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A forecast is simply a
prediction of what will
happen in the future.
Managers must accept that
regardless of the technique
used, they will not be able
to develop perfect forecasts.
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The purpose of this chapter is to provide an introduction to time series analysis and fore-
casting. Suppose we are asked to provide quarterly forecasts of sales for one of our com-
pany’s products over the coming one-year period. Production schedules, raw materials
purchasing, inventory policies, and sales quotas will all be affected by the quarterly fore-
casts we provide. Consequently, poor forecasts may result in poor planning and increased
costs for the company. How should we go about providing the quarterly sales forecasts?
Good judgment, intuition, and an awareness of the state of the economy may give us a rough
idea or “feeling” of what is likely to happen in the future, but converting that feeling into a
number that can be used as next year’s sales forecast is challenging. The QM in Action,
Forecasting Energy Needs in the Utility Industry, describes the role that forecasting plays
in the utility industry.

Forecasting methods can be classified as qualitative or quantitative. Qualitative meth-
ods generally involve the use of expert judgment to develop forecasts. Such methods are
appropriate when historical data on the variable being forecast are either unavailable or not
applicable. Quantitative forecasting methods can be used when (1) past information about
the variable being forecast is available, (2) the information can be quantified, and (3) it is
reasonable to assume that past is prologue (i.e. the pattern of the past will continue into the
future). We will focus exclusively on quantitative forecasting methods in this chapter.

If the historical data are restricted to past values of the variable to be forecast, the fore-
casting procedure is called a time series method and the historical data are referred to as a

FORECASTING ENERGY NEEDS IN THE UTILITY INDUSTRY"

Duke Energy is a diversified energy company with a
portfolio of natural gas and electric businesses and an af-
filiated real estate company. In 2006, Duke Energy
merged with Cinergy of Cincinnati, Ohio, to create one
of North America’s largest energy companies, with assets
totaling more than $70 billion. As a result of this merger
the Cincinnati Gas & Electric Company became part of
Duke Energy. Today, Duke Energy services over 5.5 mil-
lion retail electric and gas customers in North Carolina,
South Carolina, Ohio, Kentucky, Indiana, and Ontario,
Canada.

Forecasting in the utility industry offers some unique
perspectives. Because energy is difficult to store, this
product must be generated to meet the instantaneous re-
quirements of the customers. Electrical shortages are not
just lost sales, but “brownouts” or “blackouts.” This situ-
ation places an unusual burden on the utility forecaster.
On the positive side, the demand for energy and the sale
of energy are more predictable than for many other prod-
ucts. Also, unlike the situation in a multiproduct firm, a

*Based on information provided by Dr. Richard Evans of Duke Energy.

great amount of forecasting effort and expertise can be
concentrated on the two products: gas and electricity.

The largest observed electric demand for any given
period, such as an hour, a day, a month, or a year, is defined
as the peak load. The forecast of the annual electric peak
load guides the timing decision for constructing future gen-
erating units, and the financial impact of this decision is
great. Obviously, a timing decision that leads to having the
unit available no sooner than necessary is crucial.

The energy forecasts are important in other ways
also. For example, purchases of coal as fuel for the gen-
erating units are based on the forecast levels of energy
needed. The revenue from the electric operations of the
company is determined from forecasted sales, which in
turn enters into the planning of rate changes and external
financing. These planning and decision-making processes
are among the most important managerial activities in the
company. It is imperative that the decision makers have
the best forecast information available to assist them in
arriving at these decisions.
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time series. The objective of time series analysis is to uncover a pattern in the historical data
or time series and then extrapolate the pattern into the future; the forecast is based solely
on past values of the variable and/or on past forecast errors.

In Section 6.1 we discuss the various kinds of time series that a forecaster might be faced
with in practice. These include a constant or horizontal pattern, a trend, a seasonal pattern,
both a trend and a seasonal pattern, and a cyclical pattern. In order to build a quantitative
forecasting model it is also necessary to have a measurement of forecast accuracy. Different
measurements of forecast accuracy, and their respective advantages and disadvantages, are
discussed in Section 6.2. In Section 6.3 we consider the simplest case, which is a horizontal
or constant pattern. For this pattern, we develop the classical moving average, weighted mov-
ing average, and exponential smoothing models. Many time series have a trend, and taking
this trend into account is important; in Section 6.4 we provide regression models for finding
the best model parameters when a linear trend is present. Finally, in Section 6.5 we show
how to incorporate both a trend and seasonality into a forecasting model.

Time Series Patterns

A time series is a sequence of observations on a variable measured at successive points in
time or over successive periods of time. The measurements may be taken every hour, day,
week, month, or year, or at any other regular interval.'! The pattern of the data is an impor-
tant factor in understanding how the time series has behaved in the past. If such behavior
can be expected to continue in the future, we can use it to guide us in selecting an appro-
priate forecasting method.

To identify the underlying pattern in the data, a useful first step is to construct a time
series plot. A time series plot is a graphical presentation of the relationship between time and
the time series variable; time is represented on the horizontal axis and values of the time
series variable are shown on the vertical axis. Let us first review some of the common types
of data patterns that can be identified when examining a time series plot.

Horizontal Pattern

A horizontal pattern exists when the data fluctuate randomly around a constant mean over
time. To illustrate a time series with a horizontal pattern, consider the 12 weeks of data
in Table 6.1. These data show the number of gallons of gasoline (in 1000s) sold by a
gasoline distributor in Bennington, Vermont, over the past 12 weeks. The average value
or mean for this time series is 19.25 or 19,250 gallons per week. Figure 6.1 shows a
time series plot for these data. Note how the data fluctuate around the sample mean of
19,250 gallons. Although random variability is present, we would say that these data
follow a horizontal pattern.

The term stationary time series® is used to denote a time series whose statistical prop-
erties are independent of time. In particular this means that

1. The process generating the data has a constant mean.
2. The variability of the time series is constant over time.

A time series plot for a stationary time series will always exhibit a horizontal pattern with
random fluctuations. However, simply observing a horizontal pattern is not sufficient

"We limit our discussion to fime series for which the values of the series are recorded at equal intervals. Cases in which the
observations are made at unequal intervals are beyond the scope of this fext.

%For a formal definition of stationarity, see G. E. P. Box, G. M. Jenkins, and G. C. Reinsell (1994), Time Series Analysis:
Forecasting and Control (3rd ed.). Upper Saddle River, NJ: Prentice Hall, p. 23.



WEB

Gasoline

6.1 Time Series Patterns 191
TABLE 6.1 GASOLINE SALES TIME SERIES
Week Sales (1000s of gallons)
1 17
2 21
3 19
4 23
5 18
6 16
7 20
8 18
9 22
10 20
11 15
12 22
FIGURE 6.1 GASOLINE SALES TIME SERIES PLOT
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evidence to conclude that the time series is stationary. More advanced texts on forecasting
discuss procedures for determining if a time series is stationary and provide methods for
transforming a time series that is nonstationary into a stationary series.

Changes in business conditions often result in a time series with a horizontal pattern
that shifts to a new level at some point in time. For instance, suppose the gasoline distribu-
tor signs a contract with the Vermont Sate Police to provide gasoline for state police cars
located in southern Vermont beginning in week 13. With this new contract, the distributor
naturally expects to see a substantial increase in weekly sales starting in week 13. Table 6.2
shows the number of gallons of gasoline sold for the original time series and the 10 weeks
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TABLE 6.2 GASOLINE SALES TIME SERIES AFTER OBTAINING THE CONTRACT WITH
THE VERMONT STATE POLICE

Week Sales (1000s of gallons) Week Sales (1000s of gallons)
1 17 12 22
2 21 13 31
3 19 14 34
4 23 15 31
5 18 16 33
6 16 17 28
7 20 18 32
8 18 19 30
9 22 20 29

10 20 21 34
11 15 22 33

after signing the new contract. Figure 6.2 shows the corresponding time series plot. Note
the increased level of the time series beginning in week 13. This change in the level of the
time series makes it more difficult to choose an appropriate forecasting method. Selecting
a forecasting method that adapts well to changes in the level of a time series is an impor-
tant consideration in many practical applications.

Trend Pattern

Although time series data generally exhibit random fluctuations, a time series may also
show gradual shifts or movements to relatively higher or lower values over a longer period

FIGURE 6.2 GASOLINE SALES TIME SERIES PLOT AFTER OBTAINING THE CONTRACT
WITH THE VERMONT STATE POLICE
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of time. If a time series plot exhibits this type of behavior, we say that a trend pattern exists.
A trend is usually the result of long-term factors such as population increases or decreases,
shifting demographic characteristics of the population, improving technology, and/or
changes in consumer preferences.

To illustrate a time series with a linear trend pattern, consider the time series of bicycle
sales for a particular manufacturer over the past 10 years, as shown in Table 6.3 and Figure 6.3.
Note that 21,600 bicycles were sold in year 1, 22,900 were sold in year 2, and so on. In
year 10, the most recent year, 31,400 bicycles were sold. Visual inspection of the time series
plot shows some up and down movement over the past 10 years, but the time series seems also
to have a systematically increasing or upward trend.

TABLE 6.3 BICYCLE SALES TIME SERIES

Year Sales (1000s)

21.6
22.9
25.5
21.9
239
27.5
31.5
29.7
28.6
314
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—_—

© Cengage Learning 2013

FIGURE 6.3 BICYCLE SALES TIME SERIES PLOT

34 r-

32F

30

[\
(=]
T

26 I

Sales (1000s)

&)
=
T

N
)
T

RS
w -
w
o~
Ty =
o
.
o
©
=L
© Cengage Learning 2013




194

WEB

Cholesterol

Chapter 6  Time Series Analysis and Forecasting

The trend for the bicycle sales time series appears to be linear and increasing over
time, but sometimes a trend can be described better by other types of patterns. For in-
stance, the data in Table 6.4 and the corresponding time series plot in Figure 6.4 show
the sales revenue for a cholesterol drug since the company won FDA approval for the
drug 10 years ago. The time series increases in a nonlinear fashion; that is, the rate of
change of revenue does not increase by a constant amount from one year to the next. In
fact, the revenue appears to be growing in an exponential fashion. Exponential relation-
ships such as this are appropriate when the percentage change from one period to the
next is relatively constant.

Seasonal Pattern

The trend of a time series can be identified by analyzing movements in historical data over
multiple years. Seasonal patterns are recognized by observing recurring patterns over

TABLE 6.4 CHOLESTEROL DRUG REVENUE TIME SERIES ($ MILLIONS)

Year Revenue
1 23.1
2 21.3
3 27.4
4 34.6
5 33.8 -
6 432 S
7 59.5 £
8 64.4 g
9 74.2 %
10 99.3 g
o
©

FIGURE 6.4 CHOLESTEROL DRUG REVENUE TIMES SERIES PLOT ($ MILLIONS)
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successive periods of time. For example, a manufacturer of swimming pools expects low
sales activity in the fall and winter months, with peak sales in the spring and summer
months to occur each year. Manufacturers of snow removal equipment and heavy cloth-
ing, however, expect the opposite yearly pattern. Not surprisingly, the pattern for a time
series plot that exhibits a recurring pattern over a one-year period due to seasonal influ-
ences is called a seasonal pattern. While we generally think of seasonal movement in a
time series as occurring within one year, time series data can also exhibit seasonal patterns
of less than one year in duration. For example, daily traffic volume shows within-the-day
“seasonal” behavior, with peak levels occurring during rush hours, moderate flow during
the rest of the day and early evening, and light flow from midnight to early morning. An-
other example of an industry with sales that exhibit easily discernable seasonal patterns
within a day is the restaurant industry.

As an example of a seasonal pattern, consider the number of umbrellas sold at a cloth-
ing store over the past five years. Table 6.5 shows the time series and Figure 6.5 shows the
corresponding time series plot. The time series plot does not indicate a long-term trend in
sales. In fact, unless you look carefully at the data, you might conclude that the data follow
a horizontal pattern with random fluctuation. However, closer inspection of the fluctuations
in the time series plot reveals a systematic pattern in the data that occurs within each year.
That is, the first and third quarters have moderate sales, the second quarter has the highest
sales, and the fourth quarter tends to have the lowest sales volume. Thus, we would con-
clude that a quarterly seasonal pattern is present.

TABLE 6.5 UMBRELLA SALES TIME SERIES

Year Quarter Sales
1 1 125
2 153
3 106
4 38
2 1 118
2 161
3 133
4 102
3 1 138
2 144
3 113
4 80
4 1 109
2 137
3 125
4 109
5 1 130
2 165
3 128
4 96

© Cengage Learning 2013
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FIGURE 6.5 UMBRELLA SALES TIME SERIES PLOT
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Trend and Seasonal Pattern

Some time series include both a trend and a seasonal pattern. For instance, the data in
Table 6.6 and the corresponding time series plot in Figure 6.6 show quarterly television set
sales for a particular manufacturer over the past four years. Clearly an increasing trend is

TABLE 6.6 QUARTERLY TELEVISION SET SALES TIME SERIES

Year Quarter Sales (1000s)
1 4.8

4.1
WEB[il(Z 2

6.0
TVSales

—_

6.5

5.8
52
6.8
7.4

6.0
5.6
7.5
7.8

6.3
5.9
8.0
8.4

98]
BSOS NS T L \ SR SN VL I (S B SN OS I \9)
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FIGURE 6.6 QUARTERLY TELEVISION SET SALES TIME SERIES PLOT
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present. However, Figure 6.6 also indicates that sales are lowest in the second quarter of
each year and highest in quarters 3 and 4. Thus, we conclude that a seasonal pattern also
exists for television sales. In such cases we need to use a forecasting method that is capa-
ble of dealing with both trend and seasonality.

Cyclical Pattern

A cyclical pattern exists if the time series plot shows an alternating sequence of points be-
low and above the trend line that lasts for more than one year. Many economic time series
exhibit cyclical behavior with regular runs of observations below and above the trend line.
Often the cyclical component of a time series is due to multiyear business cycles. For ex-
ample, periods of moderate inflation followed by periods of rapid inflation can lead to time
series that alternate below and above a generally increasing trend line (e.g., a time series
for housing costs). Business cycles are extremely difficult, if not impossible, to forecast. As
aresult, cyclical effects are often combined with long-term trend effects and referred to as
trend-cycle effects. In this chapter we do not deal with cyclical effects that may be present
in the time series.

Selecting a Forecasting Method

The underlying pattern in the time series is an important factor in selecting a forecasting
method. Thus, a time series plot should be one of the first analytic tools employed when
trying to determine which forecasting method to use. If we see a horizontal pattern, then we
need to select a method appropriate for this type of pattern. Similarly, if we observe a trend
in the data, then we need to use a forecasting method that is capable of handling a trend ef-
fectively. In the next two sections we illustrate methods for assessing forecast accuracy and
consider forecasting models that can be used in situations for which the underlying pattern

© Cengage Learning 2013
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is horizontal; in other words, no trend or seasonal effects are present. We then consider
methods appropriate when trend and/or seasonality are present in the data. The QA in
Action, Forecasting Demand for a Broad Product Line of Office Products, describes the
considerations made by MeadWestvaco when forecasting demand for its consumer and

office products.

@ACTlON

FORECASTING DEMAND FOR A BROAD LINE OF OFFICE PRODUCTS*

MeadWestvaco (or MWV) is a global leader in packag-
ing and packaging solutions, providing products and ser-
vices to consumer products companies in the beauty and
personal care, health care, food, beverage, food service,
tobacco, home and garden, and commercial printing in-
dustries. The Consumer & Office Products division of
MWYV manufactures and markets several familiar brands
of school supplies, office products, and planning and or-
ganizing tools, including Mead®, Five Star®, Trapper
Keeper®, AT-A-GLANCE®, Cambridge®, Day Runner®,
and Organizher™ brands.

Because it produces and markets a wide array of
products with a myriad of demand characteristics, MWV
Consumer & Office Products relies heavily on sales fore-
casts in planning its manufacturing, distribution, and mar-
keting activities. By viewing its relationship in terms of a
supply chain, MWV Consumer & Office Products and its
customers (which are generally retail chains) establish
close collaborative relationships and consider each other
to be valued partners. As a result, MWV Consumer &
Office Products’ customers share valuable information
and data that serve as inputs into the MWV Consumer &
Office Products forecasting process.

In her role as a forecasting manager for MWV Con-
sumer & Office Products, Vanessa Baker appreciates the
importance of this additional information. “We do sepa-
rate forecasts of demand for each major customer,” said
Baker, “and we generally use twenty-four to thirty-six
months of history to generate monthly forecasts twelve to
eighteen months into the future. While trends are impor-
tant, several of our major product lines, including school,
planning and organizing, and decorative calendars, are
heavily seasonal, and seasonal sales make up the bulk of
our annual volume.”

*The authors are indebted to Vanessa Baker and Daniel Marks of Mead-
Westvaco Consumer & Office Products for providing input for this Q.M.
in Action.

Daniel Marks, one of several account-level strategic
forecast managers for MWV Consumer & Office Prod-
ucts, adds, “The supply chain process includes the total
lead time from identifying opportunities to making or
procuring the product to getting the product on the shelves
to align with the forecasted demand; this can potentially
take several months, so the accuracy of our forecasts is
critical throughout each step of the supply chain. Adding
to this challenge is the risk of obsolescence. We sell many
dated items, such as planners and calendars, that have a
natural, built-in obsolescence. In addition, many of our
products feature designs that are fashion-conscious or
contain pop culture images, and these products can also
become obsolete very quickly as tastes and popularity
change. An overly optimistic forecast for these products
can be very costly, but an overly pessimistic forecast can
result in lost sales potential and give our competitors an
opportunity to take market share from us.”

In addition to looking at trends, seasonal compo-
nents, and cyclical patterns, Baker and Marks must con-
tend with several other factors. Baker notes, “We have to
adjust our forecasts for upcoming promotions by our
customers.” Marks agrees and adds, “We also have to go
beyond just forecasting consumer demand; we must con-
sider the retailer’s specific needs in our order forecasts,
such as what type of display will be used and how many
units of a product must be on display to satisfy their pre-
sentation requirements. Current inventory is another fac-
tor—if a customer is carrying either too much or too little
inventory, that will affect their future orders, and we need
to reflect that in our forecasts. Will the product have a
short life because it is tied to a cultural fad? What are the
retailer’s marketing and markdown strategies? Our
knowledge of the environments in which our supply chain
partners are competing helps us to forecast demand more
accurately, and that reduces waste and makes our cus-
tomers, as well as MWV Consumer & Office Products,
far more profitable.”
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Forecast Accuracy

In this section we begin by developing forecasts for the gasoline time series shown in
Table 6.1 using the simplest of all the forecasting methods, an approach that uses the most
recent week’s sales volume as the forecast for the next week. For instance, the distributor
sold 17,000 gallons of gasoline in week 1; this value is used as the forecast for week 2. Next,
we use 21, the actual value of sales in week 2, as the forecast for week 3, and so on.
The forecasts obtained for the historical data using this method are shown in Table 6.7 in
the column labeled Forecast. Because of its simplicity, this method is often referred to as a
naive forecasting method.

How accurate are the forecasts obtained using this naive forecasting method? To an-
swer this question we will introduce several measures of forecast accuracy. These measures
arc used to determine how well a particular forecasting method is able to reproduce the
time scries data that are alrcady available. By sclecting the method that is most accurate for
the data already known, we hope to increase the likelihood that we will obtain more accu-
rate forecasts for future time periods.

The key concept associated with measuring forecast accuracy is forecast error. If we
denote Y, and F, as the actual and forcasted values of the time series for period , respec-
tively, the forecasting error for period 7 is

e, =Y —F, (6.1)

That is, the forecast error for time period 7 is the difference between the actual and the fore-
casted values for period .

TABLE 6.7 COMPUTING FORECASTS AND MEASURES OF FORECAST ACCURACY

USING THE MOST RECENT VALUE AS THE FORECAST FOR THE NEXT
PERIOD

Absolute Absolute

Time Value of Squared Value of

Series Forecast Forecast Forecast Percentage Percentage
Week Value Forecast Error Error Error Error Error

1 17

2 21 17 4 4 16 19.05 19.05
3 19 21 =2 2 4 —10.53 10.53
4 23 19 4 4 16 17.39 17.39
5 18 23 =5 5 25 —27.78 27.78
6 16 18 =7 2 4 —12.50 12.50
7 20 16 4 4 16 20.00 20.00
8 18 20 =2 2 4 —11.11 11.11
9 22 18 4 4 16 18.18 18.18
10 20 22 =2 2 4 —10.00 10.00
11 15 20 =5 5 25 —33.33 33.33
12 22 15 7 7 49 31.82 31.82
Totals 5 41 179 1.19 211.69

© Cengage Learning 2013
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For instance, because the distributor actually sold 21,000 gallons of gasoline in week 2
and the forecast, using the sales volume in week 1, was 17,000 gallons, the forecast error
in week 2 is

Forecast Errorin week2 = e, =Y, — F, =21 — 17 =4

The fact that the forecast error is positive indicates that in week 2 the forecasting method
underestimated the actual value of sales. Next we use 21, the actual value of sales in week
2, as the forecast for week 3. Since the actual value of sales in week 3 is 19, the forecast
error for week 3 is e; = 19 — 21 = —2. In this case, the negative forecast error indicates the
forecast overestimated the actual value for week 3. Thus, the forecast error may be positive
or negative, depending on whether the forecast is too low or too high. A complete summary
of the forecast errors for this naive forecasting method is shown in Table 6.7 in the column
labeled Forecast Error. It is important to note that because we are using a past value of the
time series to produce a forecast for period 7, we do not have sufficient data to produce a
naive forecast for the first week of this time series.

A simple measure of forecast accuracy is the mean or average of the forecast errors. If
we have n periods in our time series and k is the number of periods at the beginning of the
time series for which we cannot produce a naive forecast, the mean forecast error (MFE) is

n
el
MFE =~ (6.2)
n—k
Table 6.7 shows that the sum of the forecast errors for the gasoline sales time series is 5; thus, the
mean or average error is 5/11 = 0.45. Because we do not have sufficient data to produce a naive
forecast for the first week of this time series, we must adjust our calculations in both the numer-
ator and denominator accordingly. This is common in forecasting; we often use k past periods
from the time series to produce forecasts, and so we frequently cannot produce forecasts for the
first k periods. In those instances the summation in the numerator starts at the first value of ¢ for
which we have produced a forecast (so we begin the summation at t = k + 1), and the denomi-
nator (which is the number of periods in our time series for which we are able to produce a fore-
cast) will also reflect these circumstances. In the gasoline example, although the time series
consists of 12 values, to compute the mean error we divided the sum of the forecast errors by 11
because there are only 11 forecast errors (we cannot generate forecast sales for the first week us-
ing this naive forecasting method). Such adjustments will have to be made to measures of fore-
cast error in instances for which we cannot produce forecasts for all periods in the time series.

Also note that in the gasoline time series, the mean forecast error is positive, which im-
plies that the method is generally underforecasting; in other words, the observed values tend
to be greater than the forecasted values. Because positive and negative forecast errors tend
to offset one another, the mean error is likely to be small; thus, the mean error is not a very
useful measure of forecast accuracy.

The mean absolute error, denoted MAE, is a measure of forecast accuracy that avoids
the problem of positive and negative forecast errors offsetting one another. As you might
expect given its name, MAE is the average of the absolute values of the forecast errors:

n
E les|

MAE = =& (6.3)
n—k

This is also referred to as the mean absolute deviation or MAD. Table 6.7 shows that the
sum of the absolute values of the forecast errors is 41; thus

41
MAE = average of the absolute value of forecast errors = - 3.73
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Another measure that avoids the problem of positive and negative errors offsetting each
other is obtained by computing the average of the squared forecast errors. This measure of
forecast accuracy, referred to as the mean squared error, is denoted MSE:

MSE = t=k+1 (6.4)
n

From Table 6.7, the sum of the squared errors is 179; hence,

179
MSE = average of the sum of squared forecast errors = BT 16.27

The size of MAE and MSE depends upon the scale of the data. As a result, it is dif-
ficult to make comparisons for different time intervals (such as comparing a method of
forecasting monthly gasoline sales to a method of forecasting weekly sales) or to make
comparisons across different time series (such as monthly sales of gasoline and
monthly sales of oil filters). To make comparisons such as these we need to work with
relative or percentage error measures. The mean absolute percentage error, denoted
MAPE, is such a measure. To compute MAPE we must first compute the percentage

error for each forecast:
et
— 100
Y,

For example, the percentage error corresponding to the forecast of 17 in week 2 is com-
puted by dividing the forecast error in week 2 by the actual value in week 2 and multiply-
ing the result by 100. For week 2 the percentage error is computed as follows:

4
Percentage error for week 2 = (?) 100 = (21> 100 = 19.05%
2

Thus, the forecast error for week 2 is 19.05% of the observed value in week 2. A complete
summary of the percentage errors is shown in Table 6.7 in the column labeled Percentage
Error. In the next column, we show the absolute value of the percentage error. Finally, we
find the MAPE, which is calculated as:

n

€
()10
e\

>
MAPE = =£
n—=k

+1

(6.5)

Table 6.7 shows that the sum of the absolute values of the percentage errors is 211.69; thus

MAPE = average of the absolute value of percentage forecast errors

_211.69

= 19.24%
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In summary, using the naive (most recent observation) forecasting method, we obtained the
following measures of forecast accuracy:

MAE = 3.73
MSE = 16.27
MAPE = 19.24%

These measures of forecast accuracy simply measure how well the forecasting
method is able to forecast historical values of the time series. Now, suppose we want to
forecast sales for a future time period, such as week 13. In this case the forecast for week
13 is 22, the actual value of the time series in week 12. Is this an accurate estimate of
sales for week 13? Unfortunately there is no way to address the issue of accuracy asso-
ciated with forecasts for future time periods. However, if we select a forecasting method
that works well for the historical data, and we have reason to believe the historical pat-
tern will continue into the future, we should obtain forecasts that will ultimately be shown
to be accurate.

Before closing this section, let us consider another method for forecasting the gasoline sales
time series in Table 6.1. Suppose we use the average of all the historical data available as the
forecast for the next period. We begin by developing a forecast for week 2. Since there is only
one historical value available prior to week 2, the forecast for week 2 is just the time series value
in week 1; thus, the forecast for week 2 is 17,000 gallons of gasoline. To compute the forecast
for week 3, we take the average of the sales values in weeks 1 and 2. Thus,

17 + 21
3 = ? = ]9
Similarly, the forecast for week 4 is
17+ 21 + 19

The forecasts obtained using this method for the gasoline time series are shown in Table 6.8
in the column labeled Forecast. Using the results shown in Table 6.8, we obtained the
following values of MAE, MSE, and MAPE:

26.81
MAE = R 2.44

MSE = 89.07 = 8.10
11
141.34
MAPE = = 12.85%

We can now compare the accuracy of the two forecasting methods we have considered
in this section by comparing the values of MAE, MSE, and MAPE for each method.

Naive Method Average of Past Values
MAE 3.73 2.44
MSE 16.27 8.10

MAPE 19.24% 12.85%
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TABLE 6.8 COMPUTING FORECASTS AND MEASURES OF FORECAST ACCURACY

USING THE AVERAGE OF ALL THE HISTORICAL DATA AS THE FORECAST
FOR THE NEXT PERIOD

Absolute Absolute
Time Value of Squared Value of
Series Forecast Forecast Forecast Percentage Percentage
Week Value Forecast Error Error Error Error Error
1 17
2 21 17.00 4.00 4.00 16.00 19.05 19.05
3 19 19.00 0.00 0.00 0.00 0.00 0.00
4 23 19.00 4.00 4.00 16.00 17.39 17.39
5 18 20.00 —2.00 2.00 4.00 —11.11 11.11
6 16 19.60 —3.60 3.60 12.96 —22.50 22.50
7 20 19.00 1.00 1.00 1.00 5.00 5.00
8 18 19.14 —1.14 1.14 1.31 —6.35 6.35
9 22 19.00 3.00 3.00 9.00 13.64 13.64
10 20 19.33 0.67 0.67 0.44 3.33 3.33
11 15 19.40 —4.40 4.40 19.36 —29.33 29.33
12 22 19.00 3.00 3.00 9.00 13.64 13.64
Totals 4.52 26.81 89.07 2.75 141.34

For each of these measures, the average of past values provides more accurate forecasts than
using the most recent observation as the forecast for the next period. In general, if the un-
derlying time series is stationary, the average of all the historical data will provide the most
accurate forecasts.

Let’s now suppose that the underlying time series is not stationary. In Section 6.1 we
mentioned that changes in business conditions often result in a time series with a hori-
zontal pattern that shifts to a new level. We discussed a situation in which the gasoline
distributor signed a contract with the Vermont Sate Police to provide gasoline for state
police cars located in southern Vermont. Table 6.2 shows the number of gallons of gaso-
line sold for the original time series and the 10 weeks after signing the new contract, and
Figure 6.2 shows the corresponding time series plot. Note the change in level in week
13 for the resulting time series. When a shift to a new level such as this occurs, it takes
several periods for the forecasting method that uses the average of all the historical data
to adjust to the new level of the time series. However, in this case the simple naive
method adjusts very rapidly to the change in level because it uses only the most recent
observation available as the forecast.

Measures of forecast accuracy are important factors in comparing different forecasting
methods, but we have to be careful to not rely too heavily upon them. Good judgment and
knowledge about business conditions that might affect the value of the variable to be fore-
cast also have to be considered carefully when selecting a method. Historical forecast ac-
curacy is not the sole consideration, especially if the pattern exhibited by the time series is
likely to change in the future.

In the next section we will introduce more sophisticated methods for developing fore-
casts for a time series that exhibits a horizontal pattern. Using the measures of forecast ac-
curacy developed here, we will be able to assess whether such methods provide more
accurate forecasts than we obtained using the simple approaches illustrated in this section.
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The methods that we will introduce also have the advantage that they adapt well to situa-
tions in which the time series changes to a new level. The ability of a forecasting method
to adapt quickly to changes in level is an important consideration, especially in short-term
forecasting situations.

Moving Averages and Exponential
Smoothing

In this section we discuss three forecasting methods that are appropriate for a time series
with a horizontal pattern: moving averages, weighted moving averages, and exponential
smoothing. These methods are also capable of adapting well to changes in the level of a hor-
izontal pattern such as what we saw with the extended gasoline sales time series (Table 6.2 and
Figure 6.2). However, without modification they are not appropriate when considerable
trend, cyclical, or seasonal effects are present. Because the objective of each of these
methods is to “smooth out” random fluctuations in the time series, they are referred to as
smoothing methods. These methods are easy to use and generally provide a high level of
accuracy for short-range forecasts, such as a forecast for the next time period.

Moving Averages

The moving averages method uses the average of the most recent k data values in the time
series as the forecast for the next period. Mathematically, a moving average forecast of or-
der k is as follows:

> (most recent k data values)  ;_ /<%, 1'
Fo. = =
k k
=Yt—k+l+"'+Yt—1+Yt (66)
. -

F,,, = forecast of the time series for period ¢ + 1
Y, = actual value of the time series in period i

k = number of periods of time series data used to generate the forecast

The term moving is used because every time a new observation becomes available for the
time series, it replaces the oldest observation in the equation and a new average is com-
puted. Thus, the periods over which the average is calculated change, or move, with each
ensuing period.

To illustrate the moving averages method, let us return to the original 12 weeks of gaso-
line sales data in Table 6.1 and Figure 6.1. The time series plot in Figure 6.1 indicates that
the gasoline sales time series has a horizontal pattern. Thus, the smoothing methods of this
section are applicable.

To use moving averages to forecast a time series, we must first select the order k, or
number of time series values to be included in the moving average. If only the most re-
cent values of the time series are considered relevant, a small value of k is preferred. If
a greater number of past values are considered relevant, then we generally opt for a
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larger value of k. As mentioned earlier, a time series with a horizontal pattern can shift to a
new level over time. A moving average will adapt to the new level of the series and resume
providing good forecasts in k periods. Thus a smaller value of k will track shifts in a time
series more quickly (the naive approach discussed earlier is actually a moving average for
k = 1). On the other hand, larger values of k will be more effective in smoothing out ran-
dom fluctuations. Thus, managerial judgment based on an understanding of the behavior of
a time series is helpful in choosing an appropriate value of k.

To illustrate how moving averages can be used to forecast gasoline sales, we will use a
three-week moving average (k = 3). We begin by computing the forecast of sales in week
4 using the average of the time series values in weeks 1 to 3.

17 421 + 19
=19

F, = average of weeks 1 to 3 = 3
Thus, the moving average forecast of sales in week 4 is 19 or 19,000 gallons of gaso-
line. Because the actual value observed in week 4 is 23, the forecast error in week 4 is
e, =23 —19=4.

We next compute the forecast of sales in week 5 by averaging the time series values in
weeks 2—4.

21 419 +23
— =2

F5 = average of weeks 2 to 4 = 3
Hence, the forecast of sales in week 5 is 21 and the error associated with this forecast is
es = 18 — 21 = —3. A complete summary of the three-week moving average forecasts
for the gasoline sales time series is provided in Table 6.9. Figure 6.7 shows the original
time series plot and the three-week moving average forecasts. Note how the graph of the
moving average forecasts has tended to smooth out the random fluctuations in the time
series.

TABLE 6.9 SUMMARY OF THREE-WEEK MOVING AVERAGE CALCULATIONS

Absolute Absolute
Time Value of Squared Value of
Series Forecast Forecast Forecast Percentage Percentage
Week Value Forecast Error Error Error Error Error
1 17
2 21
3 19
4 23 19 4 4 16 17.39 17.39
5 18 21 =3} 3 9 —16.67 16.67
6 16 20 —4 4 16 —25.00 25.00
7 20 19 1 1 1 5.00 5.00
8 18 18 0 0 0 0.00 0.00
9 22 18 4 4 16 18.18 18.18
10 20 20 0 0 0 0.00 0.00
11 15 20 =3 5 25 —33.33 33.33
12 22 19 3 3 9 13.64 13.64
Totals 0 24 92 —20.79 129.21
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FIGURE 6.7 GASOLINE SALES TIME SERIES PLOT AND THREE-WEEK MOVING

AERAGE FORECASTS
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Can you now use moving
averages to develop
Jforecasts? Try Problem 7.

To forecast sales in week 13, the next time period in the future, we simply compute the
average of the time series values in weeks 10, 11, and 12.

20+ 15+22

F; = average of weeks 10to 12 = 3

19

Thus, the forecast for week 13 is 19 or 19,000 gallons of gasoline.

Forecast Accuracy In Section 6.2 we discussed three measures of forecast accuracy:
mean absolute error (MAE); mean squared error (MSE); and mean absolute percentage
error (MAPE). Using the three-week moving average calculations in Table 6.9, the values
for these three measures of forecast accuracy are

12
> lel
MAE = —+ -2 _ 57
2-3 9
12
e
MSE = ——— =22 _ 1922
T 12-3 9
12 et
2|y, )10 1292
MAPE = 4 °¢ 1292156

12 -3 9
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different time periods, such
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measures such as MAPE
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A moving average forecast
of order k is just a special
case of the weighted
moving averages method in
which each weight is equal
to 1/k; for example, a
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order k = 3 is just a special
case of the weighted
moving averages method in
which each weight is equal
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Use Problem 8 to practice
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forecasts.
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In Section 6.2 we showed that using the most recent observation as the forecast for the
next week (a moving average of order kK = 1) resulted in values of MAE = 3.73, MSE =
16.27, and MAPE = 19.24%. Thus, in each case the three-week moving average approach
has provided more accurate forecasts than simply using the most recent observation as the
forecast. Also note how the formulas for the MAE, MSE, and MAPE reflect that our use of
a three-week moving average leaves us with insufficient data to generate forecasts for the
first three weeks of our time series.

To determine if a moving average with a different order k can provide more accurate
forecasts, we recommend using trial and error to determine the value of k that minimizes
the MSE. For the gasoline sales time series, it can be shown that the minimum value of MSE
corresponds to a moving average of order k = 6 with MSE = 6.79. If we are willing to as-
sume that the order of the moving average that is best for the historical data will also be best
for future values of the time series, the most accurate moving average forecasts of gasoline
sales can be obtained using a moving average of order k = 6.

Weighted Moving Averages

In the moving averages method, each observation in the moving average calculation
receives equal weight. One variation, known as weighted moving averages, involves
selecting a different weight for each data value in the moving average and then computing
a weighted average of the most recent k values as the forecast.

Foop=wY +w Y+ +woal g (6.7)

where
= forecast of the time series for period ¢ + 1
Y, = actual value of the time series in period ¢

w, = weight applied to the actual time series value for period ¢

k-
|

= number of periods of time series data used to generate the forecast

Generally the most recent observation receives the largest weight, and the weight decreases
with the relative age of the data values. Let us use the gasoline sales time series in Table 6.1
to illustrate the computation of a weighted three-week moving average. We will assign a

weight of w, = 3 to the most recent observation, a weight of W, = % to the second most

recent observation, and a weight of w,_, = ¢ to the third most recent observation. Using this
weighted average, our forecast for week 4 is computed as follows:

1 2 3
Forecast for week 4 = g (17) + g 21 = 3 (19) = 19.33
Note that the sum of the weights is equal to 1 for the weighted moving average method.

Forecast Accuracy To use the weighted moving averages method, we must first select the
number of data values to be included in the weighted moving average and then choose
weights for each of these data values. In general, if we believe that the recent past is a better
predictor of the future than the distant past, larger weights should be given to the more recent
observations. However, when the time series is highly variable, selecting approximately
equal weights for the data values may be preferable. The only requirements in selecting the
weights are that they be nonnegative and that their sum must equal 1. To determine whether
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one particular combination of number of data values and weights provides a more accurate
forecast than another combination, we recommend using MSE as the measure of forecast ac-
curacy. That is, if we assume that the combination that is best for the past will also be best
for the future, we would use the combination of number of data values and weights that min-
imized MSE for the historical time series to forecast the next value in the time series.

Exponential Smoothing

Exponential smoothing also uses a weighted average of past time series values as a fore-
cast; it is a special case of the weighted moving averages method in which we select only
one weight—the weight for the most recent observation. The weights for the other data val-
ues are computed automatically and become smaller as the observations move farther into
the past. The exponential smoothing model follows.

Fiyp=aY, + (1 — a)F, (6.8)
where
F,,; = forecast of the time series for period ¢ + 1
Y, = actual value of the time series in period ¢
F, = forecast of the time series for period ¢

a = smoothing constant (0 = o = 1)

Equation (6.8) shows that the forecast for period ¢ + 1 is a weighted average of the actual
value in period ¢ and the forecast for period ¢. The weight given to the actual value in pe-
riod ¢ is the smoothing constant « and the weight given to the forecast in period #is 1 — «.
It turns out that the exponential smoothing forecast for any period is actually a weighted
average of all the previous actual values of the time series. Let us illustrate by working with
a time series involving only three periods of data: Y, Y5, and Y;.

To initiate the calculations, we let F; equal the actual value of the time series in period 1;
that is, ', = Y,. Hence, the forecast for period 2 is

F,=aY, + (1 — a)F,
=aY, + (1 — )Y,
We see that the exponential smoothing forecast for period 2 is equal to the actual value of
the time series in period 1.
The forecast for period 3 is
Fi=aY,+ (- a)F,=aY,+ (1 —a),
Finally, substituting this expression for F; into the expression for F,, we obtain
F,=aY;+ (1 — a)F,
=al, + ({1 —aolaY, + (1 —a)Y]
aY; +a(l — )Y, + (1 — a)Y,

We now see that F, is a weighted average of the first three time series values. The sum of
the coefficients, or weights, for Y|, Y,, and Y; equals 1. A similar argument can be made to
show that, in general, any forecast F,, is a weighted average of all the 7 previous time series
values.
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Despite the fact that exponential smoothing provides a forecast that is a weighted av-
erage of all past observations, all past data do not need to be retained to compute the fore-
cast for the next period. In fact, equation (6.8) shows that once the value for the smoothing
constant « is selected, only two pieces of information are needed to compute the forecast
for period ¢ + 1: Y,, the actual value of the time series in period #; and F,, the forecast for
period .

To illustrate the exponential smoothing approach to forecasting, let us again consider the
gasoline sales time series in Table 6.1 and Figure 6.1. As indicated previously, to initialize
the calculations we set the exponential smoothing forecast for period 2 equal to the actual
value of the time series in period 1. Thus, with ¥| = 17, we set F, = 17 to initiate the com-
putations. Referring to the time series data in Table 6.1, we find an actual time series value
in period 2 of ¥, = 21. Thus, in period 2 we have a forecast error of e, = 21 — 17 = 4.

Continuing with the exponential smoothing computations using a smoothing constant
of @ = 0.2, we obtain the following forecast for period 3.

Fy=02Y, + 0.8F, = 02(21) + 0.8(17) = 17.8

Once the actual time series value in period 3, Y; = 19, is known, we can generate a fore-
cast for period 4 as follows.

F,=02Y, + 0.8F, = 0.2(19) + 0.8(17.8) = 18.04

Continuing the exponential smoothing calculations, we obtain the weekly forecast
values shown in Table 6.10. Note that we have not shown an exponential smoothing fore-
cast or a forecast error for week 1 because no forecast was made (we used actual sales for
week 1 as the forecasted sales for week 2 to initialize the exponential smoothing process).
For week 12, we have Y|, = 22 and F,, = 18.48. We can we use this information to gener-
ate a forecast for week 13.

Fi;=02Y,, + 0.8F,, = 0.2(22) + 0.8(18.48) = 19.18

TABLE 6.10 SUMMARY OF THE EXPONENTIAL SMOOTHING FORECASTS AND
FORECAST ERRORS FOR THE GASOLINE SALES TIME SERIES WITH
SMOOTHING CONSTANT « = 0.2

Week  Time Series Value  Forecast  Forecast Error Squared Forecast Error
1 17
2 21 17.00 4.00 16.00
3 19 17.80 1.20 1.44
4 23 18.04 4.96 24.60
5 18 19.03 —1.03 1.06
6 16 18.83 —2.83 8.01
7 20 18.26 1.74 3.03
8 18 18.61 —0.61 0.37
9 22 18.49 3.51 12.32
10 20 19.19 0.81 0.66
11 15 19.35 —4.35 18.92
12 22 18.48 3.52 12.39

Totals 10.92 98.80
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FIGURE 6.8 ACTUAL AND FORECAST GASOLINE TIME SERIES WITH SMOOTHING

CONSTANT o = 0.2
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Try Problem 9 for practice
using exponential
smoothing to produce
forecasts.

Thus, the exponential smoothing forecast of the amount sold in week 13 is 19.18, or 19,180
gallons of gasoline. With this forecast, the firm can make plans and decisions accordingly.

Figure 6.8 shows the time series plot of the actual and forecast time series values. Note
in particular how the forecasts “‘smooth out” the irregular or random fluctuations in the time
series.

Forecast Accuracy In the preceding exponential smoothing calculations, we used a
smoothing constant of a = 0.2. Although any value of « between 0 and 1 is acceptable,
some values will yield more accurate forecasts than others. Insight into choosing a good
value for a can be obtained by rewriting the basic exponential smoothing model as
follows.

Froi= o, + (1 — F
Fioy=aY, + F —aF (6.9)
Foi=FE+al,—F)=F +aeg

Thus, the new forecast F,,, is equal to the previous forecast F, plus an adjustment, which
is the smoothing constant « times the most recent forecast error, ¢, = Y, — F,. That is, the
forecast in period ¢ + 1 is obtained by adjusting the forecast in period ¢ by a fraction of the
forecast error from period ¢. If the time series contains substantial random variability, a
small value of the smoothing constant is preferred. The reason for this choice is that if
much of the forecast error is due to random variability, we do not want to overreact and
adjust the forecasts too quickly. For a time series with relatively little random variability,
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a forecast error is more likely to represent a real change in the level of the series. Thus,
larger values of the smoothing constant provide the advantage of quickly adjusting the
forecasts to changes in the time series; this allows the forecasts to react more quickly to
changing conditions.

The criterion we will use to determine a desirable value for the smoothing constant
«a is the same as the criterion we proposed for determining the order or number of pe-
riods of data to include in the moving averages calculation. That is, we choose the value
of a that minimizes the MSE. A summary of the MSE calculations for the exponential
smoothing forecast of gasoline sales with & = 0.2 is shown in Table 6.10. Note that
there is one less squared error term than the number of time periods; this is because we
had no past values with which to make a forecast for period 1. The value of the sum of
squared forecast errors is 98.80; hence MSE = 98.80/11 = 8.98. Would a different
value of a provide better results in terms of a lower MSE value? Trial and error is often
used to determine if a different smoothing constant « can provide more accurate
forecasts, but we can avoid trial and error and determine the value of « that minimizes
MSE through the use of nonlinear optimization as discussed in Chapter 12 (see
Exercise 12.19).

NOTES AND COMMENTS

1. Spreadsheet packages are effective tools for

level but exhibits no trend or seasonality. Mov-

implementing exponential smoothing. With
the time series data and the forecasting formu-
las in a spreadsheet as shown in Table 6.10,
you can use the MAE, MSE, and MAPE to
evaluate different values of the smoothing con-
stant c.

. We presented the moving average, weighted
moving average, and exponential smoothing
methods in the context of a stationary time se-
ries. These methods can also be used to fore-
cast a nonstationary time series that shifts in

ing averages with small values of k adapt more
quickly than moving averages with larger val-
ues of k. Weighted moving averages that place
relatively large weights on the most recent val-
ues adapt more quickly than weighted moving
averages that place relatively equal weights on
the k time series values used in calculating the
forecast. Exponential smoothing models with
smoothing constants closer to 1 adapt more
quickly than models with smaller values of the
smoothing constant.

Linear Trend Projection

In this section we present forecasting methods that are appropriate for time series exhibit-
ing trend patterns. Here we show how regression analysis may be used to forecast a time
series with a linear trend. In Section 6.1 we used the bicycle sales time series in Table 6.3
and Figure 6.3 to illustrate a time series with a trend pattern. Let us now use this time series
to illustrate how regression analysis can be used to forecast a time series with a linear trend.
The data for the bicycle time series are repeated in Table 6.11 and Figure 6.9.

Although the time series plot in Figure 6.9 shows some up and down movement over
the past 10 years, we might agree that the linear trend line shown in Figure 6.10 provides a
reasonable approximation of the long-run movement in the series. We can use regression
analysis to develop such a linear trend line for the bicycle sales time series.

In regression analysis we use known values of variables to estimate the relationship
between one variable (called the dependent variable) and one or more other related
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TABLE 6.11 BICYCLE SALES TIME SERIES

Year Sales (1000s)

1 21.6
22.9
25.5
21.9
239
27.5
31.5
29.7
28.6
314
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FIGURE 6.9 BICYCLE SALES TIME SERIES PLOT
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variables (called independent variables). This relationship is usually found in a manner
that minimizes the sum of squared errors (and so also minimizes the MSE). With this rela-
tionship we can then use values of the independent variables to estimate the associated value
of the dependent variable. When we estimate a linear relationship between the dependent
variable (which is usually denoted as y) and a single independent variable (which is usually
denoted as x), this is referred to as simple linear regression. Estimating the relationship
between the dependent variable and a single independent variable requires that we find the
values of parameters b, and b, for the straight line y = b, + b,x.

Because our use of simple linear regression analysis yields the linear relationship be-
tween the independent variable and the dependent variable that minimizes the MSE, we can
use this approach to find a best-fitting line to a set of data that exhibits a linear trend. In
finding a linear trend, the variable to be forecasted (Y, the actual value of the time series in
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FIGURE 6.10 TREND REPRESENTED BY A LINEAR FUNCTION FOR THE BICYCLE
SALES TIME SERIES
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period £) is the dependent variable and the trend variable (time period ?) is the independent
variable. We will use the following notation for our linear trendline.

F = by + byt (6.10)

where
t = the time period
F, = linear trend forecast in period # (i.e., the estimated value of Y, in period #)
b, = the Y-intercept of the linear trendline
b, = the slope of the linear trendline

In equation (6.10) the time variable begins at + = 1 corresponding to the first time series
observation (year 1 for the bicycle sales time series) and continues until # = n correspond-
ing to the most recent time series observation (year 10 for the bicycle sales time series).
Thus, for the bicycle sales time series t = 1 corresponds to the oldest time series value and
t = 10 corresponds to the most recent year. Calculus may be used to show that the equa-
tions given below for b, and b, yield the line that minimizes the MSE. The equations for
computing the values of b, and b, are

b, = (6.11)

by =Y — bt (6.12)
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where

t = the time period
Y, = actual value of the time series in period ¢

n = number of periods in the time series

n
Y = average value of the time series; that is, ¥ = E Y, / n

=1

n
f = mean value of 7; that is, f = 2 t/n
t=1

Let us calculate b, and b, for the bicycle data in Table 6.11; the intermediate summary
calculations necessary for computing the values of b, and b, are

t Y, 1y, A
1 21.6 21.6 1
2 229 45.8 4
3 25.5 76.5 9
4 21.9 87.6 16
5 239 119.5 25
6 27.5 165.0 36
7 315 220.5 49
8 29.7 237.6 64
9 28.6 257.4 81
10 31.4 314.0 100
Totals 55 264.5 1545.5 385

And the final calculations of the values of b, and b, are

55
1=—=155
10
— 2645
Y=—=—=2645
10
1545.5 — (55)(264.5)/10
. (592645/10 _ |\
385 — 55°/10
by = 26.45 — 1.10(5.5) = 20.40
Problem 20 provides Therefore,
additional practice in
using regression analysis F,=204+ 1.1t (6.13)

to estimate the linear trend

in atime series data sel. is the regression equation for the linear trend component for the bicycle sales time series.

The slope of 1.1 in this trend equation indicates that over the past 10 years, the firm has
experienced an average growth in sales of about 1100 units per year. If we assume that the
past 10-year trend in sales is a good indicator for the future, we can use equation (6.13) to
project the trend component of the time series. For example, substituting + = 11 into
equation (6.13) yields next year’s trend projection, F,;:

F,, =204+ 1I(11) = 32.5

Thus, the linear trend model yields a sales forecast of 32,500 bicycles for the next year.
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TABLE 6.12 SUMMARY OF THE LINEAR TREND FORECASTS AND FORECAST
ERRORS FOR THE BICYCLE SALES TIME SERIES

Sales (1000s) Forecast Forecast Squared Forecast
Week Y, F, Error Error

1 21.6 21.5 0.1 0.01
2 22.9 22.6 0.3 0.09
3 25.5 23.7 1.8 3.24
4 21.9 24.8 -29 8.41
5 23.9 25.9 2.0 4.00
6 27.5 27.0 0.5 0.25
7 31.5 28.1 34 11.56
8 29.7 29.2 0.5 0.25
9 28.6 30.3 —1.7 2.89
10 314 314 0.0 0.00
Total 30.70

Table 6.12 shows the computation of the minimized sum of squared errors for the
bicycle sales time series. As previously noted, minimizing sum of squared errors also min-
imizes the commonly used measure of accuracy, MSE. For the bicycle sales time series,

n

>

B Y
10

MSE =

Note that in this example we are not using past values of the time series to produce fore-
casts, and so k = 0; that is, we can produce a forecast for each period of the time series and
so do not have to adjust our calculations of the MAE, MSE, or MAPE for k.

We can also use the trendline to forecast sales farther into the future. For instance, using
Equation (6.13), we develop annual forecasts for two and three years into the future as follows:

Fp, =204 + 1.1(13) = 33.6
Fiy =204 + 1.1(14) = 34.7

Note that the forecasted value increases by 1100 bicycles in each year.

NOTES AND COMMENTS

1. Statistical packages such as Minitab and SAS, 2. While the use of a linear function to model the

as well as Excel, have routines to perform re- trend is common, some time series exhibit a
gression analysis. Regression analysis mini- curvilinear (nonlinear) trend. More advanced
mizes the sum of squared error and under texts discuss how to develop nonlinear models
certain assumptions it also allows the analyst to such as quadratic models and exponential mod-
make statistical statements about the parameters els for these more complex relationships.

and the forecasts.

In this section we used simple linear regression to estimate the relationship between the
dependent variable (Y,, the actual value of the time series in period f) and a single indepen-
dent variable (the trend variable f). However, some regression models include several inde-
pendent variables. When we estimate a linear relationship between the dependent variable

© Cengage Learning 2013
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and more than one independent variable, this is referred to as multiple linear regression. In
the next section we will apply multiple linear regression to time series that include seasonal
effects and to time series that include both seasonal effects and a linear trend.

Seasonality

In this section we show how to develop forecasts for a time series that has a seasonal pattern.
To the extent that seasonality exists, we need to incorporate it into our forecasting models
to ensure accurate forecasts. We begin the section by considering a seasonal time series with
no trend and then discuss how to model seasonality with a linear trend.

Seasonality Without Trend

Let us consider again the data from Table 6.5, the number of umbrellas sold at a clothing
store over the past five years. We repeat the data here in Table 6.13, and Figure 6.11 again
shows the corresponding time series plot. The time series plot does not indicate any long-
term trend in sales. In fact, unless you look carefully at the data, you might conclude that
the data follow a horizontal pattern with random fluctuation and that single exponential
smoothing could be used to forecast sales. However, closer inspection of the time series plot
reveals a pattern in the fluctuations. That is, the first and third quarters have moderate sales,
the second quarter the highest sales, and the fourth quarter tends to be the lowest quarter in
terms of sales volume. Thus, we conclude that a quarterly seasonal pattern is present.

We can model a time series with a seasonal pattern by treating the season as a categor-
ical variable. Categorical variables are data used to categorize observations of data. When

TABLE 6.13 UMBRELLA SALES TIME SERIES

Year Quarter Sales
1 125
153
106
88

118
161
133
102
138
144
113

80

109
137
125
109
130
165
128

96

AR WN— DRWLWNDRFR DWW~ AW —= DNWN R~

© Cengage Learning 2013



6.5 Seasonality 217

FIGURE 6.11 UMBRELLA SALES TIME SERIES PLOT
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Note that we have
numbered the observations
in Table 6.14 as periods 1
to 20. For example, year 3,
quarter 3 is observation 11.

a categorical variable has k levels, k — I dummy variables (sometimes called O-1 variables)
are required. So if there are four seasons, we need three dummy variables. For instance, in
the umbrella sales time series, the quarter to which each observation corresponds is treated
as a season; it is a categorical variable with four levels: Quarter 1, Quarter 2, Quarter 3, and
Quarter 4. Thus, to model the seasonal effects in the umbrella time series we need 4 — 1 =
3 dummy variables. The three dummy variables can be coded as follows:

, 1 if period t is a Quarter 1
Qurl, = .
otherwise

, 1 if period # is a Quarter 2
Qu2, = .

0 otherwise
] 1 if period ¢ is a Quarter 3
Qu3, = { P . Q

0 otherwise

Using F, to denote the forecasted value of sales for period ¢, the general form of the
equation relating the number of umbrellas sold to the quarter the sales take place follows.

F, = by + b, Qtrl, + b, Qu2, + by Qu3, (6.14)

Note that the fourth quarter will be denoted by a setting of all three dummy variables to 0.
Table 6.14 shows the umbrella sales time series with the coded values of the dummy
variables shown. We can use a multiple linear regression model to find the values of b, b,,
b,, and b, that minimize the sum of squared errors. For this regression model Y, is the de-
pendent variable and the quarterly dummy variables Qtrl,, Qtr2,, and Qtr3, are the inde-
pendent variables.

© Cengage Learning 2013
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TABLE 6.14 UMBRELLA SALES TIME SERIES WITH DUMMY VARIABLES

Period Year Quarter Qtrl Qtr2 Qtr3 Sales
1 1 1 0 0 125
2 0 1 0 153
3 0 0 1 106
4 0 0 0 88
2 1 1 0 0 118
2 0 1 0 161
3 0 0 1 133
4 0 0 0 102
3 1 1 0 0 138
2 0 1 0 144
3 0 0 1 113
4 0 0 0 80
4 1 1 0 0 109
2 0 1 0 137
3 0 0 1 125
4 0 0 0 109
5 1 1 0 0 130
2 0 1 0 165
3 0 0 1 128
4 0 0 0 96

DO = = =t e e e e e
OO0V AN WIN—L,OWOW I W~

For practice using
categorical variables to
estimate seasonal effects,
try Problem 24.

Using the data in Table 6.14 and regression analysis, we obtain the following equation:
F, =95.0 + 29.0 Qtrl, + 57.0 Qtr2, + 26.0 Qu3, (6.15)

we can use Equation (6.15) to forecast quarterly sales for next year.

Quarter 1: Sales = 95.0 + 29.0(1) + 57.0(0) + 26.0(0) = 124
Quarter 2: Sales = 95.0 + 29.0(0) + 57.0(1) + 26.0(0) = 152
Quarter 3: Sales = 95.0 + 29.0(0) + 57.0(0) + 26.0(1) = 121
Quarter 4: Sales = 95.0 + 29.0(0) + 57.0(0) + 26.0(0) = 95

It is interesting to note that we could have obtained the quarterly forecasts for next year
by simply computing the average number of umbrellas sold in each quarter, as shown in the
following table.

Year Quarter 1 Quarter 2 Quarter 3 Quarter 4
1 125 153 106 88
2 118 161 133 102
3 138 144 113 80
4 109 137 125 109
5 130 165 128 96

Average 124 152 121 95
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Nonetheless, for more complex problem situations, such as dealing with a time series that
has both trend and seasonal effects, this simple averaging approach will not work.

Seasonality with Trend

We now consider situations for which the time series contains both a seasonal effect and a
linear trend by showing how to forecast the quarterly television set sales time series intro-
duced in Section 6.1. The data for the television set time series are shown in Table 6.15. The
time series plot in Figure 6.12 indicates that sales are lowest in the second quarter of each
year and increase in quarters 3 and 4. Thus, we conclude that a seasonal pattern exists for
television set sales. However, the time series also has an upward linear trend that will need
to be accounted for in order to develop accurate forecasts of quarterly sales. This is easily
done by combining the dummy variable approach for handling seasonality with the
approach we discussed in Section 6.4 for handling a linear trend.

The general form of the regression equation for modeling both the quarterly seasonal
effects and the linear trend in the television set time series is:

F, = by + b,Qtrl, + b,Qu2, + b;Qu3, + byt (6.16)

where

F, = forecast of sales in period ¢
Qurl, = 1 if time period ¢ corresponds to the first quarter of the year; 0, otherwise
Qtr2, = 1 if time period ¢ corresponds to the second quarter of the year; 0, otherwise
Qu3, = 1 if time period ¢ corresponds to the third quarter of the year; 0, otherwise
¢t = time period

TABLE 6.15 TELEVISION SET SALES TIME SERIES

Year Quarter Sales (1000s)
1 1 4.8
2 4.1
3 6.0
4 6.5
2 1 5.8
2 5.2
3 6.8
4 7.4
3 1 6.0
2 5.6
3 7.5
4 7.8
4 1 6.3
2 5.9
3 8.0
4 8.4
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FIGURE 6.12 TELEVISION SET SALES TIME SERIES PLOT
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For this regression model Y, is the dependent variable and the quarterly dummy variables
Qtrl,, Qtr2,, and Qtr3, and the time period ¢ are the independent variables.
Table 6.16 shows the revised television set sales time series that includes the coded

values of the dummy variables and the time period 7. Using the data in Table 6.16 with the

TABLE 6.16 TELEVISION SET SALES TIME SERIES WITH DUMMY VARIABLES AND
TIME PERIOD

Period  Year Quarter  Qtrl Qtr2 Qtr3 Period Sales (1000s)

1 1 1 1 0 0 1 4.8
2 2 0 1 0 2 4.1
3 3 0 0 1 3 6.0
4 4 0 0 0 4 6.5
5 2 1 1 0 0 5 5.8
6 2 0 1 0 6 52
7 3 0 0 1 7 6.8
8 4 0 0 0 8 7.4
9 3 1 1 0 0 9 6.0
10 2 0 1 0 10 5.6
11 3 0 0 1 11 7.5
12 4 0 0 0 12 7.8
13 4 1 1 0 0 13 6.3
14 2 0 1 0 14 59
15 3 0 0 1 15 8.0
16 4 0 0 0 16 8.4
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regression model that includes both the seasonal and trend components, we obtain the fol-
lowing equation that minimizes our sum of squared errors:

F, =6.07 — 1.36 Qtr1, — 2.03 Qtr2, — 0.304 Qtr3, + 0.146¢ (6.17)

We can now use equation (6.17) to forecast quarterly sales for next year. Next year is
year 5 for the television set sales time series; that is, time periods 17, 18, 19, and 20.

Forecast for Time Period 17 (Quarter 1 in Year 5)

F; =6.07 — 1.36(1) — 2.03(0) — 0.304(0) + 0.146(17) = 7.19
Forecast for Time Period 18 (Quarter 2 in Year 5)

Fig=6.07 — 1.36(0) — 2.03(1) — 0.304(0) + 0.146(18) = 6.67
Forecast for Time Period 19 (Quarter 3 in Year 5)

Fy = 6.07 — 1.36(0) — 2.03(0) — 0.304(1) + 0.146(19) = 8.54
Forecast for Time Period 20 (Quarter 4 in Year 5)

F,, = 6.07 — 1.36(0) — 2.03(0) — 0.304(0) + 0.146(20) = 8.99

Thus, accounting for the seasonal effects and the linear trend in television set sales, the es-
timates of quarterly sales in year 5 are 7190, 6670, 8540, and 8990.

The dummy variables in the equation actually provide four equations, one for each
quarter. For instance, if time period ¢ corresponds to quarter 1, the estimate of quarterly sales
is

Quarter 1: Sales = 6.07 — 1.36(1) — 2.03(0) — 0.304(0) + 0.146¢f = 4.71 + 0.146¢

Similarly, if time period f corresponds to quarters 2, 3, and 4, the estimates of quarterly sales
are:

Quarter 2: Sales = 6.07 — 1.36(0) — 2.03(1) — 0.304(0) + 0.146¢ = 4.04 + 0.146¢
Quarter 3: Sales = 6.07 — 1.36(0) — 2.03(0) — 0.304(1) + 0.146¢ = 5.77 + 0.146¢
Quarter 4: Sales = 6.07 — 1.36(0) — 2.03(0) — 0.304(0) + 0.146¢ = 6.07 + 0.146¢

The slope of the trend line for each quarterly forecast equation is 0.146, indicating a
consistent growth in sales of about 146 sets per quarter. The only difference in the four
equations is that they have different intercepts.

Models Based on Monthly Data

In the preceding television set sales example, we showed how dummy variables can be used
to account for the quarterly seasonal effects in the time series. Because there were four lev-
els for the categorical variable season, three dummy variables were required. However,
many businesses use monthly rather than quarterly forecasts. For monthly data, season is a
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categorical variable with 12 levels, and thus 12 — 1 = 11 dummy variables are required.
For example, the 11 dummy variables could be coded as follows:

1 ifJ
Monthl = { 11 Jafbaty

0 otherwise
Month — {1 if Febrl.lary

0 otherwise

1 if November

Monthl1l = .
0 otherwise

Other than this change, the approach for handling seasonality remains the same.

This chapter provided an introduction to basic methods of time series analysis and
forecasting. We first showed that the underlying pattern in the time series can often be iden-
tified by constructing a time series plot. Several types of data patterns can be distinguished,
including a horizontal pattern, a trend pattern, and a seasonal pattern. The forecasting meth-
ods we have discussed are based on which of these patterns are present in the time series.

We also discussed that the accuracy of the method is an important factor in determin-
ing which forecasting method to use. We considered three measures of forecast accuracy:
mean absolute error (MAE), mean squared error (MSE), and mean absolute percentage
error (MAPE). Each of these measures is designed to determine how well a particular fore-
casting method is able to reproduce the time series data that are already available. By
selecting the method that is most accurate for the data already known, we hope to increase
the likelihood that we will obtain more accurate forecasts for future time periods.

For a time series with a horizontal pattern, we showed how moving averages, weighted
moving averages, and exponential smoothing can be used to develop a forecast. The mov-
ing averages method consists of computing an average of past data values and then using
that average as the forecast for the next period. In the weighted moving average and expo-
nential smoothing methods, weighted averages of past time series values are used to com-
pute forecasts. These methods also adapt well to a horizontal pattern that shifts to a different
level and then resumes a horizontal pattern.

For time series that have only a long-term linear trend, we showed how regression analy-
sis can be used to make trend projections. For a time series with a seasonal pattern, we showed
how dummy variables and regression analysis can be used to develop an equation with sea-
sonal effects. We then extended the approach to include situations where the time series con-
tains both a seasonal and a linear trend effect by showing how to combine the dummy variable
approach for handling seasonality with the approach for handling a linear trend.

Time series A sequence of observations on a variable measured at successive points in
time or over successive periods of time.

Time series plot A graphical presentation of the relationship between time and the time
series variable. Time is shown on the horizontal axis and the time series values are shown
on the verical axis.
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Stationary time series A time series whose statistical properties are indepepndent of time.
For a stationary time series, the process generating the data has a constant mean and the
variability of the time series is constant over time.

Trend pattern A trend pattern exists if the time series plot shows gradual shifts or move-
ments to relatively higher or lower values over a longer period of time.

Seasonal pattern A seasonal pattern exists if the time series plot exhibits a repeating
pattern over successive periods.

Cyclical pattern A cyclical pattern exists if the time series plot shows an alternating
sequence of points below and above the trend line lasting more than one year.

Forecast error The difference between the actual time series value and the forecast.
Mean absolute error (MAE) The average of the absolute values of the forecast errors.
Mean squared error (MSE) The average of the sum of squared forecast errors.

Mean absolute percentage error (MAPE) The average of the absolute values of the
percentage forecast errors.

Moving averages A forecasting method that uses the average of the k most recent data
values in the time series as the forecast for the next period.

Weighted moving averages A forecasting method that involves selecting a different
weight for the £ most recent data values values in the time series and then computing a
weighted average of the of the values. The sum of the weights must equal one.
Exponential smoothing A forecasting method that uses a weighted average of past time
series values as the forecast; it is a special case of the weighted moving averages method
in which we select only one weight—the weight for the most recent observation.
Smoothing constant A parameter of the exponential smoothing model that provides the
weight given to the most recent time series value in the calculation of the forecast value.
Regression analysis A procedure for estimating values of a dependent variable given the
values of one or more independent variables in a manner that minimizes the sum of the
squared errors.

Dependent variable The variable that is being predicted or explained in a regression analysis.
Independent variable A variable used to predict or explain values of the dependent vari-
able in regression analysis.

Categorical (dummy) variable A variable used to categorize observations of data. Used
when modeling a time series with a seasonal pattern.

1. Consider the following time series data.

Week | 1 2 3 4 5 6
Value | 18 13 16 11 17 14

Using the naive method (most recent value) as the forecast for the next week, compute the
following measures of forecast accuracy.

a. Mean absolute error

b. Mean squared error

¢.  Mean absolute percentage error

d.  What is the forecast for week 7?

2. Refer to the time series data in Exercise 1. Using the average of all the historical data as a
forecast for the next period, compute the following measures of forecast accuracy:
a. Mean absolute error
b. Mean squared error
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¢.  Mean absolute percentage error
d.  What is the forecast for week 77

Exercises 1 and 2 used different forecasting methods. Which method appears to provide
the more accurate forecasts for the historical data? Explain.

Consider the following time series data.

Month | 1 2 3 4 5 6 7
Value | 24 13 20 12 19 23 15

a. Compute MSE using the most recent value as the forecast for the next period. What is
the forecast for month 8?

b. Compute MSE using the average of all the data available as the forecast for the next
period. What is the forecast for month 8?

c. Which method appears to provide the better forecast?

Consider the following time series data.
Week | 1 2 3 4 5 6
Value | 18 13 16 11 17 14

a. Construct a time series plot. What type of pattern exists in the data?

b. Develop a three-week moving average for this time series. Compute MSE and a fore-
cast for week 7.

c. Use a = 0.2 to compute the exponential smoothing values for the time series. Com-
pute MSE and a forecast for week 7.

d. Compare the three-week moving average forecast with the exponential smoothing
forecast using @ = 0.2. Which appears to provide the better forecast based on MSE?
Explain.

e. Use trial and error to find a value of the exponential smoothing coefficient « that
results in a smaller MSE than what you calculated for o = 0.2.

Consider the following time series data.
Month | 1 2 3 4 5 6 7
Value | 24 13 20 12 19 23 15

a. Construct a time series plot. What type of pattern exists in the data?

b. Develop a three-week moving average for this time series. Compute MSE and a fore-
cast for week 8.

c. Use a = 0.2 to compute the exponential smoothing values for the time series. Com-
pute MSE and a forecast for week 8.

d. Compare the three-week moving average [orecast with the exponential smoothing
forecast using @ = 0.2. Which appears to provide the better forecast based on
MSE?

e. Use trial and error to find a value of the exponential smoothing coefficient « that
results in a smaller MSE than what you calculated for o = 0.2.

Refer to the gasoline sales time scries data in Table 6.1.

a. Compute four-week and five-week moving averages for the time series.
Compute the MSE for the four-week and five-week moving average forecasts.

c.  What appears to be the best number of weeks of past data (three, four, or five) to use
in the moving average computation? Recall that MSE for the three-week moving
average is 10.22.



SELF|(s1¢

SELF[[(sR0

SELF (&8¢

Problems 225

10.

11.

12.

13.

Refer again to the gasoline sales time series data in Table 6.1.

a. Using a weight of 1/2 for the most recent observation, 1/3 for the second most recent,
and 1/6 for third most recent, compute a three-week weighted moving average for the
time series.

b. Compute the MSE for the weighted moving average in part (a). Do you prefer this
weighted moving average to the unweighted moving average? Remember that the
MSE for the unweighted moving average is 10.22.

c.  Suppose you are allowed to choose any weights as long as they sum to 1. Could you
always find a set of weights that would make the MSE smaller for a weighted moving
average than for an unweighted moving average? Why or why not?

With the gasoline time series data from Table 6.1, show the exponential smoothing fore-

casts using a = 0.1.

a. Applying the MSE measure of forecast accuracy, would you prefer a smoothing
constant of @ = 0.1 or @ = 0.2 for the gasoline sales time series?

b. Are the results the same if you apply MAE as the measure of accuracy?

c.  What are the results if MAPE is used?

With a smoothing constant of = 0.2, equation (6.8) shows that the forecast for week 13
of the gasoline sales data from Table 6.1 is given by F,; = 0.2Y,, + 0.8F,,. However, the
forecast for week 12 is given by F|, = 0.2Y,, + 0.8F,. Thus, we could combine these two
results to show that the forecast for week 13 can be written

Fi3=02Y,, + 0.8(0.2Y,, + 0.8F,) = 0.2Y,, + 0.16Y,, + 0.64F,

a. Making use of the fact that F,, = 0.2Y,, + 0.8F, (and similarly for F, and F),
continue to expand the expression for F; until it is written in terms of the past data
values Y,,, Yy, ¥y, Yy, Yy, and the forecast for period 8.

b. Refer to the coefficients or weights for the past values Yy,, Y, Y, Y,, and Y. What
observation can you make about how exponential smoothing weights past data values
in arriving at new forecasts? Compare this weighting pattern with the weighting
pattern of the moving averages method.

For the Hawkins Company, the monthly percentages of all shipments received on time over

the past 12 months are 80, 82, 84, 83, 83, 84, 85, 84, 82, 83, 84, and 83.

a. Construct a time series plot. What type of pattern exists in the data?

b. Compare a three-month moving average forecast with an exponential smoothing fore-
cast for @« = 0.2. Which provides the better forecasts using MSE as the measure of
model accuracy?

¢.  What is the forecast for next month?

Corporate triple A bond interest rates for 12 consecutive months follow.
95 93 94 96 98 9.7 98 105 99 97 9.6 9.6

a. Construct a time series plot. What type of pattern exists in the data?

b. Develop three-month and four-month moving averages for this time series. Does the
three-month or four-month moving average provide the better forecasts based on
MSE? Explain.

¢.  What is the moving average forecast for the next month?

The values of Alabama building contracts (in millions of dollars) for a 12-month period
follow.

240 350 230 260 280 320 220 310 240 310 240 230

a. Construct a time series plot. What type of pattern exists in the data?
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14.

15.

16.

b. Compare a three-month moving average forecast with an exponential smoothing fore-
cast. Use a = 0.2. Which provides the better forecasts based on MSE?
¢.  What is the forecast for the next month?

The following time series shows the sales of a particular product over the past 12 months.

Month Sales Month Sales
1 105 7 145
2 135 8 140
3 120 9 100
4 105 10 80
5 90 11 100
6 120 12 110

a. Construct a time series plot. What type of pattern exists in the data?

Use a = 0.3 to compute the exponential smoothing values for the time series.

c.  Use trial and error to find a value of the exponential smoothing coefficient « that
results in a relatively small MSE.

Ten weeks of data on the Commodity Futures Index are 7.35, 7.40, 7.55, 7.56, 7.60, 7.52,

7.52,7.70, 7.62, and 7.55.

a. Construct a time series plot. What type of pattern exists in the data?

b. Use trial and error to find a value of the exponential smoothing coefficient « that re-
sults in a relatively small MSE.

=2

The Nielsen ratings (percentage of U.S. households that tuned in) for the Masters golf tour-
nament from 1997 through 2008 follow (Golf Magazine, January 2009).

Year Rating
1997 11.2
1998 8.6
1999 7.9
2000 7.6
2001 10.7
2002 8.1
2003 6.9
2004 6.7
2005 8.0
2006 6.9
2007 7.6
2008 7.3

The rating of 11.2 in 1997 indicates that 11.2% of U.S. households tuned in to watch Tiger
Woods win his first major golf tournament and become the first African American to win
the Masters. Tiger Woods also won the Masters in 2001, 2002, and 2005.

a. Construct a time series plot. What type of pattern exists in the data? Discuss some of
the factors that may have resulted in the pattern exhibited in the time series plot for
this time series.

b. Given the pattern of the time series plot developed in part (a), do you think the fore-
casting methods discussed in this section are appropriate to develop forecasts for this
time series? Explain.

¢. Would you recommend using only the Nielsen ratings for 2002-2008 to forecast the
rating for 2009, or should the entire time series [rom 1997 to 2008 be used? Explain.
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17.

18.

19.

20.

Consider the following time series.
t | 1 2 3 4 5
v, | 6 11 9 14 15

a. Construct a time series plot. What type of pattern exists in the data?

b. Use simple linear regression analysis to find the parameters for the line that minimizes
MSE for this time series.

c.  What is the forecast for t = 6?

The following table reports the percentage of stocks in a portfolio for nine quarters from
2007 to 2009.

Quarter Stock %
1st—2007 29.8
2nd—2007 31.0
3rd—2007 29.9
4th—2007 30.1
1st—2008 32.2
2nd—2008 31.5
3rd—2008 32.0
4th—2008 31.9
1st—2009 30.0

a. Construct a time series plot. What type of pattern exists in the data?

b. Use trial and error to find a value of the exponential smoothing coefficient « that re-
sults in a relatively small MSE.

c. Using the exponential smoothing model you developed in part (b), what is the fore-
cast of the percentage of stocks in a typical portfolio for the second quarter of 2009?

Consider the following time series.
t ] 1 2 3 4 5 6 7
Y, | 120 110 100 9 94 92 88

a. Construct a time series plot. What type of pattern exists in the data?

b.  Use simple linear regression analysis to find the parameters for the line that minimizes
MSE for this time series.

c.  What is the forecast for r = 8?

Because of high tuition costs at state and private universities, enrollments at community
colleges have increased dramatically in recent years. The following data show the enroll-
ment (in thousands) for Jefferson Community College from 2001 to 2009.

Year Period () Enrollment (1000s)
2001 1 6.5
2002 2 8.1
2003 3 8.4
2004 4 10.2
2005 5 12.5
2006 6 13.3
2007 7 13.7
2008 8 17.2
2009 9 18.1
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21.

22.

23.

a. Construct a time series plot. What type of pattern exists in the data?

b. Use simple linear regression analysis to find the parameters for the line that minimizes
MSE for this time series.

¢.  What is the forecast for 2010?

The Seneca Children’s Fund (SCF) is a local charity that runs a summer camp for dis-
advantaged children. The fund’s board of directors has been working very hard over re-
cent years to decrease the amount of overhead expenses, a major factor in how charities
are rated by independent agencies. The following data show the percentage of the money
SCF has raised that were spent on administrative and f[und-raising expenses for
2003-2009.

Year Period (¢) Expense (%)
2003 1 13.9
2004 2 12.2
2005 3 10.5
2006 4 10.4
2007 5 11.5
2008 6 10.0
2009 7 8.5

a. Construct a time series plot. What type of pattern exists in the data?

b. Use simple linear regression analysis to find the parameters for the line that minimizes
MSE for this time series.

¢. Forecast the percentage of administrative expenses for 2010.

d. If SCF can maintain its current trend in reducing administrative expenses, how long
will it take SCF to achieve a level of 5% or less?

The president of a small manufacturing firm is concerned about the continual increase in
manufacturing costs over the past several years. The following figures provide a time se-
ries of the cost per unit for the firm’s leading product over the past eight years.

Year Cost/Unit ($) Year Cost/Unit ($)
1 20.00 5 26.60
2 24.50 6 30.00
3 28.20 7 31.00
4 27.50 8 36.00

a. Construct a time series plot. What type of pattern exists in the data?

b. Use simple linear regression analysis to find the parameters for the line that minimizes
MSE for this time series.

c.  What is the average cost increase that the firm has been realizing per year?

d.  Compute an estimate of the cost/unit for next year.

FRED® (Federal Reserve Economic Data), a database of more than 3000 U.S. economic
time series, contains historical data on foreign exchange rates. The following data
show the foreign exchange rate for the United States and China (http://research
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.stlouisfed.org/fred2/). The units for Rate are the number of Chinese yuan to one U.S.

dollar.

Year Month Rate

2007 October 7.5019
2007 November 7.4210
2007 December 7.3682
2008 January 7.2405
2008 February 7.1644
2008 March 7.0722
2008 April 6.9997
2008 May 6.9725
2008 June 6.8993
2008 July 6.8355

a. Construct a time series plot. Does a linear trend appear to be present?

b. Use simple linear regression analysis to find the parameters for the line that minimizes
MSE for this time series.

c. Use the trend equation to forecast the exchange rate for August 2008.

d.  Would you feel comfortable using the trend equation to forecast the exchange rate for
December 20087

24. Consider the following time series.

SELF| (1)}

Quarter Year 1 Year 2 Year 3
1 71 68 62
2 49 41 51
3 58 60 53
4 78 81 72

a. Construct a time series plot. What type of pattern exists in the data?

b. Use a multiple linear regression model with dummy variables as follows to develop
an equation to account for seasonal effects in the data. Qtrl = 1 if Quarter 1, O other-
wise; Qtr2 = 1 if Quarter 2, 0 otherwise; Qtr3 = 1 if Quarter 3, 0 otherwise.

c.  Compute the quarterly forecasts for next year.

25. Consider the following time series data.

Quarter Year 1 Year 2 Year 3
1 4 6 7
2 2 3 6
3 3 5 6
4 5 7 8

a. Construct a time series plot. What type of pattern exists in the data?

b. Use a multiple regression model with dummy variables as follows to develop an
equation to account for seasonal effects in the data. Qtr1 = 1 if Quarter 1, 0 otherwise;
Qtr2 = 1 if Quarter 2, 0 otherwise; Qtr3 = 1 if Quarter 3, O otherwise.

¢.  Compute the quarterly forecasts for next year.



230

WEBil[&

Pollution

WEB il (&

SouthShore

Chapter 6  Time Series Analysis and Forecasting

26.

217.

28.

The quarterly sales data (number of copies sold) for a college textbook over the past three
years follow.

Quarter Year 1 Year 2 Year 3
1 1690 1800 1850
2 940 900 1100
3 2625 2900 2930
4 2500 2360 2615

a. Construct a time series plot. What type of pattern exists in the data?

b. Use a regression model with dummy variables as follows to develop an equation to
account for seasonal effects in the data. Qtrl = 1 if Quarter 1, 0 otherwise; Qtr2 = 1
if Quarter 2, 0 otherwise; Qu3 = 1 if Quarter 3, O otherwise.

c.  Compute the quarterly forecasts for next year.

d. Letz =1 to refer to the observation in quarter 1 of year 1; = 2 to refer to the obser-
vation in quarter 2 of year 1; . .. ; and t = 12 to refer to the observation in quarter 4
of year 3. Using the dummy variables defined in part (b) and also using #, develop an
equation to account for seasonal effects and any linear trend in the time series. Based
upon the seasonal effects in the data and linear trend, compute the quarterly forecasts
for next year.

Air pollution control specialists in southern California monitor the amount of ozone, car-
bon dioxide, and nitrogen dioxide in the air on an hourly basis. The hourly time series data
exhibit seasonality, with the levels of pollutants showing patterns that vary over the hours
in the day. On July 15, 16, and 17, the following levels of nitrogen dioxide were observed
for the 12 hours from 6:00 A.m. to 6:00 p.m.

July15: 25 28 35 50 60 60 40 35 30 25 25 20
July16: 28 30 35 48 60 65 50 40 35 25 20 20
July17: 35 42 45 70 72 75 60 45 40 25 25 25

a. Construct a time series plot. What type of pattern exists in the data?
b. Use a multiple linear regression model with dummy variables as follows to develop
an equation to account for seasonal effects in the data:

Hourl = 1 if the reading was made between 6:00 a.m. and 7:00 a.m.; O otherwise

Hour2 = 1 if the reading was made between 7:00 aA.m. and 8:00 a.m.; O otherwise

Hourll = 1 if the reading was made between 4:00 p.m. and 5:00 p.m.; O otherwise

Note that when the values of the 11 dummy variables are equal to 0, the observation
corresponds to the 5:00 r.m. to 6:00 r.m. hour.

c. Using the equation developed in part (b), compute estimates of the levels of nitrogen
dioxide for July 18.

d. Letr = 1torefer to the observation in hour 1 on July 15; # = 2 to refer to the obser-
vation in hour 2 of July 15; ... ; and ¢t = 36 to refer to the observation in hour 12 of
July 17. Using the dummy variables defined in part (b) and ¢, develop an equation to
account for seasonal effects and any linear trend in the time series. Based upon the
seasonal effects in the data and linear trend, compute estimates of the levels of nitro-
gen dioxide for July 18.

South Shore Construction builds permanent docks and seawalls along the southern shore
of Long Island, New York. Although the firm has been in business only five years, revenue
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has increased from $308,000 in the first year of operation to $1,084,000 in the most recent

year. The following data show the quarterly sales revenue in thousands of dollars.

Quarter Year 1 Year 2 Year 3 Year 4 Year 5
1 20 37 75 92 176
2 100 136 155 202 282
3 175 245 326 384 445
4 13 26 48 82 181

a. Construct a time series plot. What type of pattern exists in the data?

b. Use a multiple regression model with dummy variables as follows to develop an
equation to account for seasonal effects in the data. Qtr1 = 1 if Quarter 1, 0 otherwise;
Qtr2 = 1 if Quarter 2, 0 otherwise; Qtr3 = 1 if Quarter 3, 0 otherwise.

¢.  LetPeriod = 1 to refer to the observation in quarter 1 of year 1; Period = 2 to refer to
the observation in quarter 2 of year 1; . . . and Period = 20 to refer to the observation
in quarter 4 of year 5. Using the dummy variables defined in part (b) and Period,
develop an equation to account for seasonal effects and any linear trend in the time
series. Based upon the scasonal effects in the data and linear trend, compute estimates
of quarterly sales for year 6.

Case Problem 1 Forecasting Food and Beverage Sales

WEB

Vintage

The Vintage Restaurant, on Captiva Island near Fort Myers, Florida, is owned and op-
erated by Karen Payne. The restaurant just completed its third year of operation. During
that time, Karen sought to establish a reputation for the restaurant as a high-quality din-
ing establishment that specializes in fresh seafood. Through the efforts of Karen and her
staff, her restaurant has become one of the best and fastest-growing restaurants on the
island.

To better plan for future growth of the restaurant, Karen needs to develop a system that will
enable her to forecast food and beverage sales by month for up to one year in advance.
Table 6.17 shows the value of food and beverage sales ($1000s) for the first three years of
operation.

TABLE 6.17 FOOD AND BEVERAGE SALES FOR THE VINTAGE RESTAURANT ($1000s)

Month First Year Second Year Third Year
January 242 263 282
February 235 238 255
March 232 247 265
April 178 193 205
May 184 193 210
June 140 149 160
July 145 157 166
August 152 161 174
September 110 122 126
October 130 130 148
November 152 167 173
December 206 230 235

© Cengage Learning 2013
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Managerial Report

Perform an analysis of the sales data for the Vintage Restaurant. Prepare a report for Karen
that summarizes your findings, forecasts, and recommendations. Include the following:

1. A time series plot. Comment on the underlying pattern in the time series.
2. Using the dummy variable approach, forecast sales for January through December
of the fourth year.

Assume that January sales for the fourth year turn out to be $295,000. What was your
forecast error? If this error is large, Karen may be puzzled about the difference between
your forecast and the actual sales value. What can you do to resolve her uncertainty in the
forecasting procedure?

Forecasting Lost Sales

The Carlson Department Store suffered heavy damage when a hurricane struck on August 31.
The store was closed for four months (September through December), and Carlson is now in-
volved in a dispute with its insurance company about the amount of lost sales during the time
the store was closed. Two key issues must be resolved: (1) the amount of sales Carlson would
have made if the hurricane had not struck and (2) whether Carlson is entitled to any compen-
sation for excess sales due to increased business activity after the storm. More than $8 billion
in federal disaster relief and insurance money came into the county, resulting in increased sales
at department stores and numerous other businesses.

Table 6.18 gives Carlson’s sales data for the 48 months preceding the storm. Table 6.19
reports total sales for the 48 months preceding the storm for all department stores in the
county, as well as the total sales in the county for the four months the Carlson Department
Store was closed. Carlson’s managers asked you to analyze these data and develop esti-
mates of the lost sales at the Carlson Department Store for the months of September through
December. They also asked you to determine whether a case can be made for excess storm-
related sales during the same period. If such a case can be made, Carlson is entitled to com-
pensation for excess sales it would have earned in addition to ordinary sales.

TABLE 6.18 SALES FOR CARLSON DEPARTMENT STORE ($ MILLIONS)

Month Year 1 Year 2 Year 3 Year 4 Year 5
January 1.45 2.31 2.31 2.56

. February 1.80 1.89 1.99 2.28
WEB flle March 2.03 2.02 242 2.69

April
May
June
July

CarlsonSales

1.99 2.23 2.45 2.48
2.32 2.39 2.57 2.73
2.20 2.14 242 2.37
2.13 2.27 2.40 2.31

August 2.43 2.21 2.50 2.23
September 1.71 1.90 1.89 2.09
October 1.90 2.13 2.29 2.54
November 2.74 2.56 2.83 2.97
December 4.20 4.16 4.04 4.35

© Cengage Learning 2013



Appendix 6.1  Forecasting with Excel Data Analysis Tools 233

TABLE 6.19 DEPARTMENT STORE SALES FOR THE COUNTY ($ MILLIONS)

Month Year 1 Year 2 Year 3 Year 4 Year 5

January 46.80 46.80 43.80 48.00

i February 48.00 48.60 45.60 51.60
WEBills]  March 60.00 59.40 57.60 57.60
April 57.60 58.20 53.40 58.20

CountySales May 61.80 60.60 56.40 60.00
June 58.20 55.20 52.80 57.00

July 56.40 51.00 54.00 57.60

August 63.00 58.80 60.60 61.80

September 55.80 57.60 49.80 47.40 69.00

October 56.40 53.40 54.60 54.60 75.00

November 71.40 71.40 65.40 67.80 85.20

December 117.60 114.00 102.00 100.20 121.80

Managerial Report

Prepare a report for the managers of the Carlson Department Store that summarizes your
findings, forecasts, and recommendations. Include the following:

1. An estimate of sales for Carlson Department Store had there been no hurricane

2. An estimate of countywide department store sales had there been no hurricane

3. An estimate of lost sales for the Carlson Department Store for September through
December

In addition, use the countywide actual department stores sales for September through De-
cember and the estimate in part (2) to make a case for or against excess storm-related sales.

Appendix 6.1 Forecasting with Excel Data Analysis Tools

In this appendix we show how Excel can be used to develop forecasts using three forecast-
ing methods: moving averages, exponential smoothing, and trend projection. We also show
how to use Excel Solver for least-squares fitting of models to data.

Moving Averages

To show how Excel can be used to develop forecasts using the moving averages method,
we develop a forecast for the gasoline sales time series in Table 6.1 and Figure 6.1. We as-
sume that the user has entered the week in rows 2 through 13 of column A and the sales
data for the 12 weeks into worksheet rows 2 through 13 of column B (as in Figure 6.13).

The following steps can be used to produce a three-week moving average.
If the Data Analysis option

does not appear in the Step 1. Select the Data tab
Analysis group, you will Step 2. From the Analysis group select the Data Analysis option
have 1o include the Add-In in Step 3. When the Data Analysis dialog box appears, choose Moving Average and
Excel. To do so, click on the SN
File tab, then click Optio click OK
ile tab, then click Options, . . .
and then Add-Ins. Click Go Step 4. When the Mmflng Average dialog box appears:
next to the Excel Add-Ins Enter B2:B13 in the Input Range box
drop-down box. Click the Enter 3 in the Interval box
box next to Analysis Enter C2 in the Output Range box

ToolPak and click OK. Click OK

© Cengage Learning 2013
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FIGURE 6.13 GASOLINE SALES DATA IN EXCEL ARRANGED TO USE THE MOVING
AVERAGES FUNCTION TO DEVELOP FORECASTS

EH9-®-|+ homework.xlsx - Microsoft Excel = [E E2
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Ready | |E@E 0% (- v D] 5

Once you have completed this step (as shown in Figure 6.14), the three-week moving av-
erage forecasts will appear in column C of the worksheet as in Figure 6.15. Note that fore-
casts for periods of other lengths can be computed easily by entering a different value in the
Interval box.

FIGURE 6.14 EXCEL MOVING AVERAGE DIALOGUE BOX FOR A 3-PERIOD MOVING
AVERAGE

Moving Average 1 _ﬂ;ﬂ

rInput 7
Input Range: e =S|

Cancel

1 Labels in First Row

- I

Interyal: |3 Help
roukbput option =
Output Range: |C2 S|
Mews Warkshest Ply: I

ety Wiorkbook

s

I™ Chart Sutput I™ Standard Errars
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FIGURE 6.15 GASOLINE SALES DATA AND OUTPUT OF MOVING AVERAGES

FUNCTION IN EXCEL
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Exponential Smoothing

To show how Excel can be used for exponential smoothing, we again develop a forecast for
the gasoline sales time series in Table 6.1 and Figure 6.1. We assume that the user has en-
tered the week in rows 2 through 13 of column A and the sales data for the 12 weeks into
worksheet rows 2 through 13 of column B (as in Figure 6.13), and that the smoothing con-
stant is & = 0.2. The following steps can be used to produce a forecast.

Step 1. Select the Data tab
Step 2. From the Analysis group select the Data Analysis option
Step 3. When the Data Analysis dialog box appears, choose Exponential Smooth-
ing and click OK
Step 4. When the Exponential Smoothing dialog box appears:
Enter B2:B13 in the Input Range box
Enter 0.8 in the Damping factor box
Enter C2 in the Output Range box
Click OK

Once you have completed this step (as shown in Figure 6.16), the exponential smoothing
forecasts will appear in column C of the worksheet (as in Figure 6.17). Note that the value
we entered in the Damping factor box is 1 — «; forecasts for other smoothing constants
can be computed easily by entering a different value for 1 — « in the Damping factor box.



236 Chapter 6  Time Series Analysis and Forecasting

FIGURE 6.16 EXCEL EXPONENTIAL SMOOTHING DIALOGUE BOX FOR « = 0.20
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FIGURE 6.17 GASOLINE SALES DATA AND OUTPUT OF EXPONENTIAL SMOOTHING

FUNCTION IN EXCEL
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Trend Projection

To show how Excel can be used for trend projection, we develop a forecast for the bicycle
sales time series in Table 6.3 and Figure 6.3. We assume that the user has entered the year
(1-10) for each observation into worksheet rows 2 through 11 of column A and the sales
values into worksheet rows 2 through 11 of column B as shown in Figure 6.18. The
following steps can be used to produce a forecast for year 11 by trend projection.

Step 1. Select the Formulas tab

Step 2. Select two cells in the row where you want the regression coefficients b, and
b, to appear (for this example, choose D1 and E1)

Step 3. Click on the Insert Function key
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Step 4. When the Insert Function dialog box appears:
Choose Statistical in the Or select a category box
Choose LINEST in the Select a function box
Click OK

See Figure 6.19 for an example of this step.

FIGURE 6.18 BICYCLE SALES DATA IN EXCEL ARRANGED TO USE THE LINEST
FUNCTION TO FIND THE LINEAR TREND
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FIGURE 6.19 EXCEL INSERT FUNCTION DIALOGUE BOX FOR THE FINDING THE
TREND LINE USING THE LINEST FUNCTION IN EXCEL

Search for a Function:

Twpe a brief description of what you want to do and then click et} |
Go

Or select a category: | Statistical j

Select a Function:

HYPGEDM,DIST =]
INTERCEPT

KURT

LARGE

LOGEST

LOGHORM.DIST =
LINEST{known_y's,known_x's,const,stats}

Returns statistics that describe a linear trend matching known data poinks, by
fitting a straight line using the least squares method.

Help on this Function [6]4 I Caricel
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Step 5. When the Function Arguments dialog box appears:
Enter B2:B11 in the Known_y’s box
Enter A2:A11 in the Known_x’s box
Click OK

See Figure 6.20 for an example of this step.

FIGURE 6.20 EXCEL FUNCTION ARGUMENTS DIALOGUE BOX FOR THE FINDING THE

TREND LINE USING THE LINEST FUNCTION IN EXCEL

2]
INEST
Known_y's |B2:511 | = 421.6;22.9;25.5:21.9,23.9;27.5;31....
known_x's [az.at1 B = {LZEm4Se7e;910
Const I Eﬂ = logical
Skats I E = logical
= {1.1,20.4}

Returns statistics that describe a linear trend matching known data points, by fitting a straight line using the least
squares method,

Known_x's is an optional set of x-values that you may already know in the
relationship ¥ = mx + b,

Formula result = 1.1

Help on this Function (o] I Cancel
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Step 6. Hit the F2 key and then simultaneously hit the Shift, Control, and Enter keys
(Shift + Control + Enter) to create an array that contains the values of the re-
gression coefficients b, and b,

At this point you have generated the regression coefficients b, and b, in the two cells
you originally selected in step 1. It is important to note that cell D1 contains b, and cell E1
contains b,

To generate a forecast, in a blank cell, multiply the value of the independent variable ¢
by b, and add the value of b to this product. For example, if you wish to use this linear trend
model to generate a forecast for year 11 and the value of b, is in cell D1 and the value of b,
is in cell E1, then enter =11*D1+E1 in a blank cell. The forecast for year 11, in this
case 32.5, will appear in the blank cell in which you enter this formula.

Models with Seasonality and No Trend

To show how Excel can be used to fit models with seasonality, we develop a forecast for the
umbrella sales time series in Table 6.13 and Figure 6.11. We assume that the user has en-
tered the year (1-5) for each observation into worksheet rows 3 through 22 of column A;
the values for the quarter in worksheet rows 3 through 22 of column B; the values for the
quarterly dummy variables Qtrl,, Qtr2,, and Qtr3, in worksheet rows 3 through 22 of
columns C, D, and E, respectively; and the sales values into worksheet rows 3 through 22
of column F. The following steps can be used to produce a forecast for year 11 by trend
projection as shown in Figure 6.21.
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FIGURE 6.21

UMBRELLA SALES DATA IN EXCEL ARRANGED TO USE THE LINEST
FUNCTION TO FIND THE SEASONAL COMPONENTS

Forecasting with Excel Data Analysis Tools
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Step 1.
Step 2.

Step 3.
Step 4.

Step 5.

Step 6.

Select the Formulas tab
Select four cells in the row where you want the regression coefficients b5, b,,

b,, and b, to appear (for this example, choose G1:J1)

Click on the Insert Function key
When the Insert Function dialog box appears:
Choose Statistical in the Or select a category box

Choose LINEST in the Select a function box

Click OK
When the Function Arguments dialog box appears:
Enter F3:F22 in the Known_y’s box
Enter C3:E22 in the Known_x’s box
Click OK

See Figure 6.22 for an example of this step.

Hit the F2 key and then simultancously hit the Shift, Control, and Enter keys
(Shift + Control + Enter) to create an array that contains the values of the
regression coefficients bs, b,, b, and b,
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FIGURE 6.22 EXCEL FUNCTION ARGUMENTS DIALOGUE BOX FOR THE FINDING THE

SEASONAL COMPONENTS USING THE LINEST FUNCTION IN EXCEL

Funcion rguments T
INEST
Known_y's [Fa:Fzz Rl = {125153108;88;118;161;133;102;..,
Known_x's |C3:E22 ﬁ = 41,0,0;0,1,0;0,0,1;0,0,0;1,0,0;0,1,...
Consk I E = logical
Stats | ﬁ = logical

= {26,57,79,05}
Returns statistics that describe a linear trend matching known data points, by fitting a straight line using the least
squares method,

Known_xr's is an optional set of x-values that wou may already know in the
relationship v = mx + b,

Formula result = 26
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At this point you have generated the regression coefficients b;, b,, b, and b, in cells
G1:J1 selected in step 1. It is important to note that the first cell you selected contains b5,
the second cell you selected contains b,, the third cell you selected contains b, and the
fourth cell you selected contains b, (i.e., if you selected cells G1:J1 in step 1, the value of
b, will be in cell G1, the value of b, will be in H1, the value of b, will be in I1, and the value
of b, will be in cell J1).

To generate a forecast, in a blank cell, add together b, and the product of b, and Qtr1,,
the product of b, and Qtr2,, and the product of b; and Qur3,. For example, if you wish to
use this linear trend model to generate a forecast for the first quarter of next year and the
value of b5 is in cell G1, the value of b, is in cell H1, the value of b, is in cell I1, and the
value of b, is in cell J1, then enter =1*G1+0*H1+0*I1+J1 in a blank cell. The forecast
for the first quarter of next year, in this case 124.0, will appear in the blank cell in which
you enter this formula.

Models with Seasonality and Linear Trend

To show how Excel can be used to fit models with scasonality and a linear trend, we de-
velop a forecast for the umbrella set time serics in Table 6.13 and Figure 6.11. We assume
that the user has entered the year (1-5) for ecach observation into worksheet rows 3 through
22 of column A; the values for the quarter in worksheet rows 3 through 22 of column B;
the values for the quarterly dummy variables Qtrl,, Qtr2,, and Qtr3, into worksheet rows 3
through 22 of columns C, D, and E, respectively; the values of period ¢ into worksheet rows
3 through 22 of column F; and the sales values into workshect rows 3 through 22 of col-
umn G. The following steps can be used to produce a forecast for year 11 by trend projec-
tion as shown in Figure 6.23.

Step 1. Sclect the Formulas tab

Step 2. Select five cells in the row where you want the regression coefficients by, bs,
b,, by, and b, to appear for this example; choose HI:L1

Step 3. Click on the Insert Function key



Appendix 6.1  Forecasting with Excel Data Analysis Tools 241

FIGURE 6.23 UMBRELLA TIME SERIES DATA IN EXCEL ARRANGED TO USE THE
LINEST FUNCTION TO FIND BOTH THE SEASONAL COMPONENTS AND

TREND COMPONENT
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Step 4. When the Insert Function dialog box appears:
Choose Statistical in the Or select a category box
Choose LINEST in the Select a function box
Click OK
Step 5. When the Function Arguments dialog box appears:
Enter G3:G22 in the Known_y’s box
Enter C3:F22 in the Known_x’s box
Click OK
Step 6. Hit the F2 key and then simultaneously hit the Shift, Control, and Enter keys
(Shift + Control + Enter) to create an array that contains the values of the
regression coefficients by, bs, b,, b, and b,

At this point you have generated the regression coefficients b,, bs, b,, b, and b, in cells
HI:L1 selected in step 1. It is important to note that the first cell you selected contains b,,
the second cell you selected contains b, the third cell you selected contains b,, the fourth
cell you selected contains b, and the fifth cell you selected contains by (i.e., if you selected
cells HI:L1 in step 1, the value of b, will be in cell H1, the value of b, will be in cell I1, the
value of b, will be in J1, the value of b, will be in K1, and the value of b, will be in cell L1).
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To generate a forecast, in a blank cell, add together b, and the product of b, and Qtr1,, the
product of b, and Qtr2,, the product of b5 and Qtr3,, and the product of b, and 7. For example,
if you wish to use this linear trend model to generate a forecast for the first quarter of year 5
and the value of b, is in cell H1, the value of b, is in cell 11, the value of b, is in cell J1, the
value of b is in cell K1, and the value of b, is in cell L1, then enter =17*HI1+
1*11+0%J1+0*K1+L1 in a blank cell. The forecast for the first quarter of next year, in this
case 7.19, will appear in the blank cell in which you enter this formula.

Using CB Predictor for Forecasting

CB Predictor is an easy-to-use, graphically oriented forecasting add-in package. It is
included as part of the Crystal Ball risk analysis package that accompanies the text. In
this appendix we show how CB Predictor can be used to develop forecasts using two
forecasting methods: moving averages and exponential smoothing. We also briefly discuss
some of the other forecasting techniques available using CB Predictor. Instructions for in-
stalling and starting CB Predictor are included with the Crystal Ball software.

Moving Averages

To demonstrate how to use CB Predictor to develop forecasts using the moving averages
method, we will develop a forecast for the gasoline sales time series in Table 6.1 and Fig-
ure 6.1. The labels Week and Sales are entered into cells A1:B1 of an Excel worksheet. To
identify each of the 12 observations, we enter the numbers 1 through 12 into cells A2:A13.
The corresponding sales data are entered in cells B2:B13. You can use the following steps
to produce a three-week moving average:

Step 1. Click the Crystal Ball tab on the Ribbon
Step 2. In the Tools group click Predictor
Step 3. When the Predictor dialogue box appears, click on Input Data and then
Enter A1:B13 in the range box labeled Location of data series
For Orientation select Data in columns
For Headers select both Top row has headers and Left column has dates
Click Next
Step 4. When the Data Attributes screen of the Predictor dialog box appears:
Select weeks from the Data is in list
Select Non-seasonal from the Seasonality list
Click Next
Step 5. When the Methods screen of the Predictor dialog box appears:
Select Single Moving Average from the Select Methods list (and deselect
Single Exponential Smoothing, Double Moving Average, and Double
Exponential Smoothing if necessary)
Double-click over the Single Moving Average method area
Step 6. When the Single Moving Average dialog box appears:
Select Lock parameters from the Parameters list
Enter 3 in the Order box
Click OK
Step 7. When the Methods screen of the Predictor dialog box appears, click Next
Step 8. When the Options tab of the Predictor dialog box reappears:
Click the measure of error you wish to use under Error measure:
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RMSE—Root Mean Square Error (this is the square root of the mean
square error or MSE we used throughout this chapter)
MAD—Mean Absolute Deviation (this is another name for the mean
absolute error or MAE we used throughout this chapter)
MAPE—Mean Absolute Percentage Error
Click Simple lead under Forecasting technique and enter 1 in the adjacent
box (to indicate you wish to forecast one period beyond the raw data in
cells B2:B13)
Click Run
Step 9. In the Predictor Results dialogue box, click on Paste in the lower right-hand
corner under Forecasts
Step 10. In the Paste Forecasts to Spreadsheet dialogue box:
Select At end of historical data under Location
Click OK

The three-week moving average forecast of 19 for week 13 will appear in cell B14. To re-
access the Predictor Results dialogue box, select View Charts in the Analyze group of
the Crystal Ball ribbon tab, and then select Predictor Charts. Note that the Predictor
Results dialogue box provides many summary measures of forecast accuracy as well as two
views (Chart and Table) that you can access by clicking on View and selecting the
corresponding option (clicking on Show statistics in View allows you to toggle between
showing and hiding the summary statistics in the right portion of this dialogue box). By
clicking Analyze you can create several reports and extract the data to a location in your
current workbook or to new workbook. Several other useful options are also included under
Preferences.

Exponential Smoothing

To demonstrate how to use CB Predictor for exponential smoothing, we again develop a
forecast for the gasoline sales time series in Table 6.1 and Figure 6.1. The labels Week and
Sales are entered into cells A1:B1 of the worksheet; the numbers 1 through 12 are entered
into cells A2:A13 to identify each of the 12 observations; and the sales data are entered in
cells B2:B13. You can use the following steps to produce a forecast with simple exponen-
tial smoothing with a smoothing constant of a = 0.2:

Step 1. Click the Crystal Ball tab on the Ribbon

Step 2. In the Tools group, click Predictor

Step 3. When the Predictor dialogue box appears, click on Input Data and then
Enter A1:B13 in the range box labeled Location of data series
For Orientation select Data in columns
For Headers select both Top row has headers and Left column has dates
Click Next

Step 4. When the Data Attributes screen of the Predictor dialog box appears:
Select weeks [rom the Data is in list
Select Non-seasonal from the Seasonality list
Click Next

Step 5. When the Methods screen of the Predictor dialog box appears:
Select Single Exponential Smoothing [rom the Select Methods list (and
deselect Single Moving Average, Double Moving Average, and Double
Exponential Smoothing if necessary)
Double-click over the Single Exponential Smoothing method area
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Step 6. When the Single Exponential Smoothing dialog box appears:
Select Lock parameters from the Parameters list
Enter 0.2 in the Alpha box
Click OK
Step 7. When the Methods screen of the Predictor dialog box appears, click Next
Step 8. When the Options tab of the Predictor dialog box reappears:
Click the measure of error you wish to use under Error measure:
RMSE—Root Mean Square Error (this is the square root of the mean
square error or MSE we used throughout this chapter)
MAD—Mean Absolute Deviation (this is another name for the mean
absolute error or MAE we used throughout this chapter)
MAPE—Mean Absolute Percentage Error
Click Simple lead under Forecasting technique and enter 1 in the adjacent
box (to indicate you wish to forecast one period beyond the raw data in
cells B2:B13)
Click Run
Step 9. In the Predictor Results dialogue box, click on Paste in the lower right-hand
corner under Forecasts
Step 10. In the Paste Forecasts to Spreadsheet dialogue box:
Select At end of historical data under Location
Click OK

The exponential smoothing forecast (with & = 0.2) of 19.185 for week 13 will appear in
cell B14. The Predictor Results dialogue box provides same summary measures of fore-
cast accuracy as well the other options discussed in the demonstration of using CB Predic-
tor to produce forecasts with moving averages.

Other Forecasting Methods

In addition to moving averages and exponential smoothing, CB Predictor offers a variety
of other forecasting methods that can be used for nonseasonal data with no trend, for non-
seasonal data with trend, for seasonal data with no trend, and for seasonal data with trend.
The “basic” models available in CB Predictor are the following:

Nonseasonal Seasonal
Single Moving Single Exponential Seasonal Seasonal
Average Smoothing Additive Multiplicative
Double Moving Double Exponential Holt-Winters Holt-Winters
Average Smoothing Additive Multiplicative

Thus, if the time series data contain both seasonal and trend components, the CB Predictor
methods that are best designed to work for these situations are the Holt-Winters Additive
method or the Holt-Winters Multiplicative method. Although a discussion of all the
forecasting methods available using CB Predictor is beyond the scope of this text, more
advanced books on forecasting discuss each of these techniques in detail.



