduction to Probability

leads to an erroneous conclusion. Examples of Simp-
son’s paradox are common across industries; Tuna cites
examples from medicine, sports, education, and air
travel. If we are not careful in our analyses, we can draw
incorrect conclusions from aggregate data and as a result
make poor decisions.

In this chapter we introduced basic probability concepts and illustrated how probability analy-
sis can provide helpful decision-making information. We described how probability can be
interpreted as a numeric measure of the likelihood that an event will occur, and discussed var-
ious ways that probabilities can be assigned to events. In addition, we showed that the prob-
ability of an event can be computed either by summing the probabilities of the experimental
outcomes (sample points) comprising the event or by using the basic relationships of proba-
bility. When additional information becomes available, we showed how conditional proba-
bility and Bayes’ theorem can be used to obtain revised or posterior probabilities. We also
demonstrated how an apparent association between two events can be reversed upon consid-

eration of a third event through the phenomenon of Simpson’s paradox.

The probability concepts covered will be helpful in future chapters when we describe
quantitative methods based on the use of probability information. Specific chapters and

quantitative methods that make use of probability are as follows:

®  Chapter 3
¢  Chapter 4
®  Chapter 5

®  Chapter 13
®  Chapter 14
®  Chapter 15
®  Chapter 16
®  Chapter 17

Probability distributions
Decision analysis

Utility and game theory

Project scheduling: PERT/CPM
Inventory models

Waiting line models

Simulation

Markov processes

Probability A numeric measure of the likelihood that an event will occur.

Impossible event An event is certain not to occur. The probability of an impossible event is 0.

Certain event An event is certain to occur. The probability of a certain event is 1.
Experiment Any process that generates well-defined outcomes.

Sample space The set of all sample points (experimental outcomes).

Sample point An experimental outcome and an element of the sample space.

Basic requirements of probability Two requirements that restrict the manner in which

probability assignments can be made:

1. For each experimental outcome E;, 0 = P(E)) = 1.
2. P(E)+PE)+---+PE)=1.

Classical method A method of assigning probabilities that is based on the assumption that

the experimental outcomes are equally likely.
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Relative frequency method A method of assigning probabilities based on experimenta-
tion or historical data.

Subjective method A method of assigning probabilities based on judgment.

Event A collection of sample points or experimental outcomes.

Complement of event A The event containing all sample points that are not in A.

Venn diagram A graphical device for representing the sample space and operations in-
volving events.

Union of events A and B The event containing all sample points that are in A, in B, or in both.
Intersection of events A and B The event containing all sample points that are in both A
and B.

Addition law A probability law used to compute the probability of a union: P(A U B) =
P(A) + P(B) — P(A N B). For mutually exclusive events, P(A N B) = 0, and the addition
law simplifies to P(A U B) = P(A) + P(B).

Mutually exclusive events Events that have no sample points in common; that is, A N B
is empty and P(A N B) = 0.

Conditional probability The probability of an event given another event has occurred.
The conditional probability of A given B is P(A | B) = P(A N B)/P(B).

Joint probability The probability of the intersection of two events.

Joint probability table A table used to display joint and marginal probabilities.
Marginal probabilities The values in the margins of the joint probability table, which pro-
vide the probability of each event separately.

Dependent events Two events A and B for which P(A | B) # P(A) or P(B | A) # P(B); that
is, the probability of one event is altered or affected by knowing whether the other event
occurs.

Independent events Two events A and B for which P(A | B) = P(A) and P(B | A) = P(B);
that is, the events have no influence on each other.

Multiplication law A probability law used to compute the probability of an intersection:
P(AN B) = P(A | B)P(B) or P(A N B) = P(B| A)P(A). For independent events, this sim-
plifies to P(A N B) = P(A)P(B).

Prior probabilities Initial probabilities of events.

Posterior probabilities Revised probabilities of events based on additional information.
Bayes’ theorem A method used to compute posterior probabilities.

Simpson’s paradox The phenomenon by which the apparent association between two
events is reversed upon consideration of a third event.

1. A study examined waiting times in the X-ray department for a hospital in Jacksonville,
Florida. A clerk recorded the number of patients waiting for service at 9:00 a.m. on 20 con-
secutive days and obtained the following results.

Number of Days
Number Waiting Outcome Occurred
0 2
1 5
2 6
3 4
& 3
Total 20
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Define the experiment the clerk conducted.

List the experimental outcomes.

Assign probabilities to the experimental outcomes.
d.  What method did you use?

A company that franchises coffee houses conducted taste tests for a new coffee product. The
company prepared four blends and randomly chose individuals to do a taste test and state
which of the four blends they liked best. Results of the taste test for 100 individuals are given.

o Te

Blend Taste-Testers’ Preference
1 20
2 30
3 35
4 15

a. Define the experiment being conducted. How many times was it repeated?

b. Prior to conducting the experiment, it is reasonable to assume preferences for the four
blends are equal. What probabilities would you assign to the experimental outcomes
prior to conducting the taste test? What method did you use?

c. After conducting the taste test, what probabilities would you assign to the experimen-
tal outcomes? What method did you use?

A company that manufactures toothpaste is studying five different package designs. As-
suming that one design is just as likely to be selected by a consumer as any other design,
what selection probability would you assign to each of the package designs? In an actual
experiment, 100 consumers were asked to pick the design they preferred. The following
data were obtained. Do the data confirm the belief that one design is just as likely to be
selected as another? Explain.

Number of
Design Times Preferred

5
15
30
40
10

O O R S

In 2006 the U.S. Internal Revenue Service (IRS) received 132,275,830 individual tax re-
turns (The 2008 New York Times Almanac). The actual number of each type of individual
return received by the IRS in 2006 is given below:

Type of Return Total Returns Filed
1040A, Income Under $25,000 31,675,935
Non 1040A, Income Under $25,000 20,295,694
Income $25,000-$50,000 30,828,932
Income $50,000-$100,000 26,463,973
Income $100,000 & Over 12,893,802
Schedule C, Receipts Under $25,000 3,376,943
Schedule C, Receipts $25,000-$100,000 3,867,743
Schedule C, Receipts $100,000 & Over 2,288,550
Schedule F, Receipts Under $100,000 318,646

Schedule F, Receipts $100,000 & Over 265,612
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Suppose an IRS auditor must randomly select and examine an individual return.

a.  Whatis the probability that the auditor will select an individual return from the 1040A,
Income Under $25,000 category?

. What is the probability that the selected return did not use Schedule C?

c.  Whatis the probability that the selected return reported income or reciepts of $100,000
& Over?

d. In 2006 the IRS examined 1% of all individual returns. Assuming the examined re-
turns were evenly distributed across the ten categories in the above table, how many
returns from the Non 1040A, Income $50,000-$100,000 category were examined?

e.  When examining 2006 individual income tax returns, IRS auditors found that indi-
vidual taxpayers still owed $13,045,221,000 in income taxes due to errors the indi-
vidual taxpayers had made on their 2006 individual income tax returns (this is
referred to by the IRS as recommended individual taxes). Use this information to es-
timate the recommended additional taxes for the Schedule C, Receipts $100,000 &
Over category.

5. Strom Construction made a bid on two contracts. The owner identified the possible out-
comes and subjectively assigned the following probabilities.

Experimental Obtain Obtain
Outcome Contract 1 Contract 2 Probability
1 Yes Yes 0.15
2 Yes No 0.15
3 No Yes 0.30
4 No No 0.25

a.  Are these valid probability assignments? Why or why not?
b. If not, what would have to be done to make the probability assignments valid?

6. A sample of 100 customers of Montana Gas and Electric resulted in the following fre-

SELF| (&00 quency distribution of monthly charges.
Amount ($) Number
049 13
50-99 22
100-149 34
150-199 26
200-249 5

a. Let A be the event that monthly charges are $150 or more. Find P(A).
b. Let B be the event that monthly charges are less than $150. Find P(B).

7. Suppose that a sample space has five equally likely experimental outcomes: E,, E,, E;, E,,

SELF (s8] Es. Let

A= {E,E,)
B = {E;, E,}
C = {EZ’ Eg’ E5}

Find P(A), P(B), and P(C).

Find P(A U B). Are A and B mutually exclusive?
Find A€, C*, P(A°), and P(C°).

Find A U B and P(A U B°).

Find P(BU C).

o aec o
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In a recent article U.S. News and World Report rated pediatric hospitals and provided data
on several characteristics, including daily inpatient volume and nurse-to-patient ratio, for
the top 30 hospitals on its list (U.S. News and World Report, June 9, 2008). Suppose we
consider a daily inpatient volume of at least 200 to be high and a nurse-to-patient ratio of
at least 3.0 to be high. Sixteen hospitals had a daily inpatient volume of at least 200, one-
third of the hospitals had a nurse-to-patient ratio of at least 3.0, and seven of the hospitals
had both a daily inpatient volume of at least 200 and a nurse-to-patient ratio of at least 3.0.
a. Find the probability of a hospital having a daily inpatient volume of at least 200, the
probability of a hospital having a nurse-to-patient ratio of at least 3.0, and the proba-
bility of a hospital having both a daily inpatient volume of at least 200 and a nurse-to-
patient ratio of at least 3.0.
b.  What is the probability that a hospital had a daily inpatient volume of at least 200 or
a nurse-to-patient ratio of at least 3.0 or both?
c.  What is the probability that a hospital had neither a daily inpatient volume of at least
200 nor a nurse-to-patient ratio of at least 3.0?

A pharmaceutical company conducted a study to evaluate the effect of an allergy relief
medicine; 250 patients with symptoms that included itchy eyes and a skin rash received
the new drug. The results of the study are as follows: 90 of the patients treated experienced
eye relief, 135 had their skin rash clear up, and 45 experienced reliel of both itchy eyes
and the skin rash. What is the probability that a patient who takes the drug will experience
relief of at least one of the two symptoms?

A quality control specialist has sampled 25 widgets from the production line. A widget can
have minor or major defects. Of the 25 sampled widgets, 4 have minor defects and 2 have
major defects. What is the probability that a widget has a major defect, given that it has a
defect?

Let A be an event that a person’s primary method of transportation to and from work is an

automobile and B be an event that a person’s primary method of transportation to and from

work is a bus. Suppose that in a large city P(A) = 0.45 and P(B) = 0.35.

a. Areevents A and B mutually exclusive? What is the probability that a person uses an
automobile or a bus in going to and from work?

b. Find the probability that a person’s primary method of transportation is some means
other than a bus.

For two events A and B, P(A) = 0.5, P(B) = 0.60, and P(A N B) = 0.40.

a. Find P(A|B).

b. Find P(B|A).

¢.  Are A and B independent? Why or why not?

A survey of MBA students obtained the following data on “Students’ first reason for ap-

plication to the school in which they matriculated.”

Reason for Application

School Cost
School or
Quality Convenience Other Totals
Enrollment Full Time 421 393 76 890
Status Part Time 400 593 46 1039
Totals 821 986 122 1929

a. Develop a joint probability table using these data.

b. Use the marginal probabilities of school quality, school cost or convenience, and other

to comment on the most important reason for choosing a school.
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c. If a student goes full time, what is the probability that school quality will be the first
reason for choosing a school?

d. 1If a student goes part time, what is the probability that school quality will be the first
reason for choosing a school?

e. LetA be the event that a student is full time and let B be the event that the student lists
school quality as the first reason for applying. Are events A and B independent? Justify
your answer.

The checking accounts of Sun Bank are categorized by the age of account and the account
balance. Auditors will select accounts at random from the following 1000 accounts (num-
bers in the table are the number of accounts in each category):

Account Balance

Age of the Account 0-$499 $500-$999 $1000 or More

Less than 2 years 120 240 90
2 years or more 75 275 200

What is the probability that an account is less than 2 years old?

What is the probability that an account has a balance of $1000 or more?

What is the probability that two accounts will both have a balance of $1000 or more?

What is the probability that an account has a balance of $500-$999 given that its age

is 2 years or more?

e. What is the probability that an account is less than 2 years old and has a balance of
$1000 or more?

f.  What is the probability that an account is at least 2 years old given that the balance is

$500-$999?

Hundreds of thousands of drivers dropped their automobile insurance in 2008 as the un-
employment rate rose (Wall Street Journal, December 17, 2008). Sample data representa-
tive of the national automobile insurance coverage for individuals 18 years of age and older
are shown here.

aec o

Automobile Insurance

Yes No
o 18 to 34 1500 340
g 35 and over 1900 260

a. Develop a joint probability table for these data and use the table to answer the
remaining questions.
What do the marginal probabilities tell you about the age of the U.S. population?

¢. What is the probability that a randomly selected individual does not have automobile
insurance coverage?

d. If the individual is between the ages of 18 and 34, what is the probability that the in-
dividual does not have automobile insurance coverage?

e. If the individual is age 35 or over, what is the probability that the individual does not
have automobile insurance coverage?

f.  If the individual does not have automobile insurance, what is the probability that the
individual is in the 18-34 age group?

g.  What does the probability information tell you about automobile insurance coverage
in the United States?

A purchasing agent placed a rush order for a particular raw material with two different sup-
pliers, A and B. If neither order arrives in four days, the production process must be shut
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down until at least one of the orders arrives. The probability that supplier A can deliver the

material in four days is 0.55. The probability that supplier B can deliver the material in four

days is 0.35.

a.  What is the probability that both suppliers deliver the material in four days? Because
two separate suppliers are involved, assume independence.
What is the probability that at least one supplier delivers the material in four days?

c. What is the probability that the production process is shut down in four days because
of a shortage of raw material (that is, both orders are late)?

Interested in learning more about its fans, the marketing office of the Arena Football

League (AFL) conducted a survey at one of its games. The survey had 989 respondents,

759 males and 230 females. Out of the 989 total respondents, 196 stated that they had at-

tended multiple AFL games. Of these 196 fans that had attended multiple games, 177 were

male. Using this survey information, answer the following questions.

a.  What is the probability that a randomly selected fan has attended multiple games?

b. Given that a randomly selected fan has attended multiple games, what is the proba-
bility of this person being male?

c.  What is the probability of a randomly selected fan being male and having attended
multiple games?

d. Given that a randomly selected fan is male, what is the probability that this person has
attended multiple games?

e. What is the probability that a randomly selected fan is male or has attended multiple
games?

In the evaluation of a sales training program, a firm discovered that of 50 salespeople re-

ceiving a bonus last year, 20 had attended a special sales training program. The firm em-

ploys 200 salespeople. Let B = the event that a salesperson makes a bonus and S = the
event that a salesperson attends the sales training program.

a. Find P(B), P(S| B), and P(SN B).

b. Assume that 40% of the salespeople attended the training program. What is the prob-
ability that a salesperson makes a bonus given that the salesperson attended the sales
training program, P(B | S)?

c. If the firm evaluates the training program in terms of its effect on the probability of a
salesperson’s receiving a bonus, what is your evaluation of the training program?
Comment on whether B and S are dependent or independent events.

A company studied the number of lost-time accidents occurring at its Brownsville, Texas,

plant. Historical records show that 6% of the employees had lost-time accidents last year.

Management believes that a special safety program will reduce the accidents to 5% during

the current year. In addition, it estimates that 15% of those employees having had lost-time

accidents last year will have a lost-time accident during the current year.

a.  What percentage of the employees will have lost-time accidents in both years?

b.  What percentage of the employees will have at least one lost-time accident over the
two-year period?

The prior probabilities for events A, A,, and A; are P(A,) = 0.20, P(A,) = 0.50, and

P(A;) = 0.30. The conditional probabilities of event B given A,, A,, and A, are P(B|A,) =

0.50, P(B 1 A,) = 0.40, and P(B| A;) = 0.30.

a. Compute P(BMA,), P(BMNA,), and P(B N A,).

b.  Apply Bayes’ theorem, equation (2.16), to compute the posterior probability P(A, | B).

¢.  Use the tabular approach to applying Bayes’ theorem to compute P(A, | B), P(A, | B),
and P(A, | B).

A consulting firm submitted a bid for a large research project. The firm’s management ini-

tially felt there was a 50/50 chance of getting the bid. However, the agency to which the

bid was submitted subsequently requested additional information on the bid. Experience
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indicates that on 75% of the successful bids and 40% of the unsuccessful bids the agency

requested additional information.

a.  What is the prior probability that the bid will be successful (i.e., prior to receiving the
request for additional information)?

b.  What is the conditional probability of a request for additional information given that
the bid will ultimately be successful?

c.  Compute a posterior probability that the bid will be successful given that a request for
additional information has been received.

Companies that do business over the Internet can often obtain probability information
about website visitors from previous websites visited. For instance, Par Fore created a web-
site to market golf equipment and apparel, and the organization has collected data from its
website visitors. Management would like a certain offer to appear for female visitors and
a different offer to appear for male visitors. A sample of past website visits indicates that
60% of the visitors to ParFore.com are male and 40% are female.

a.  What is your prior probability that the next visitor to the website will be female?

b.  Suppose you know that the current visitor previously visited the Par Fore website and
that women are three times as likely to visit this website as men. What is your revised
probability that the visitor is female? Should you display the offer that has more ap-
peal to female visitors or the one that has more appeal to male visitors?

An oil company purchased an option on land in Alaska. Preliminary geologic studies as-
signed the following prior probabilities.
P(high quality oil) = 0.50
P(medium quality oil) = 0.20
P(no oil) = 0.30
a.  What is the probability of finding oil?
b.  After 200 feet of drilling on the first well, a soil test is made. The probabilities of find-
ing the particular type of soil identified by the test are
P(soil | high quality oil) = 0.20
P(soil | medium quality oil) = 0.20
P(soil | no oil) = 0.30

How should the firm interpret the soil test? What are the revised probabilities, and what is the
new probability of finding 0il?

24.

25.

26.

During a recent year, speeding was reported in 12.9% of all automobile accidents in the
United States (The World Almanac 2010). Assume the probability that speeding is reported
in an accident is 0.129, the probability of an accident in which speeding is reported lead-
ing to a fatality is 0.196, and the probability of an accident in which speeding is reported
that does not lead to a fatality is 0.05. Suppose you learn of an accident involving a fatal-
ity. What is the probability that speeding was reported?

The Wayne Manufacturing Company purchases a certain part from suppliers A, B, and C.

Supplier A supplies 60% of the parts, B 30%, and C 10%. The quality of parts varies among

the suppliers, with A, B, and C parts having 0.25%, 1%, and 2% defective rates, respec-

tively. The parts are used in one of the company’s major products.

a.  What is the probability that the company’s major product is assembled with a defec-
tive part? Use the tabular approach to Bayes’ theorem to solve.

b.  When a defective part is found, which supplier is the likely source?

Bayes’ theorem and conditional probability can be used in medical diagnosis. Prior prob-
abilities of diseases are based on the physician’s assessment of factors such as geographic
location, seasonal influence, and occurrence of epidemics. Assume that a patient is
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believed to have one of two diseases, denoted D, and D,, with P(D,) = 0.60 and P(D,) =
0.40, and that medical research shows a probability associated with each symptom that may
accompany the diseases. Suppose that, given diseases D, and D,, the probabilities that a
patient will have symptoms S, S,, or S; are as follows:

Symptoms
S, S, A
Disease D, ‘ 0.15 0.10 0.15 ‘
D, 0.80 0.15 0.03

P(S;1D))

After finding that a certain symptom is present, the medical diagnosis may be aided by
finding the revised probabilities that the patient has each particular disease. Compute the
posterior probabilities of each disease for the following medical findings.

a. The patient has symptom §,.

b. The patient has symptom S,.

c.  The patient has symptom S;.

d. For the patient with symptom S| in part (a), suppose that symptom S, also is present.
What are the revised probabilities of D and D,?

27. Recently, management at Oak Tree Golf Course received a few complaints about the con-
dition of the greens. Several players complained that the greens are too fast. Rather than
react to the comments of just a few, the Golf Association conducted a survey of 100 male
and 100 female golfers. The survey results are summarized here.

Male Golfers Female Golfers
Greens Condition Greens Condition
Handicap Too Fast  Acceptable  Handicap Too Fast Acceptable
Under 15 10 40 Under 15 1 9
15 or more 25 25 15 or more 39 51

a. Combine these two crosstabulations into a single crosstabulation, with Male and Fe-
male as the row labels and Too Fast and Acceptable as the column labels. Which group
shows the highest proportion saying that the greens are too fast?

b. Refer to the initial crosstabulations. For those players with low handicaps (better play-
ers), which group (male or female) shows the highest proportion saying the greens are
too fast?

c. Refer to the initial crosstabulations. For those players with higher handicaps, which
group (male or female) shows the highest proportion saying the greens are too fast?

d.  What conclusions can you draw about the preferences of men and women concerning
the speed of the greens? Are the conclusions you draw from part (a) as compared with
parts (b) and (c) consistent? Explain any apparent inconsistencies.

28. A small private midwestern university has been accused of favoring male applicants in its
admissions process. Prior to the current academic year, 44% of male applicants were ad-
mitted by the university while only 33% of female applicants were admitted. The numbers
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of applicants accepted and denied for each gender are provided in the following table for
the College of Engineering and the College of Business.

College of
Engineering College of Business

Male Applicants Female Applicants Male Applicants Female Applicants

Accept 60 20 10 20
Deny 60 20 30 60

a. Combine these two crosstabulations into a single crosstabulation, with Accept and
Deny as the row labels and Male and Female as the column labels. Use these data to
confirm the reported rates of acceptance across the university by gender (44% of male
applicants were admitted and 33% of female applicants were admitted).

b. Refer to the initial crosstabulations. What are your conclusions about the possible gen-
der bias in the admission process? Is this consistent with the conclusions you reach
when assessing the aggregated data in part (a) of this question?

Case Problem Hamilton County Judges

Hamilton County judges try thousands of cases per year. In an overwhelming majority of
the cases disposed, the verdict stands as rendered. However, some cases are appealed, and
of those appealed, some of the cases are reversed. Kristen DelGuzzi of the Cincinnati
Enguirer conducted a study of cases handled by Hamilton County judges over a three-year
period (Cincinnati Enquirer, January 11, 1998). Shown in Table 2.7 are the results for
182,908 cases handled (disposed) by 38 judges in Common Pleas Court, Domestic Rela-
tions Court, and Municipal Court. Two of the judges (Dinkelacker and Hogan) did not serve
in the same court for the entire three-year period.

The purpose of the newspaper’s study was to evaluate the performance of the judges.
Appeals are often the result of mistakes made by judges, and the newspaper wanted to know
which judges were doing a good job and which were making too many mistakes. You have
been called in to assist in the data analysis. Use your knowledge of probability and condi-
tional probability to help with the ranking of the judges. You also may be able to analyze
the likelihood of cases handled by the different courts being appealed and reversed.

Managerial Report

Prepare a report with your rankings of the judges. Also include an analysis of the likelihood
of appeal and case reversal in the three courts. At a minimum, your report should include
the following:

1. The probability of cases being appealed and reversed in the three different courts.
The probability of a case being appealed for each judge.

The probability of a case being reversed for each judge.

The probability of reversal given an appeal for each judge.

Rank the judges within each court. State the criteria you used and provide a ratio-
nale for your choice.

kW
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COURTS

TABLE 2.7 CASES DISPOSED, APPEALED, AND REVERSED IN HAMILTON COUNTY

Common Pleas Court

Total Cases Appealed Reversed
Judge Disposed Cases Cases
Fred Cartolano 3037 137 12
Thomas Crush 3372 119 10
Patrick Dinkelacker 1258 44 8
Timothy Hogan 1954 60 7
Robert Kraft 3138 127 7
William Mathews 2264 91 18
William Morrissey 3032 121 22
Norbert Nadel 2959 131 20
Arthur Ney, Jr. 3219 125 14
Richard Niehaus 3353 137 16
Thomas Nurre 3000 121 6
John O’Connor 2969 129 12
Robert Ruehlman 3205 145 18
J. Howard Sundermann 955 60 10
Ann Marie Tracey 3141 127 13
Ralph Winkler 3089 88 6
Total 43,945 1762 199
Domestic Relations Court
Total Cases Appealed Reversed
Judge Disposed Cases Cases
Penelope Cunningham 2729 7 1
Patrick Dinkelacker 6001 19 4
Deborah Gaines 8799 48 9
Ronald Panioto 12,970 32 3
Total 30,499 106 17
Municipal Court
Total Cases Appealed Reversed
Judge Disposed Cases Cases
Mike Allen 6149 43 4
Nadine Allen 7812 34 6
Timothy Black 7954 41 6
David Davis 7736 43 5
Leslie Isaiah Gaines 5282 35 13
Karla Grady 5253 6 0
Deidra Hair 2532 5 0
Dennis Helmick 7900 29 5
Timothy Hogan 2308 13 2
James Patrick Kenney 2798 6 1
Joseph Luebbers 4698 25 8
William Mallory 8277 38 9
Melba Marsh 8219 34 7
Beth Mattingly 2971 13 1
Albert Mestemaker 4975 28 9
Mark Painter 2239 7 3
Jack Rosen 7790 41 13
Mark Schweikert 5403 33 6
David Stockdale 5371 22 4
John A. West 2797 4 2
Total 108,464 500 104
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College Softball Recruiting

College softball programs have a limited number of scholarships to offer promising high
school seniors, so the programs invest a great deal of effort in evaluating these players. One
measure of performance the programs commonly use to evaluate recruits is the batting
average—the proportion of at-bats (excluding times when the player is walked or hit by a
pitch) in which the player gets a hit. For example, a player who gets 50 hits in 150 at-bats
has a batting average of

A college softball program is considering two players, Fran Hayes and Millie Marshall,
who have recently completed their senior years of high school. Their respective statistics
for their junior and senior years are as shown in Table 2.8.

Managerial Report

The Athletic Director and Coach of the women’s softball team at a large public university
are trying to decide to which of these two players they will offer an athletic scholarship (i.e.,
an opportunity to attend the university for free in exchange for playing on the university’s
softball team). Take the following steps to determine which player had the better batting av-
erage over the two-year period provided in the table, and use your results to advise the Ath-
letic Director and Coach on their decision.

1. Calculate the batting average of each player for her junior year; then also calculate
the batting average of each player for her senior year. Which player would this
analysis lead you to choose?

2. Calculate the batting average of each player for her combined junior and senior

years. Which player would this analysis lead you to choose?

After considering both of your analyses, which player would you choose? Why?

4. Prepare a report on your [indings for the atheletic director and coach of the college
program. Focus on clearly explaining the discrepency in your two analyses.

Rl

TABLE 2.8 SUMMARY OF BATTING PERFORMANCES IN JUNIOR AND SENIOR YEARS

BY HAYES AND MARSHALL
Junior Year Senior Year
At-Bats Hits At-Bats Hits
Fran Hayes 200 70 40 15
Millie Marshall 196 67 205 76
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