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Chapter 3 Probability Distributions 63

In this chapter we continue the study of probability by introducing the concepts of random
variables and probability distributions. We consider the probability distributions of both
discrete and continuous random variables. Of particular interest are the binomial, Poisson,
uniform, normal, and exponential probability distributions. These probability distributions
are of great interest because they are used extensively in practice. The Q.M. in Action,
ESPN and Probability, describes how the development and use of a probability distribution

helped the organization enhance its audience’s enjoyment and understanding of sports.

@ACHON

ESPN AND PROBABILITY*

The Entertainment and Sports Programming Network,
known as ESPN since 1985, was originally established
as a nationwide cable-television network dedicated to
broadcasting and producing sports-related program-
ming. The Bristol, Connecticut—based network, which
provides programming 24 hours a day throughout the
year, has grown rapidly since its debut on September 7,
1979. At various times its programming has included
Major League Baseball, the National Football League
(NFL), the National Basketball Association (NBA), the
National Hockey League (NHL), NASCAR, NCAA
Football and Basketball, Major League Soccer (MLS),
the Men’s and Women'’s professional golf associations
(PGA and LPGA), and Men’s and Women’s professional
tennis (ATP and WTA). ESPN is now in over 100 mil-
lion homes in the United States, and ESPN International
spans over 200 countries and territories on all seven con-
tinents and includes 46 television networks reaching
over 350 million subscribers in 16 languages, plus wire-
less, interactive, print, radio, broadband, event manage-
ment, and consumer products.

ESPN’s rapid growth has coincided with a dramatic
increase in sports fans’ desire for more sophisticated
analyses. The organization responded to this trend by es-
tablishing its Production Analytics department, a group
of analysts who provide all of ESPN’s media platforms
with statistical analyses for a wide variety of sports prob-
lems. Senior Director of the Production Analytics de-
partment Jeff Bennett explains that “ESPN appreciates
the sports fan’s passion for meaningful analytics, and we
are dedicated to creating and providing this content.

*The authors are indebted to Jeff Bennett and Alok Pattani of ESPN Inc.
for providing input for this Q.M. in Action.

Basic probability and statistics are critical tools in our
analytic arsenal.”

Alok Pattani, who is an Analytics Specialist in the
Production Analytics department, further describes the
department’s uses of some specific probability concepts.
“For example, we use very basic probability to determine
the likelihood an NBA team will win one of the first three
picks in the NBA draft. The league holds a Draft Lottery
to determine which of its fourteen teams that didn’t qual-
ify for the playoffs during the most recent season will re-
ceive each of the first three picks, which are considered to
be extremely valuable. The lottery is weighted so that
teams with worse records have better chances of obtain-
ing early picks, and we use information on how many
chances each team is allocated to calculate the probabil-
ity that any of these fourteen teams will win one of those
top picks.

“Conditional probability is also very important; when
we look at the probability a team will win a home game
or a player will get a hit when playing at night, we are us-
ing conditional probability.” Alok continues, “We use
probability distributions extensively in our work, espe-
cially the binomial and normal distributions. We apply the
binomial distribution to all kinds of success and failure
situations such as wins and losses, field goals and missed
shots in basketball, complete and incomplete passes in
football, and hits and outs in baseball. The binomial dis-
tribution is also useful when estimating the probability of
a hitting streak in baseball or a winning streak in any
sport.”

Bennett adds, “The results of these types of analyses
are of great interest to ESPN’s base. They enhance the
fan’s enjoyment and understanding of his or her favorite
sports, and that is good business for ESPN.”
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Random variables must
assume numeric values.

Try Problem 1 for practice
in identifying discrete and
continuous random
variables.

Chapter 3 Probability Distributions

Random Variables

Recall that in Chapter 2 we defined an experiment as any process that generates well-
defined outcomes. We now want to concentrate on the process of assigning numeric values
to experimental outcomes. To do so we introduce the notion of a random variable.

For any particular experiment a random variable can be defined so that each possible ex-
perimental outcome generates exactly one numeric value for the random variable. For
example, if we consider the experiment of selling automobiles for one day at a particular deal-
ership, we could describe the experimental outcomes in terms of the number of cars sold. In
this case, if x = number of cars sold, x is called a random variable. The particular numeric
value that the random variable assumes depends on the outcome of the experiment; that is, we
will not know the specific value of the random variable until we have observed the experi-
mental outcome. For example, if on a given day three cars are sold, the value of the random
variable is 3; if on another day (a repeat of the experiment) four cars are sold, the value is 4.
We define a random variable as follows:

A random variable is a numeric description of the outcome of an experiment.

Some additional examples of experiments and their associated random variables are
given in Table 3.1. Although many experiments have experimental outcomes that lend
themselves quite naturally to numeric values, others do not. For example, for the experi-
ment of tossing a coin one time, the experimental outcome will be either a head or a tail,
neither of which has a natural numeric value. However, we still may want to express the
outcomes in terms of a random variable. Thus, we need a rule that can be used to assign a
numeric value to each of the experimental outcomes. One possibility is to let the random
variable x = 1 if the experimental outcome is a head and x = 0 if the experimental outcome
is a tail. Although the numeric values for x are arbitrary, x is a random variable because it
describes the experimental outcomes numerically.

A random variable may be classified as either discrete or continuous, depending on the
numeric values it may assume. A random variable that may assume only a finite or an infi-
nite sequence (e.g., 1, 2, 3, ...) of values is a discrete random variable. The number of
units sold, the number of defects observed, the number of customers that enter a bank dur-
ing one day of operation, and so on are examples of discrete random variables. The first two
and the last random variables in Table 3.1 are discrete. Random variables such as weight,
time, and temperature that may assume any value in a certain interval or collection of
intervals are continuous random variables. For instance, the third random variable in
Table 3.1 is a continuous random variable because it may assume any value in the interval
from 0 to 100 (for example, 56.33 or 64.223).

TABLE 3.1 EXAMPLES OF RANDOM VARIABLES

Possible Values for

Experiment Random Variable (x) the Random Variable
Make 100 sales calls Total number of sales 0,1,2,...,100
Inspect a shipment of 70 radios ~ Number of defective radios 0,1,2,...,70
Build a new library Percentage of project completed 0=x=100

after 6 months
Operate a restaurant Number of customers entering 0,1,2,...

in one day

© Cengage Learning 2013
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NOTES AND COMMENTS

1. One way to determine whether a random variable

potato chips and you choose 16.0005 ounces and

is discrete or continuous is to think of the values
of the random variable as points on a line. Choose
two points representing values the random vari-
able might assume. If the entire line segment be-
tween the two points also represents possible
values for the random variable, the random vari-
able is continuous. An alternative (but equiva-
lent) way of determining whether a random
variable is discrete or continuous is to choose two
points that represent values the random variable
might assume. If, no matter what two points you
initially chose, you can always find a third point
between your initial two points that also repre-
sents a value of the random variable, the random
variable is continuous. For example, if your ran-
dom variable is the exact weight of a bag of

16.0006 ounces as your original two points, the
point 16.00051 (or 16.00052 or 16.00053, etc.)
ounces represents a possible value of the exact
weight of the bag of potato chips and lies between
your intial two points. No matter what two values
you initially select, you can find another value that
represents a value of the random variable and lies
between your initial two points. On the other
hand, if your random variable is the number of
customers who enter a restaurant in a day and you
choose 109 customers and 110 customers as your
initial two points, there is no point that represents
a value of the random variable and lies between
your initial two points (i.e., you cannot have 109.7
customers enter a restaurant on a particular day).
This indicates that the random variable is discrete.

Discrete Random Variables

G2)

We can demonstrate the use of a discrete random variable by considering the sales of auto-
mobiles at DiCarlo Motors, Inc., in Saratoga, New York. The owner of DiCarlo Motors is in-
terested in the daily sales volume for automobiles. Suppose that we let x be a random variable
denoting the number of cars sold on a given day. Sales records show that 5 is the maximum
number of cars that DiCarlo has ever sold during one day. The owner believes that the previ-
ous history of sales adequately represents what will occur in the future, so we would expect
the random variable x to assume one of the numeric values 0, 1,2, 3, 4, or 5. The possible val-
ues of the random variable are finite; thus we would classify x as a discrete random variable.

Probability Distribution of a Discrete Random Variable

Suppose that in checking DiCarlo’s sales records we find that over the past year the firm
was open for business 300 days. The sales volumes generated and the frequency of their
occurrence are summarized in Table 3.2. With these historical data available, the owner of

TABLE 3.2 CARS SOLD PER DAY AT DICARLO MOTORS

Sales Volume Number of Days
No sales 54
One car 117
Two cars 72
Three cars 42
Four cars 12
Five cars _'%
Total 300

© Cengage Learning 2013
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TABLE 3.3 PROBABILITY DISTRIBUTION FOR THE NUMBER OF CARS SOLD PER DAY

Sx)
0.18
0.39
0.24
0.14
0.04
001

Total 1.00

N W — O %

© Cengage Learning 2013

DiCarlo Motors believes that the relative frequency method will provide a reasonable means
of assessing the probabilities for the random variable x. The probability function, denoted
f(x), provides the probability that the random variable x takes on a specific value. Because
on 54 of the 300 days of historical data DiCarlo Motors did not sell any cars and because
no sales corresponds to x = 0, we assign to (0) the value 3*/;,, = 0.18. Similarly, f(1) de-
notes the probability that x takes on the value 1, so we assign to f(1) the value '"/;;, = 0.39.
After computing the relative frequencies for the other possible values of x, we can develop
a table of x and f(x) values. Table 3.3 shows a tabular presentation of the probability distri-
bution of the random variable x.

We can also represent the probability distribution of x graphically. In Figure 3.1 the val-
ues of the random variable x are shown on the horizontal axis. The probability that x takes
on each of these values is shown on the vertical axis. For many discrete random variables
the probability distribution also can be represented as a formula that provides f(x) for every
possible value of x. We illustrate this approach in the next section.

FIGURE 3.1 PROBABILITY DISTRIBUTION FOR THE NUMBER OF CARS SOLD

PER DAY
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In Section 2.2 we defined
the two basic requirements
of all probability
assignments as 0 = P(E;) =
1 and 2P(E;) = 1.
Equations (3.1) and (3.2)
are the analogs of these
basic requirements.

Try Problem 3 for practice
in constructing a discrete
probability distribution.
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In the development of a discrete probability distribution, two requirements must al-
ways be satisfied:

f=0 (3.1)
Sfx =1 (3.2)

Equation (3.1) specifies that the probabilities associated with each value of x must be
greater than or equal to zero, whereas equation (3.2) indicates that the sum of the probabil-
ities for all values of the random variable x must be equal to 1. Table 3.3 shows that equa-
tions (3.1) and (3.2) are satisfied. Thus, the probability distribution developed for DiCarlo
Motors is a valid discrete probability distribution.

After establishing a random variable and its probability distribution, we can develop a
variety of additional probability information, depending on the needs and interests of the
decision maker. For example, in the DiCarlo Motors problem the probability distribution
shown in Table 3.3 can be used to provide the following information:

1. There is a 0.18 probability that no cars will be sold during a day.

2. The most probable sales volume is 1, with f(1) = 0.39.

3. There is a 0.05 probability of an outstanding sales day with four or five cars being
sold.

Using probability information such as that just given, DiCarlo’s management can under-
stand better the uncertainties associated with the car sales operation. Perhaps this improved
understanding can serve as the basis for a new policy or decision that will increase the ef-
fectiveness of the firm.

Expected Value

After constructing the probability distribution for a random variable, we often want to com-
pute the mean or expected value of the random variable. The expected value of a discrete
random variable is a weighted average of all possible values of the random variable, where
the weights are the probabilities associated with the values. The mathematical formula for
computing the expected value of a discrete random variable x is

E() = p = Sxf(x) (3.3)

As equation (3.3) shows, both the notations E(x) and u are used to refer to the expected value
of a random variable.

To compute the expected value of a discrete random variable, we must multiply each
value of the random variable by its corresponding probability and then add the resulting
terms. Calculation of the expected value of the random variable (number of daily sales) for
DiCarlo Motors is shown in Table 3.4. The first column contains the values of the random
variable x, and the second column contains their associated probabilities f(x). Multiplying
each value of x by its probability f(x) provides the xf(x) values in the third column. Fol-
lowing equation (3.3), we sum this column, > xf(x), to find the expected value of 1.50 cars
sold per day.

The expected value of a random variable is the mean, or average, value. For experiments
that can be repeated numerous times, the expected value can be interpreted as the “long-run”
average value for the random variable. However, the expected value is not necessarily the
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An alternative formula for
the variance of a discrete
random variable is Var(x) =

SXfx) — u

Chapter 3 Probability Distributions

TABLE 3.4 EXPECTED VALUE CALCULATION

5 S(x) xf(x)
0 0.18 0(0.18) = 0.00
1 0.39 1(0.39) = 0.39
2 0.24 2(0.24) = 0.48
3 0.14 3(0.14) = 0.42
4 0.04 4(0.04) = 0.16
5 0.01 5(0.01) = 0.05
E(x) = 1.50

number that we think the random variable will assume the next time the experiment is con-
ducted. In fact, it is impossible for DiCarlo to sell exactly 1.50 cars on any day. However, if
we envision selling cars at DiCarlo Motors for many days into the future, the expected value
of 1.50 cars provides the mean, or average, daily sales volume.

The expected value can be important to a manager from both the planning and decision-
making points of view. For example, suppose that DiCarlo Motors will be open 60 days dur-
ing the next three months. How many cars will be sold during this time? Although we can’t
specify the exact sales for any given day, the expected value of 1.50 cars per day provides
an expected or average sales estimate of 60(1.50) = 90 cars for the next three-month period.
In terms of setting sales quotas and/or planning orders, the expected value may provide
helpful decision-making information.

Variance

The expected value gives us an idea of the average or central value for the random variable,
but we often want a measure of the dispersion, or variability, of the possible values of the
random variable. For example, if the values of the random variable range from quite large
to quite small, we would expect a large value for the measure of variability. If the values
of the random variable show only modest variation, we would expect a relatively small
value for the measure of variability. The variance is a measure commonly used to summa-
rize the variability in the values of a random variable. The mathematical expression for the
variance of a discrete random variable is

Var(x) = 0% = 3(x — w)’f(x) (3.4)

As equation (3.4) shows, an essential part of the variance formula is a deviation, x — u,
which measures how far a particular value of the random variable is from the expected value
or mean, u. In computing the variance of a discrete random variable, we square the devia-
tions and then weight them by the corresponding probability. The sum of these weighted
squared deviations for all values of the random variable is the variance. In other words, the
variance is a weighted average of the squared deviations.

The calculation of the variance for the number of daily sales in the DiCarlo Motors
problem is summarized in Table 3.5. We see that the variance for the number of cars sold
per day is 1.25. A related measure of variability is the standard deviation, o, which is

© Cengage Learning 2013



Try Problem 4 to be sure
you can compute the
expected value, variance,
and standard deviation.
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TABLE 3.5 VARIANCE CALCULATION

x x—p c—p? [ (x — W)
0 0—150=—-1.50 2.25 0.18 2.25(0.18) = 0.4050
1 1 —1.50=—-0.50 0.25 0.39 0.25(0.39) = 0.0975
2 2—150= 0.50 0.25 0.24 0.25(0.24) = 0.0600
3 3—150= 1.50 2.25 0.14 2.25(0.14) = 0.3150
4 4—-150= 250 6.25 0.04 6.25(0.04) = 0.2500
5 5—150= 3.50 12.25 0.01 12.25(0.01) = 0.1225
o? = 1.2500

defined as the positive square root of the variance. For DiCarlo Motors, the standard devi-
ation of the number of cars sold per day is

o=V125=1.118

For the purpose of easier managerial interpretation, the standard deviation may be preferred
over the variance because it is measured in the same units as the random variable (o = 1.118
cars sold per day). The variance (o) is measured in squared units and is thus more difficult
for a manager to interpret.

At this point our interpretation of the variance and the standard deviation is limited to
comparisons of the variability of different random variables. For example, if the daily sales
data from a second DiCarlo dealership in Albany, New York, provided o* = 2.56 and o =
1.6, we can conclude that the number of cars sold per day at this dealership exhibits more
variability than at the first DiCarlo dealership, where o> = 1.25 and o = 1.118. Later in
this chapter we discuss the normal distribution. For that probability distribution, we show
that the variance and the standard deviation of the random variable are essential for mak-
ing probability calculations.

Binomial Probability Distribution

In this section we consider a class of experiments that meet the following conditions:

1. The experiment consists of a sequence of n identical trials.

2. Two outcomes are possible on each trial. We refer to one outcome as a success and
the other as a failure.

3. The probabilities of the two outcomes do not change from one trial to the next.

4. The trials are independent (i.e., the outcome of one trial does not affect the outcome
of any other trial).

Experiments that satisfy conditions 2, 3, and 4 are said to be generated by a Bernoulli
process. In addition, if condition 1 is satisfied (there are n identical trials), we have a bino-
mial experiment. An important discrete random variable associated with the binomial ex-
periment is the number of outcomes labeled success in the # trials. If we let x denote the
value of this random variable, then x can have a value of 0, 1, 2, 3, . . ., n, depending on the
number of successes observed in the n trials. The probability distribution associated with
this random variable is called the binomial probability distribution.

© Cengage Learning 2013
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Try Problem 9, parts (a—d),
for practice computing
binomial probabilities.
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In cases where the binomial distribution is applicable, the mathematical formula for
computing the probability of any value for the random variable is the binomial probability
function

f(x)z,niipx(l -pt x=01L....n (3-5)
x!(n — x)!

where

n = number of trials
p = probability of success on one trial
X = number of successes in n trials

f(x) = probability of x successes in 7 trials

The term n! in the preceding expression is referred to as n factorial and is defined as
n!=nn— n—2)---2)1)

For example, 4! = (4)(3)(2)(1) = 24. Also, by definition, the special case of zero factorial
is0! = 1.

Nastke Clothing Store Problem

To illustrate the binomial probability distribution, let us consider the experiment of cus-
tomers entering the Nastke Clothing Store. To keep the problem relatively small, we restrict
the experiment to the next three customers. If, based on experience, the store manager
estimates that the probability of a customer making a purchase is 0.30, what is the proba-
bility that exactly two of the next three customers make a purchase?

We first want to demonstrate that three customers entering the clothing store and de-
ciding whether to make a purchase can be viewed as a binomial experiment. Checking the
four requirements for a binomial experiment, we note the following:

1. The experiment can be described as a sequence of three identical trials, one trial for
each of the three customers who will enter the store.

2. Two outcomes—the customer makes a purchase (success) or the customer does not
make a purchase (failure)—are possible for each trial.

3. The probabilities of the purchase (0.30) and no purchase (0.70) outcomes are as-
sumed to be the same for all customers.

4. The purchase decision of each customer is independent of the purchase decision of
the other customers.

Thus, if we define the random variable x as the number of customers making a purchase
(i.e., the number of successes in the three trials), we satisfy the requirements of the bino-
mial probability distribution.

With n = 3 trials and the probability of a purchase p = 0.30 for each customer, we use
equation (3.5) to compute the probability of two customers making a purchase. This prob-
ability, denoted f(2), is

3!
f2) = L (0.30)%(0.70)!

3x2x1

=—""—(0.30)%0.70)' = 0.189
lexl( y(0.70)
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TABLE 3.6 PROBABILITY DISTRIBUTION FOR THE NUMBER OF CUSTOMERS

© Cengage Learning 2013

MAKING A PURCHASE

x J@)

0 0.343

1 0.441

2 0.189

3 0.027
Total 1.000

Try Problem 12 for an Similarly, the probability of no customers making a purchase, denoted f{0), is

application of the binomial

distribution.

_ 3 0 3
0) = 5157 (030)%0.70)

3X2X1

= ———————(030)°0.70)" = 0.343
Ix3x2x1 P00

Equation (3.5) can be used in a similar manner to show that the probabilities of one and
three purchases are f(1) = 0.441 and f(3) = 0.027. Table 3.6 and Figure 3.2 summarize the
binomial probability distribution for the Nastke Clothing Store problem.

If we consider any variation of the Nastke problem, such as 10 customers rather than 3
customers entering the store, the binomial probability function given by equation (3.5) still

FIGURE 3.2 PROBABILITY DISTRIBUTION FOR THE NASTKE CLOTHING STORE
PROBLEM

fx)

40

20

Probability

00 |
0 1 2 3

Number of Customers Making
a Purchase
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With modern computers and
calculators, these tables are
almost unnecessary. It is
easy to evaluate equation
(3.5) directly.

Chapter 3 Probability Distributions

applies. For example, the probability that 4 of the 10 customers make a purchase is

_ 1o 4 6 _
fé4 = 216! (0.30)*(0.70)° = 0.2001
In this binomial experiment, n = 10, x = 4, and p = 0.30.

With the use of equation (3.5), tables have been developed that provide the probability
of x successes in n trials for a binomial experiment. Such a table of binomial probability
values is provided in Appendix B. We include a partial binomial table in Table 3.7. In order
to use this table, specify the values of n, p, and x for the binomial experiment of interest.
Check the use of this table by employing it to verify the probability of four successes in

TABLE 3.7 SELECTED VALUES FROM THE BINOMIAL PROBABILITY TABLE. EXAMPLE: n = 10, x = 4,
p = 0.30; f(4) = 0.2001

14

0.05

0.6302
0.2985
0.0629
0.0077
0.0006
0.0000
0.0000
0.0000
0.0000
0.0000

0.5987
0.3151
0.0746
0.0105
0.0010
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000

0.5688
0.3293
0.0867
0.0137
0.0014
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

—
(e}

—_

—_
—_
— OV NOUNPEWNON—,O DO NEWND—O Voo bW —O

—_

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.3874 0.2316 0.1342  0.0751 0.0404 0.0207 0.0101 0.0046 0.0020
0.3874  0.3679 0.3020 0.2253 0.1556 0.1004 0.0605 0.0339 0.0176
0.1722  0.2597 0.3020 0.3003 0.2668 0.2162 0.1612 0.1110 0.0703
0.0446  0.1069 0.1762 0.2336 0.2668 0.2716 0.2508 0.2119 0.1641
0.0074 0.0283 0.0661 0.1168 0.1715 0.2194 0.2508 0.2600 0.2461
0.0008 0.0050 0.0165 0.0389 0.0735 0.1181 0.1672 0.2128 0.2461
0.0001  0.0006 0.0028 0.0087 0.0210 0.0424 0.0743 0.1160 0.1641
0.0000  0.0000 0.0003 0.0012 0.0039 0.0098 0.0212 0.0407 0.0703
0.0000  0.0000 0.0000 0.0001 0.0004 0.0013 0.0035 0.0083 0.0176
0.0000  0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0008 0.0020

0.3487 0.1969 0.1074 0.0563 0.0282 0.0135 0.0060 0.0025 0.0010
0.3874 0.3474 0.2684 0.1877 0.1211 0.0725 0.0403 0.0207  0.0098
0.1937  0.2759 0.3020 0.2816 0.2335 0.1757 0.1209 0.0763  0.0439
0.0574 0.1298 0.2013  0.2503 0.2668 0.2522 0.2150 0.1665 0.1172
0.0112  0.0401 0.0881 0.1460 0.2001 0.2377 0.2508 0.2384  0.2051
0.0015 0.0085 0.0264 0.0584 0.1029 0.1536 0.2007 0.2340 0.2461
0.0001 0.0012 0.0055 0.0162 0.0368 0.0689 0.1115 0.1596 0.2051
0.0000  0.0001 0.0008 0.0031 0.0090 0.0212 0.0425 0.0746 0.1172
0.0000  0.0000 0.0001 0.0004 0.0014 0.0043 0.0106 0.0229 0.0439
0.0000  0.0000 0.0000 0.0000 0.0001 0.0005 0.0016 0.0042 0.0098
0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0010

0.3138 0.1673 0.0859 0.0422 0.0198 0.0088 0.0036 0.0014 0.0005
0.3835 0.3248 0.2362 0.1549 0.0932 0.0518 0.0266 0.0125 0.0054
0.2131 0.2866 0.2953 0.2581 0.1998 0.1395 0.0887 0.0531 0.0269
0.0710 0.1517 0.2215 0.2581 0.2568 0.2254 0.1774 0.1259 0.0806
0.0158 0.0536 0.1107 0.1721 0.2201 0.2428 0.2365 0.2060 0.1611
0.0025 0.0132 0.0388 0.0803 0.1321 0.1830 0.2207 0.2360 0.2256
0.0003  0.0023 0.0097 0.0268 0.0566 0.0985 0.1471 0.1931 0.2256
0.0000 0.0003 0.0017 0.0064 0.0173 0.0379 0.0701 0.1128 0.1611
0.0000  0.0000 0.0002 0.0011 0.0037 0.0102 0.0234 0.0462 0.0806
0.0000  0.0000 0.0000 0.0001 0.0005 0.0018 0.0052 0.0126 0.0269
0.0000  0.0000 0.0000 0.0000 0.0000 0.0002 0.0007 0.0021 0.0054
0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0005
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Try Problem 9, part (e), for
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expected value, variance,
and standard deviation.
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10 trials for the Nastke Clothing Store problem. Note that the value of f{4) = 0.2001 can
be read directly from the table of binomial probabilities, making it unnecessary to perform
the calculations required by equation (3.5).

Expected Value and Variance for the Binomial
Distribution

From the probability distribution in Table 3.6, we can use equation (3.3) to compute the ex-
pected value or expected number of customers making a purchase:

p = 2xf(x) = 0(0.343) + 1(0.441) + 2(0.189) + 3(0.027) = 0.9

Note that we could have obtained this same expected value simply by multiplying n (the
number of trials) by p (the probability of success on any one trial):

np = 3(0.30) = 0.9

For the special case of a binomial probability distribution, the expected value of the ran-
dom variable is given by

e (3.6)

Thus, if you know that the probability distribution is binomial, you do not have to make the
detailed calculations required by equation (3.3) to compute the expected value.

Suppose that during the next month Nastke’s Clothing Store expects 1000 customers to
enter the store. What is the expected number of customers who will make a purchase? Us-
ing equation (3.6), the answer is w = np = (1000)(0.3) = 300. To increase the expected
number of sales, Nastke’s must induce more customers to enter the store and/or somehow
increase the probability that any individual customer will make a purchase after entering.

For the special case of a binomial distribution, the variance of the random variable is

o’ = np(1 — p) (3.7)

For the Nastke Clothing Store problem with three customers, the variance and standard
deviation for the number of customers making a purchase are

o2 = np(l — p) = 3(0.3)(0.7) = 0.63

o =V063 =079
Poisson Probability Distribution

In this section we will consider a discrete random variable that often is useful when we are
dealing with the number of occurrences of an event over a specified interval of time or
space. For example, the random variable of interest might be the number of arrivals at a car
wash in 1 hour, the number of repairs needed in 10 miles of highway, or the number of leaks
in 100 miles of pipeline. If the following two assumptions are satisfied, the Poisson prob-
ability distribution is applicable:

1. The probability of an occurrence of the event is the same for any two intervals of
equal length.

2. The occurrence or nonoccurrence of the event in any interval is independent of the
occurrence or nonoccurrence in any other interval.
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Bell Labs used the Poisson
distribution in modeling the
arrival of phone calls.

Try Problem 14 for practice
computing Poisson
probabilities.
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The probability function of the Poisson random variable is given by equation (3.8):

)\xe—/\

x!

flx) = forx =0,1,2,... (3.8)

where
A = mean or average number of occurrences in an interval
e =12.71828
x = number of occurrences in the interval
f(x) = probability of x occurrences in the interval
Note that equation (3.8) shows no upper limit to the number of possible values that a Pois-

son random variable can realize. That is, x is a discrete random variable with an infinite se-
quence of values (x = 0, 1, 2, . .. ); the Poisson random variable has no set upper limit.

An Example Involving Time Intervals

Suppose that we are interested in the number of arrivals at the drive-in teller window of a
bank during a 15-minute period on weekday mornings. If we assume that the probability of
acar arriving is the same for any two time periods of equal length and that the arrival or nonar-
rival of a car in any time period is independent of the arrival or nonarrival in any other time
period, the Poisson probability function is applicable. Then if we assume that an analysis of
historical data shows that the average number of cars arriving during a 15-minute interval of
time is 10, the Poisson probability function with A = 10 applies:

/\xe—/\ B 10xe—10

x! x!

fx) = forx =0,1,2,...

If we wanted to know the probability of five arrivals in 15 minutes, we would set x = 5
and obtain'

107710
5!

f6) = = 0.0378

Although we determined this probability by evaluating the probability function with
A = 10 and x = 5, the use of Poisson probability distribution tables often is easier. These
tables provide probabilities for specific values of x and A. We included such a table as
Appendix C. For convenience we reproduce a portion of it as Table 3.8. To use the table of
Poisson probabilities, you need know only the values of x and A. Thus, from Table 3.8, the
probability of five arrivals in a 15-minute period is the value in the row corresponding to
x = 5 and the column corresponding to A = 10. Hence, f(5) = 0.0378.

An Example Involving Length or Distance Intervals

Suppose that we are concerned with the occurrence of major defects in a section of high-
way one month after resurfacing. We assume that the probability of a defect is the same for
any two intervals of equal length and that the occurrence or nonoccurrence of a defect in
any one interval is independent of the occurrence or nonoccurrence in any other interval.
Thus, the Poisson probability distribution applies.

'Values of ™ are available in Appendix E and can be easily computed with most modern calculators.
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TABLE 3.8 SELECTED VALUES FROM THE POISSON PROBABILITY TABLE. EXAMPLE: A = 10, x = 5;

f(5) =0.0378
A
x 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10
0 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000
1 0.0010 0.0009 0.0009 0.0008 0.0007 0.0007 0.0006 0.0005 0.0005 0.0005
2 0.0046 0.0043 0.0040 0.0037 0.0034 0.0031 0.0029 0.0027 0.0025  0.0023
3 0.0140 0.0131 0.0123 0.0115 0.0107 0.0100 0.0093 0.0087  0.0081  0.0076
4 0.0319 0.0302 0.0285 0.0269 0.0254 0.0240 0.0226 0.0213  0.0201  0.0189
5 0.0581 0.0555 0.0530 0.0506 0.0483 0.0460 0.0439 0.0418  0.0398  0.0378
6 0.0881 0.0851 0.0822 0.0793 0.0764 0.0736 0.0709 0.0682  0.0656  0.0631
7 01145 0.1118 0.1091 0.1064 0.1037 0.1010 0.0982  0.0955  0.0928  0.0901
8 0.1302 0.1286 0.1269 0.1251 0.1232  0.1212 0.1191 0.1170  0.1148  0.1126
9 0.1317 0.1315 0.1311  0.1306  0.1300 0.1293  0.1284 0.1274  0.1263  0.1251
10 0.1198 0.1210 0.1219 0.1228 0.1235 0.1241 0.1245 0.1249  0.1250  0.1251
11 0.0991 0.1012 0.1031 0.1049 0.1067 0.1083  0.1098 0.1112  0.1125  0.1137
12 0.0752 0.0776  0.0799 0.0822 0.0844 0.0866 0.0888 0.0908  0.0928  0.0948
13 0.0526 0.0549 0.0572 0.0594 0.0617 0.0640 0.0662 0.0685  0.0707  0.0729
14 0.0342 0.0361 0.0380 0.0399 0.0419 0.0439 0.0459 0.0479  0.0500 0.0521
15 0.0208 0.0221 0.0235 0.0250 0.0265 0.0281 0.0297 0.0313  0.0330  0.0347
16 00118 0.0127 0.0137 0.0147 0.0157 0.0168 0.0180 0.0192  0.0204  0.0217
17 0.0063 0.0069 0.0075 0.0081 0.0088 0.0095 0.0103 0.0111 0.0119  0.0128
18 0.0032 0.0035 0.0039 0.0042 0.0046 0.0051 0.0055 0.0060  0.0065 0.0071
19 0.0015 0.0017 0.0019 0.0021 0.0023 0.0026 0.0028 0.0031  0.0034  0.0037
20  0.0007 0.0008 0.0009 0.0010 0.0011 0.0012 0.0014 0.0015 0.0017  0.0019
21 0.0003 0.0003 0.0004 0.0004 0.0005 0.0006 0.0006 0.0007 0.0008  0.0009
22 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002 0.0003 0.0003 0.0004 0.0004
23 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002
24 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001

Suppose that major defects occur at the average rate of two per mile. We want to find the
probability that no major defects will occur in a particular 3-mile section of the highway. The
interval length is 3 miles, so A = (2 defects/mile)(3 miles) = 6 represents the expected num-
ber of major defects over the 3-mile section of highway. Thus, by using equation (3.8) or
Appendix C with A = 6 and x = 0, we obtain the probability of no major defects of 0.0025.
Thus, finding no major defects in the 3-mile section is very unlikely. In fact, there is a
1 — 0.0025 = 0.9975 probability of at least one major defect in that section of highway.

NOTES AND COMMENTS

1. When working with the Poisson probability dis- compute Poisson probabilities for the number of
tribution, you need to be sure that A is the mean calls coming in over a 5-minute period, you
number of occurrences for the desired interval. would use A = 10; to compute probabilities for
For instance, suppose that you know that 30 calls the number of calls coming in over a 1-minute

come into a switchboard every 15 minutes. To period, you would use A = 2.
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Continuous Random Variables

In this section we introduce probability distributions for continuous random variables. Re-
call from Section 3.1 that random variables that may assume any value in a certain interval
or collection of intervals are said to be continuous. Examples of continuous random vari-
ables include the following:

1. The number of ounces of soup placed in a can labeled “8 ounces”

2. The flight time of an airplane traveling from Chicago to New York

3. The lifetime of the monitor of a new laptop computer

4. The drilling depth required to reach oil in an offshore drilling operation

To understand the nature of continuous random variables more fully, suppose that, in
the first example, one can of soup has 8.2 ounces and another 8.3 ounces. Other cans could
weigh 8.25 ounces, 8.225 ounces, and so on. In fact, the actual weight can be any numeric
value from 0 ounces for an empty can to, say, 8.5 ounces for a can filled to capacity. Be-
cause this interval contains infinitely many values, we can no longer list each value of the
random variable and then identify its associated probability. In fact, for continuous random
variables we need a new method for computing the probabilitics associated with the values
of the random variable.

Applying the Uniform Distribution

Let x denote the flight time of an airplane traveling from Chicago to New York. Assume
that the minimum time is 2 hours and that the maximum time is 2 hours 20 minutes. Thus,
in terms of minutes, the flight time can be any value in the interval from 120 minutes to
140 minutes (e.g., 124 minutes, 125.48 minutes, etc.). As the random variable x can take
on any value from 120 to 140 minutes, x is a continuous rather than a discrete random vari-
able. Assume that sufficient actual flight data are available to conclude that the probability
of a flight time between 120 and 121 minutes is the same as the probability of a flight time
within any other 1-minute interval up to and including 140 minutes. With every 1-minute
interval being equally likely, the random variable x has a uniform probability distribution.
The following probability density function describes the uniform probability distribution
for the flight time random variable:

1
— for 120 = x = 140
fo=432 * (3.9)

0 elsewhere

Figure 3.3 shows a graph of this probability density function. In general, the uniform prob-
ability density function for a random variable x is

I
foy={b—a TOEF=® (3.10)

0 elsewhere

In the flight time example, a = 120 and b = 140.
In the graph of a probability density function, f(x) shows the height or value of the func-
tion at any particular value of x. Because the probability density function for flight time is
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FIGURE 3.3 UNIFORM PROBABILITY DENSITY FUNCTION FOR FLIGHT TIME
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uniform, the height or value of the function is the same for each value of x between 120 and
140. That is, f(x) = '/,, for all values of x between 120 and 140. The probability density
function f(x), unlike the probability function for a discrete random variable, represents the
height of the function at any particular value of x and not probability. Recall that, for each
value of a discrete random variable (say, x = 2), the probability function yielded the prob-
ability of x having exactly that value [that is, f(2)]. However, a continuous random variable
has infinitely many values, so we can no longer identify the probability for each specific
value of x. Rather, we must consider probability in terms of the likelihood that a random
variable takes on a value within a specified interval. For instance, in the flight time exam-
ple an acceptable probability question is: What is the probability that the flight time is be-
tween 120 and 130 minutes? That is, what is P(120 = x = 130)? As the flight time must be
between 120 and 140 minutes and as the probability is uniformly distributed over this in-
terval, we feel comfortable saying that P(120 = x = 130) = 0.50. Indeed, as we will show,
this is correct.

Area as a Measure of Probability

Refer to Figure 3.4 and consider the area under the graph of f(x) over the interval from 120
to 130. Note that the region is rectangular in shape and that the area of a rectangle is sim-
ply the width times the height. With the width of the interval equal to 130 — 120 = 10 and
the height of the graph f(x) = '/, the area = width X height = 10('/,y) = '%,, = 0.50.

What observation can you make about the area under the graph of f(x) and probability?
They are identical! Indeed, that is true for all continuous random variables. In other words,
once you have identified a probability density function f(x) for a continuous random vari-
able, you can obtain the probability that x takes on a value between some lower value a and
some higher value b by computing the area under the graph of f(x) over the interval a to b.

With the appropriate probability distribution and the interpretation of area as probability,
we can answer any number of probability questions. For example, what is the probability of
a flight time between 128 and 136 minutes? The width of the interval is 136 — 128 = 8. With
the uniform height of '/, P(128 = x = 136) = */,, = 0.40.
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FIGURE 3.4 AREA PROVIDES PROBABILITY OF FLIGHT TIME
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Note that P(120 = x = 140) = 20(1/20) = 1; the total area under the f(x) graph is equal
to 1. This property holds for all continuous probability distributions and is the analog of the
requirement that the sum of the probabilities must equal 1 for a discrete probability distri-
bution. A continuous probability distribution also requires that f(x) = 0 for all values of x.
It is the analog of the requirement that f(x) = 0 for discrete probability distributions.

Two principal differences between continuous random variables and probability distri-
butions and their discrete counterparts stand out.

1. We no longer talk about the probability of the random variable taking on a particu-
lar value. Instead we talk about the probability of the random variable taking on a
value within some given interval.

2. The probability of the random variable taking on a value within some given inter-

Try Problem 18 to practice val is defined to be the area under the graph of the probability density function over

computing probabilities the interval. This definition implies that the probability that a continuous random
using the uniform variable takes on any particular value is zero because the area under the graph of
probability distribution. f(x) ata Sing]e point is zero.

NOTES AND COMMENTS

1. For any continuous random variable the proba- about a random variable with a uniform proba-
bility of any particular value is zero, so P(a = bility distribution of
x=b)= P(a '< x <b). Thus, the prol:')ability'of {2 for0 = x = 05
a random variable assuming a value in any in- fx) =
terval is the same whether the endpoints are in- 0  eclsewhere
cluded or not. The height of the probability density function is 2
2. To see more clearly why the height of a proba- for values of x between 0 and 0.5. But we know

bility density function is not a probability, think that probabilities can never be greater than 1.
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The normal distribution
was first observed by
Abraham de Moivre, a
French mathematician, in
the early 1700s. De
Moivre’s work was
motivated by the study of
probability associated with
gambling and games of
chance.
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Normal Probability Distribution

Perhaps the most important probability distribution used to describe a continuous random
variable is the normal probability distribution. It is applicable in a great many practical
problem situations, and its probability density function has the form of the bell-shaped
curve shown in Figure 3.5. The mathematical function that provides the bell-shaped curve
of the normal probability density function follows:

Fx) = 1w for —oo < x < 00 (3.11)
oV2r

where

© = mean or expected value of the random variable x
o? = variance of the random variable x
o = standard deviation of the random variable x
= 3.14159
e =2.71828

Recall from the previous discussion of continuous random variables that f(x) is the
height of the curve at a particular value of x. Thus, once we specify the mean (w) and either
the standard deviation (o) or variance (¢), we can use equation (3.11) to determine the graph
for the corresponding normal distribution. Figure 3.6 shows two normal distributions, one
with u = 50 and o = 15 and another with . = 50 and o = 7.5. Note in particular the effect
that the standard deviation o has on the general shape of the normal curve. A larger standard
deviation tends to flatten and broaden the curve because larger values of o indicate greater
variability in the values of the random variable.

Fortunately, whenever we use the normal distribution to answer probability questions,
we do not have to use the probability density function of equation (3.11). In fact, when we
use the normal distribution, we will have tables of probability values [areas under the f(x)
curve] that can provide the desired probability information. To show how to use the tables
of areas or probabilities for the normal distribution, we must first introduce the standard
normal distribution.

FIGURE 3.5 NORMAL PROBABILITY DISTRIBUTION

f(x)
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FIGURE 3.6 TWO NORMAL DISTRIBUTIONS WITH u = 50
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Standard Normal Distribution

A random variable that has a normal distribution with a mean of 0 and a standard deviation
of 1 is said to have a standard normal distribution. We use the letter z to designate this
particular normal random variable. Figure 3.7 shows the graph of the standard normal dis-
tribution. Note that it has the same general appearance as other normal distributions, but
with the special properties of w = 0 and o = 1. The units on the horizontal axis (z) mea-
sure the number of standard deviations from the mean.

Recall the procedure for finding probabilities associated with a continuous random vari-
able. We want to determine the probability of the random variable having a value in a speci-
fied interval from a to b. Thus we have to find the area under the curve in the interval from a
to b. In the preceding section we showed that finding probabilities, or areas under the curve,
for a uniform distribution was relatively easy. All we had to do was multiply the width of
the interval by the height of the graph. However, finding areas under the normal distribution
curve appears at first glance to be much more difficult because the height of the curve varies.
The mathematical technique for obtaining these areas is beyond the scope of the text, but for-
tunately tables are available that provide the areas or probability values for the standard nor-
mal distribution. Table 3.9 is such a table of areas. This table is also available as Appendix D.

FIGURE 3.7 STANDARD NORMAL DISTRIBUTION
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TABLE 3.9 CUMULATIVE PROBABILITIES FOR THE STANDARD NORMAL
DISTRIBUTION

81

z
—3.0

—-29
—2.8
—-2.7
—2.6
—-25

—2.4
—23
—-22
-2.1
—2.0

—-1.9
—1.8
—1.7
—1.6
—15

—1.4
—-13
—-1.2
—1.1
—1.0

—-0.9
—0.8
—0.7
—0.6
—0.5

—0.4
—-0.3
=02
—0.1
—0.0

0.00
0.0013

0.0019
0.0026
0.0035
0.0047
0.0062

0.0082
0.0107
0.0139
0.0179
0.0228

0.0287
0.0359
0.0446
0.0548
0.0668

0.0808
0.0968
0.1151
0.1357
0.1587

0.1841
0.2119
0.2420
0.2743
0.3085

0.3446
0.3821
0.4207
0.4602
0.5000

Cumulative
probability

Entries in the table

give the area under the
curve to the left of the

z value. For example, for
z=-0.85, the cumulative
probability is 0.1977.

0.01
0.0013

0.0018
0.0025
0.0034
0.0045
0.0060

0.0080
0.0104
0.0136
0.0174
0.0222

0.0281
0.0351
0.0436
0.0537
0.0655

0.0793
0.0951
0.1131
0.1335
0.1562

0.1814
0.2090
0.2389
0.2709
0.3050

0.3409
0.3783
0.4168
0.4562
0.4960

0.02
0.0013

0.0018
0.0024
0.0033
0.0044
0.0059

0.0078
0.0102
0.0132
0.0170
0.0217

0.0274
0.0344
0.0427
0.0526
0.0643

0.0778
0.0934
0.1112
0.1314
0.1539

0.1788
0.2061
0.2358
0.2676
0.3015

0.3372
0.3745
0.4129
0.4522
0.4920

0.03
0.0012

0.0017
0.0023
0.0032
0.0043
0.0057

0.0075
0.0099
0.0129
0.0166
0.0212

0.0268
0.0336
0.0418
0.0516
0.0630

0.0764
0.0918
0.1093
0.1292
0.1515

0.1762
0.2033
0.2327
0.2643
0.2981

0.3336
0.3707
0.4090
0.4483
0.4880

0.04
0.0012

0.0016
0.0023
0.0031
0.0041
0.0055

0.0073
0.0096
0.0125
0.0162
0.0207

0.0262
0.0329
0.0409
0.0505
0.0618

0.0749
0.0901
0.1075
0.1271
0.1492

0.1736
0.2005
0.2296
0.2611
0.2946

0.3300
0.3669
0.4052
0.4443
0.4840

0.05 0.06 0.07
0.0011 0.0011 0.0011

0.0016  0.0015 0.0015
0.0022  0.0021 0.0021
0.0030  0.0029  0.0028
0.0040  0.0039  0.0038
0.0054  0.0052  0.0051

0.0071 0.0069  0.0068
0.0094  0.0091 0.0089
0.0122  0.0119  0.0116
0.0158  0.0154  0.0150
0.0202  0.0197  0.0192

0.0256  0.0250  0.0244
0.0322  0.0314  0.0307
0.0401 0.0392  0.0384
0.0495 0.0485 0.0475
0.0606  0.0594  0.0582

0.0735 0.0721 0.0708
0.0885 0.0869  0.0853
0.1056  0.1038  0.1020
0.1251 0.1230  0.1210
0.1469  0.1446  0.1423

0.1711 0.1685 0.1660
0.1977  0.1949  0.1922
02266 02236  0.2206
02578 02546  0.2514
0.2912  0.2877 0.2843

03264 03228  0.3192
0.3632  0.3594  0.3557
0.4013 03974  0.3936
0.4404  0.4364  0.4325
0.4801 0.4761 0.4721

0.08
0.0010

0.0014
0.0020
0.0027
0.0037
0.0049

0.0066
0.0087
0.0113
0.0146
0.0188

0.0239
0.0301
0.0375
0.0465
0.0571

0.0694
0.0838
0.1003
0.1190
0.1401

0.1635
0.1894
0.2177
0.2483
0.2810

0.3156
0.3520
0.3897
0.4286
0.4681

0.09
0.0010

0.0014
0.0019
0.0026
0.0036
0.0048

0.0064
0.0084
0.0110
0.0143
0.0183

0.0233
0.0294
0.0367
0.0455
0.0559

0.0681
0.0823
0.0985
0.1170
0.1379

0.1611
0.1867
0.2148
0.2451
0.2776

0.3121
0.3483
0.3859
0.4247
0.4641

(Continued)
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TABLE 3.9 CUMULATIVE PROBABILITIES FOR THE STANDARD NORMAL

DISTRIBUTION (Continued)

Z

0.0
0.1
0.2
03
0.4

0.5
0.6
0.7
0.8
0.9

1.0
1.1
1.2
1.3
1.4

1.5
1.6
1.7
1.8
1.9

2.0
2.1
22
23
24

2.5
2.6
2.7
2.8
2.9

3.0

0.00

0.5000
0.5398
0.5793
0.6179
0.6554

0.6915
0.7257
0.7580
0.7881
0.8159

0.8413
0.8643
0.8849
0.9032
0.9192

0.9332
0.9452
0.9554
0.9641
0.9713

0.9772
0.9821
0.9861
0.9893
0.9918

0.9938
0.9953
0.9965
0.9974
0.9981

0.9986

Cumulative

probability

Entries in the table

give the area under the
curve to the left of the

z value. For example, for
z = 1.25, the cumulative
probability is 0.8944.

0.01

0.5040
0.5438
0.5832
0.6217
0.6591

0.6950
0.7291
0.7611
0.7910
0.8186

0.8438
0.8665
0.8869
0.9049
0.9207

0.9345
0.9463
0.9564
0.9649
0.9719

0.9778
0.9826
0.9864
0.9896
0.9920

0.9940
0.9955
0.9966
0.9975
0.9982

0.9987

0.02

0.5080
0.5478
0.5871
0.6255
0.6628

0.6985
0.7324
0.7642
0.7939
0.8212

0.8461
0.8686
0.8888
0.9066
0.9222

0.9357
0.9474
0.9573
0.9656
0.9726

0.9783
0.9830
0.9868
0.9898
0.9922

0.9941
0.9956
0.9967
0.9976
0.9982

0.9987

0.03

0.5120
0.5517
0.5910
0.6293
0.6664

0.7019
0.7357
0.7673
0.7967
0.8238

0.8485
0.8708
0.8907
0.9082
0.9236

0.9370
0.9484
0.9582
0.9664
0.9732

0.9788
0.9834
0.9871
0.9901
0.9925

0.9943
0.9957
0.9968
0.9977
0.9983

0.9988

0.04

0.5160
0.5557
0.5948
0.6331
0.6700

0.7054
0.7389
0.7704
0.7995
0.8264

0.8508
0.8729
0.8925
0.9099
0.9251

0.9382
0.9495
0.9591
0.9671
0.9738

0.9793
0.9838
0.9875
0.9904
0.9927

0.9945
0.9959
0.9969
0.9977
0.9984

0.9988

0.05 0.06 0.07 0.08

0.5199 05239 05279 0.5319
0.5596  0.5636  0.5675 0.5714
0.5987  0.6026  0.6064 0.6103
0.6368  0.6406  0.6443  0.6480
0.6736  0.6772  0.6808  0.6844

0.7088  0.7123 0.7157  0.7190
0.7422  0.7454  0.7486  0.7517
0.7734  0.7764  0.7794  0.7823
0.8023 0.8051 0.8078  0.8106
0.8289  0.8315 0.8340  0.8365

0.8531 0.8554  0.8577  0.8599
0.8749  0.8770  0.8790  0.8810
0.8944 08962  0.8980  0.8997
09115 0.9131 09147 09162
0.9265 0.9279 09292  0.9306

0.9394  0.9406  0.9418  0.9429
0.9505 0.9515 0.9525  0.9535
0.9599 09608  0.9616  0.9625
0.9678  0.9686  0.9693  0.9699
09744 09750 09756 0.9761

0.9798  0.9803  0.9808 0.9812
09842 09846  0.9850 0.9854
0.9878  0.9881 0.9884  0.9887
0.9906  0.9909 09911 0.9913
0.9929  0.9931 0.9932  0.9934

0.9946  0.9948  0.9949  0.9951
0.9960  0.9961 0.9962  0.9963
0.9970  0.9971 0.9972  0.9973
0.9978 09979  0.9979  0.9980
0.9984  0.9985 0.9985  0.9986

0.9989 0.9989 0.9989  0.9990

0.09

0.5359
0.5753
0.6141
0.6517
0.6879

0.7224
0.7549
0.7852
0.8133
0.8389

0.8621
0.8830
0.9015
0.9177
0.9319

0.9441
0.9545
0.9633
0.9706
0.9767

0.9817
0.9857
0.9890
0.9913
0.9936

0.9952
0.9964
0.9974
0.9981
0.9986

0.9990

© Cengage Learning 2013



The probability that a
standard normal random
variable z is between a and
b is always the difference
between two cumulative
probabilities: one for z = b
and one for z = a.
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The graphs at the top of Table 3.9 show that the area in the table is the probability of a
standard normal random variable being less than or equal to a specific value of z. Such prob-
abilities are referred to as cumulative probabilities. In using Table 3.9 to determine a
cumulative probability, note that the value of z with one decimal appears in the left-hand
column of the table, with the second decimal appearing in the top row. Negative values of
z are provided on the first page of the table, whereas positive values of z are provided on
the second page. For example, for z = —0.85, we find —0.8 in the left-hand column and
the second decimal 0.05 in the top row of the first page of the table. Then, by looking in the
body of the table, we find an area or probability of 0.1977. This is the cumulative proba-
bility that the standard normal random variable is less than or equal to z = —0.85. This area
is shown graphically at the top of Table 3.9. As another example, we can use the second
page of the table to determine that the cumulative probability that the standard normal ran-
dom variable is less than or equal to z = 1.25. We find 1.2 in the left-hand column and the
second decimal 0.05 in the top row of the second page of the table. In the body of the table
we find an area or probability of 0.8944. This is the cumulative probability that the stan-
dard normal random variable is less than or equal to z = 1.25. This area is also shown graph-
ically at the top of Table 3.9.

Suppose that we wanted to use the cumulative standard normal distribution table to
determine the probability that the standard normal random variable z will be between —1.00
and +1.00. Table 3.9 shows the cumulative probability that z is less than or equal to +1.00
is 0.8413 and the cumulative probability that z is less than or equal to —1.00is 0.1587. Thus,
the probability that z will be between —1.00 and +1.00 must be the difference between
these two cumulative probabilities: 0.8413 — 0.1587 = 0.6826. This is shown graphically
in Figure 3.8.

Similarly, we can find the probability that the standard normal random variable z will be
between —2.00 and +2.00. Using the cumulative probabilities at z = +2.00 and z = —2.00,
the probability that z will be between —2.00 and +2.00 is 0.9772 — 0.0228 = 0.9544. In
addition, we can use the cumulative probabilities at z = +3.00 and z = —3.00 to conclude
that the probability z will be between —3.00 and +3.00 is 0.9986 — 0.0013 = 0.9973. Since
the total probability or total area under the curve is equal to 1.0000, the probability of 0.9973
tells us that z will almost always fall between —3.00 and +3.00.

As a final example, what is the probability that the normal random variable z is greater
than 2.00? From Table 3.9, we find that the cumulative probability that z is less than or equal

FIGURE 3.8 PROBABILITY OF z BETWEEN —1.00 AND +1.00

Area less than
or equal to z=+1.00
is 0.8413

Area less than
or equal to z=-1.00
is 0.1587

Area =0.8413 - 0.1587
=0.6826
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FIGURE 3.9 PROBABILITY OF z GREATER THAN 2.00

Area less than
or equal to z=2.00 |
is 0.9772

Area greater than z = 2.00
| Is 1.0000 - 0.9772 = 0.0228

1 1 L 1 I Z

to0 2.00 is 0.9772. Since the total area under the curve is equal to 1.0000, the probability that
z will be greater than 2.00 must be 1.0000 — 0.9772 = 0.0228. This is shown graphically
in Figure 3.9. As the examples in this section have shown, you should be able to use the cu-
mulative probabilities in Table 3.9 to answer a variety of probability questions about the
standard normal random variable z.

Computing Probabilities for Any Normal Distribution

The reason we discuss the standard normal distribution so extensively is that we can com-
pute probabilities for any normal distribution by first converting to the standard normal dis-
tribution. Thus, when we have a normal distribution with any mean u and any standard
deviation g, we can answer probability questions about this distribution by converting to
the standard normal distribution. We then use Table 3.9 and the appropriate z values to find
the probability. The formula used to convert any normal random variable x with mean u
and standard deviation o to the standard normal distribution is

x—p
g

z= (3.12)

When used in this way, z is a measure of the number of standard deviations that x is from .

We can use an example to show most easily how the conversion to the z value allows
us to use the standard normal distribution to compute probabilities for any normal distribution.
Suppose that we have a normal distribution with u = 10 and o = 2, as shown graphically
in Figure 3.10. Note that, in addition to the values of the random variable shown on the
x axis, we have included a second axis (the z axis) to show that for each value of x there
is a corresponding value of z. For example, when x = 10, the corresponding z value (the
number of standard deviations away from the mean) is z = (x — u)/o = (10 — 10)/2 = 0.
Similarly, for x = 14 we have z = (x — n)/o = (14 — 10)/2 = 2.

Now suppose that we want to know the probability that the random variable x is
between 10 and 14; that is, P(10 = x = 14). We do not have tables that provide this prob-
ability directly. However, note that in Figure 3.10 the area under the curve (probability)
for x between 10 and 14 is the same as the area under the curve for z between 0 and 2. Using
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FIGURE 3.10  NORMAL DISTRIBUTION WITH = 10 AND o = 2

P10<x< 14)

4 16

D P

Corresponding
z Value

z = 2.00 and Table 3.9, we find that the cumulative probability of z being less than or equal
to 2.00 is 0.9772. Similarly, Table 3.9 shows that the cumulative probability of z being less
than or equal to 0.00 is 0.5000. Thus, the probability that the standard normal random vari-
able z is between 0.00 and 2.00 is 0.9772 — 0.5000 = 0.4772. Thus, we conclude that the
probability of x being between 10 and 14 is also 0.4772.

This procedure applies to any normal distribution problem. That is, for any x value a
corresponding z value is given by equation (3.12). To find the probability that x is in a spec-
ified interval, simply convert the x interval to its corresponding z interval. Then use the table
for the standard normal distribution to answer the probability question.

Grear Tire Company Problem

Suppose that Grear Tire Company just developed a new steel-belted radial tire that will be
sold through a national chain of discount stores. Because the tire is a new product, Grear’s
management believes that the mileage guarantee offered with the tire will be an important
factor in consumer acceptance of the product. Before finalizing the tire mileage guarantee
policy, Grear’s management wants some probability information concerning the number of
miles the tires will last.

From actual road tests with the tires, Grear’s engineering group estimates the mean tire
mileage at uw = 36,500 miles and the standard deviation at ¢ = 5000 miles. In addition, the
data collected indicate that a normal distribution is a reasonable assumption.

What percentage of the tires, then, can be expected to last more than 40,000 miles? In
other words, what is the probability that the tire mileage will exceed 40,0007 To compute
this probability, we need to find the area of the shaded region in Figure 3.11.

At x = 40,000 we have

x—p 40,000 — 36,500 3500
o 5000 5000

Thus the probability that the normal distribution for tire mileage will have an x value greater
than 40,000 is the same as the probability that the standard normal distribution will have a

z= 0.70
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FIGURE 3.11 GREAR TIRE COMPANY TIRE MILEAGE

o =5000

Probability That x Exceeds
40,000 =?

L X

I 40,000

1 =36,500

z value greater than 0.70. Using Table 3.9, we find that the cumulative probability that z is
less than or equal to 0.70 is 0.7580. Thus, the probability that z will be greater than 0.70
must be 1.0000 — 0.7580 = 0.2420. In terms of the tire mileage x, we can conclude that
there is a 0.2420 probability that x will be greater than 40,000 miles. Thus, we can antici-
pate about 24.2% of the tires manufactured by Grear will last more than 40,000 miles.

Let us now assume that Grear is considering a guarantee that will provide a discount on
anew set of tires if the mileage on the original tires doesn’t exceed the mileage stated on the
guarantee. What should the guarantee mileage be if Grear wants no more than 10% of the
tires to be eligible for the discount? This question is interpreted graphically in Figure 3.12.
Note that 10% of the area is below the unknown guarantee mileage. Because this 10% is the
lower tail of the normal probability distribution, 0.1000 is the cumulative probability that the
tire mileage will be less than or equal to the unknown guarantee mileage. The question is

FIGURE 3.12 GREAR’S DISCOUNT GUARANTEE

o =5000

10% of Tires
Eligible for
Discount Guarantee

T T

Guarantee u=136,500
Mileage = ?
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Try Problem 23 for practice
finding a z value that cuts
off a particular probability.

&)
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now, How many standard deviations (z valuc) do we have to be below the mean to a achicve
a 0.1000 cumulative probability? This time we will look into the body of Table 3.9 and try
to find the cumulative probability 0.1000. We cannot find 0.1000 exactly, but a cumulative
probability 0.1003 is close. Here we find the corresponding z = —1.28. This tells us that we
must be 1.28 below the mean to find the desired tire guarantee mileage. This mileage is

Guarantee mileage = u — 1.280
= 36,500 — 1.28(5000) = 30,100

Therefore, a guarantee of 30,100 miles will meet the requirement that approximately 10%
of the tires will be eligible for the discount. With this information the firm might confidently
set its tire mileage guarantee at 30,000 miles.

Again we see the important role that probability distributions play in providing
decision-making information. Once a probability distribution is established for a particular
problem, it can be used rather quickly and easily to provide information about the likeli-
hood of various scenarios. Although this information does not make a decision recommen-
dation directly, it does provide information that helps the decision maker understand the
problem better. Ultimately, this information may assist the decision maker in reaching a
good decision.

Exponential Probability Distribution

A continuous probability distribution that is often useful in describing the time needed to
complete a task is the exponential probability distribution. The exponential random vari-
able can be used to describe the time between arrivals at a car wash, the time required to
load a truck, the distance between major defects in a highway, and so on. The exponential
probability density function is

1
fx) = " e forx=0,u>0 (3.13)

To provide an example of the exponential probability distribution, suppose that the
loading time for a truck at a factory dock follows an exponential probability distribution. If
the mean, or average, loading time is 15 minutes (i = 15), the appropriate probability den-
sity function is

_ i —x/15
fx) = 15 ¢

Figure 3.13 shows the graph of this density function.

Computing Probabilities for the Exponential Distribution

As with any continuous probability distribution, the area under the curve corresponding to
some interval provides the probability that the random variable takes on a value in that
interval. For instance, for the factory loading dock example, the probability that 6 minutes
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FIGURE 3.13 EXPONENTIAL DISTRIBUTION FOR LOADING TIME AT THE LOADING
DOCK WITH p = 15

S

or less (x = 6) are needed to load a truck is defined to be the area under the curve from
x = 0tox = 6. Similarly, the probability that a loading time is 18 minutes or less (x = 18)
is the area under the curve from x = 0 to x = 18. Note also that the probability of loading
a truck in between 6 and 18 minutes (6 = x = 18) is the area under the curve from x = 6
tox = 18.

To compute exponential probabilities such as those previously described, the following
formula provides the probability of obtaining a value for the exponential random variable
of less than or equal to some specific value of x, denoted by x:

Px=xp)=1—e" (3.14)

Thus, for the factory loading dock example, equation (3.14) becomes
P(loading time = x;) = 1 — ¢~/
Hence, the probability that 6 minutes or less (x = 6) are needed to load a truck is
P(loading time < 6) = 1 — ¢~%!5 = 0.3297
Note also that the probability that 18 minutes or less (x = 18) are needed to load a truck is

P(loading time < 18) = 1 — ¢~ '8/ = 0.6988
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Try Problem 29 for practice
finding probabilities with
the exponential probability
distribution.

The Poisson and
exponential probability
distributions are used in
the chapter on waiting line
models (Chapter 15). In
these models the Poisson
distribution is used as the
probability distribution for
the number of arrivals,
while the exponential
probability distribution is
used as the probability
distribution for the service
time.

Try Problems 30 and 31 for
applications of the
exponential probability
distribution.

Summary 89

Thus, the probability that 6 to 18 minutes are required to load a truck is 0.6988 — 0.3297 =
0.3691. Probabilities for any other interval can be computed in a similar manner.

Relationship Between the Poisson
and Exponential Distributions
In Section 3.4 we introduced the Poisson distribution as a discrete probability distribution

that often is useful when we are dealing with the number of occurrences over a specified
interval of time or space. Recall that the Poisson probability function is

Ae

fx) =

x!
where
A = expected value or mean number of occurrences in an interval

The continuous exponential probability distribution is related to the discrete Poisson dis-
tribution. The Poisson distribution provides an appropriate description of the number of
occurrences per interval, and the exponential distribution provides a description of the
length of the interval between occurrences.

To illustrate this relationship, let us suppose that the number of cars that arrive at a car
wash during 1 hour is described by a Poisson probability distribution with a mean of 10 cars
per hour. Thus the Poisson probability function that provides the probability of x arrivals
per hour is

x,—10
foy =10

The average number of arrivals is 10 cars per hour, so the average time between cars
arriving is
1 hour

10 cars = 0.1 hour/car

Thus, the corresponding exponential distribution that describes the time between the arrival
of cars has a mean of w = 0.1 hours per car. The appropriate exponential probability den-
sity function is

1
f(x) — a e—x/O.l — loe—IOJC

In this chapter we continued the discussion of probability by introducing the important con-
cepts of random variables and probability distributions. Random variables provide numeric
descriptions of the outcomes of experiments. When random variables are used, computa-
tions of the expected value, variance, and standard deviation can help the decision maker
understand characteristics of the problem under study. We discussed the probability distri-
butions for both discrete and continuous random variables.
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Of particular interest are special probability distributions such as the binomial, Pois-
son, uniform, normal, and exponential distributions. These distributions provide wide
applicability, and special formulas and/or tables make the probability information easily
available.

Through a variety of problems and applications, we illustrated the role that probability
distributions play in providing decision-making information. Although the probability val-
ues generated by the techniques and methods of this chapter do not by themselves make de-
cision recommendations, they do provide assistance to the decision maker in terms of
understanding the uncertainties inherent in the problem. Ultimately, this better understand-
ing may lead to new and better decisions.

Random variable A numeric description of the outcome of an experiment.

Discrete random variable A random variable that may assume only a finite or infinite
sequence of values.

Continuous random variable A random variable that may assume any value in an inter-
val or collection of intervals.

Probability function A function, denoted f(x), that provides the probability that a discrete
random variable x takes on some specific value.

Discrete probability distribution A table, graph, or equation describing the values of the
random variable and the associated probabilities.

Expected value A weighted average of the values of the random variable, for which the
probability function provides the weights. If an experiment can be repeated a large number
of times, the expected value can be interpreted as the “long-run average.”

Variance A measure of the dispersion or variability in the random variable. It is a weighted
average of the squared deviations from the mean, u.

Standard deviation The positive square root of the variance.

Binomial probability distribution The probability distribution for a discrete random vari-
able, used to compute the probability of x successes in 7 trials.

Poisson probability distribution The probability distribution for a discrete random vari-
able, used to compute the probability of x occurrences over a specified interval.

Uniform probability distribution A continuous probability distribution in which the
probability that the random variable will assume a value in any interval of equal length is
the same for each interval.

Probability density function The function that describes the probability distribution of a
continuous random variable.

Normal probability distribution A continuous probability distribution whose proba-
bility density function is bell shaped and determined by the mean, w, and standard
deviation, o.

Standard normal distribution A normal distribution with a mean of 0 and a standard
deviation of 1.

Cumulative probability The probability that a random variable takes on a value less than
or equal to stated value.

Exponential probability distribution A continuous probability distribution that is
useful in describing the time to complete a task or the time between occurrences of an
event.
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1. The following examples are experiments and their associated random variables. In each
SELF te St case identify the values the random variable can assume and state whether the random vari-
able is discrete or continuous:

Experiment Random Variable (x)
a. Take a 20-question examination Number of questions answered correctly
b. Observe cars arriving at a tollbooth Number of cars arriving at the tollbooth
for 1 hour
c. Audit 50 tax returns Number of returns containing errors
d. Observe an employee’s work Number of nonproductive hours
for 8 hours
e. Weigh a shipment of goods Number of pounds

2. The following table shows a partial probability distribution for the MRA Company’s pro-
jected profits (in thousands of dollars) for the first year of operation (the negative value de-
notes a loss):

x J&)

—100 0.10

0 0.20

50 0.30

100 0.25

150 0.10
200

a. Find the missing value of f(200). What is your interpretation of this value?
b.  What is the probability that MRA will be profitable?
c.  What is the probability that MRA will make at least $100,000?

3. Data were collected on the number of operating rooms in use at Tampa General Hospital
SELF te St over a 20-day period. On 3 of the days only one operating room was used; on 5 days, two
were used; on 8 days, three were used; and on 4 days all four rooms were used.
a. Use the relative frequency approach to construct a probability distribution for the num-
ber of operating rooms in use on any given day.
Draw a graph of the probability distribution.
c.  Show that your probability distribution satisfies the requirements for a valid discrete
probability distribution.

4. Shown is a probability distribution for the random variable x.

SELF| (1!

Sx)
0.25
0.50
0.25

Total 1.00

Nolo NISS TR
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a. Compute E(x), the expected value of x.
b. Compute o7, the variance of x.
¢.  Compute o, the standard deviation of x.

5. Brandon Lang is a creative entrepreneur who has developed a novelty soap item called
Jackpot to target consumers with a gambling habit. Inside each bar of Jackpot shower soap
is a single rolled-up bill of U.S. currency. The currency (rolled up and sealed in shrink-
wrap) is appropriately inserted into the soap mixture prior to the cutting and stamping
procedure. The distribution of paper currency (per 1000 bars of soap) is given in the
following table.

Distribution of Paper Currency Prizes

Bill Denomination Number of Bills

$1 520

$5 260

$10 120

$20 70

$50 29

$100 1
Total 1000

a.  What is the expected amount of money in a single bar of Jackpot soap?
What is the standard deviation of the money in a single bar of Jackpot soap?

c.  How many bars of soap would a customer have to buy so that, on average, he or she
has purchased three bars containing a $50 or $100 bill?

d. If a customer buys 8 bars of soap, what is the probability that at least one of these bars
contains a bill of $20 or larger?

6  The National Center for Health Statistics reported the following data on the number of
children born in individual pregnancies in 1996 and 2006 (The World Almanac, 2010):

1996 2006
Number of Children Frequency Frequency
one child 3,671,455 3,971,276
twins 100,750 137,085
triplets 5,298 6,118
quadruplets 560 355
quintuplets or more 81 67

a. Define a random variable x = number of children born in a single pregnancy in 1996
and develop a probability distribution for the random variable. Let x = 5 represent
quintuplets or more.

b. Compute the expected value and variance for the number of children born in a single
pregnancy in 1996.

c. Define a random variable y = number of children born in a single pregnancy in 2006
and develop a probability distribution for the random variable. Let y = 5 represent
quintuplets or more.

d.  Compute the expected value and variance for the number of children born in a single
pregnancy in 2006.

e. Do these data support the conclusion that the increased use of fertility drugs by older
women has generated an upward trend in multiple births?
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7. The demand for Carolina Industries’ product varies greatly from month to month. Based
on the past two years of data, the following probability distribution shows the company’s
monthly demand:

Unit Demand Probability
300 0.20
400 0.30
500 0.35
600 0.15

a. If the company places monthly orders equal to the expected value of the monthly
demand, what should Carolina’s monthly order quantity be for this product?

b. Assume that each unit demanded generates $70 in revenue and that each unit ordered
costs $50. How much will the company gain or lose in a month if it places an order
based on your answer (o part (a) and the actual demand for the item is 300 units?

c.  What are the variance and standard deviation for the number of units demanded?

8. The J. R. Ryland Computer Company is considering a plant expansion that will enable the
company to begin production of a new computer product. The company’s president must
determine whether to make the expansion a medium- or large-scale project. The demand
for the new product involves an uncertainty, which for planning purposes may be low de-
mand, medium demand, or high demand. The probability estimates for the demands are
0.20, 0.50, and 0.30, respectively. Letting x indicate the annual profit in $1000s, the firm’s
planners developed profit forecasts for the medium- and large-scale expansion projects.

Medium-Scale Large-Scale
Expansion Profits Expansion Profits
x Jx) y J»)
Low 50 0.20 0 0.20
Demand Medium 150 0.50 100 0.50
High 200 0.30 300 0.30

a.  Compute the expected value for the profit associated with the two expansion alterna-
tives. Which decision is preferred for the objective of maximizing the expected profit?

b. Compute the variance for the profit associated with the two expansion alternatives.
Which decision is preferred for the objective of minimizing the risk or uncertainty?

9. Consider a binomial experiment with 2 trials and p = 0.4.

SELF te St a. Compute the probability of 1 success, f(1).
b. Compute f(0).
c.  Compute f(2).
d. Find the probability of at least one success.
e. Find the expected value, variance, and standard deviation.

10. Consider a binomial experiment with n = 10 and p = 0.10. Use the binomial tables
(Appendix B) to answer parts (a) through (d).
a. Find f(0).
b. Find f(2).
c¢. Find P(x = 2).
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11.

12.

13.

14.

15.

16.

d. Find Px=1).
e. Find E(x).
f.  Find Var(x) and o

A survey on British Social Attitudes asked respondents if they had ever boycotted goods

for ethical reasons (Statesman, January 28, 2008). The survey found that 23% of the re-

spondents have boycotted goods for ethical reasons.

a. Inasample of six British citizens, what is the probability that two have ever boycotted
goods for ethical reasons?

b. Inasample of six British citizens, what is the probability that at least two respondents
have boycotted goods for ethical reasons?

¢. Inasample of ten British citizens, what is the probability that none have boycotted
goods for ethical reasons?

When a new machine is functioning properly, only 3% of the items produced are defec-

tive. Assume that we will randomly select two parts produced on the machine and that we

are interested in the number of defective parts found.

a. Describe the conditions under which this situation would be a binomial experiment.

b. How many experimental outcomes yield one defect?

c¢.  Compute the probabilities associated with finding no defects, one defect, and two
defects.

Military radar and missile detection systems are designed to warn a country of enemy

attacks. A reliability question deals with the ability of the detection system to identify an

attack and issue the warning. Assume that a particular detection system has a 0.90 proba-

bility of detecting a missile attack. Answer the following questions using the binomial

probability distribution:

a.  What is the probability that one detection system will detect an attack?

b. Iftwo detection systems are installed in the same area and operate independently, what
is the probability that at least one of the systems will detect the attack?

c. If three systems are installed, what is the probability that at least one of the systems
will detect the attack?

d. Would you recommend that multiple detection systems be operated? Explain.

Consider a Poisson probability distribution with 2 as the average number ol occurrences

per time period.
Write the appropriate Poisson probability function.

b. What is the average number of occurrences in three time periods?

c.  Write the appropriate Poisson probability function to determine the probability of
x occurrences in three time periods.

d. Find the probability of two occurrences in one time period.

e. Find the probability of six occurrences in three time periods.

f.  Find the probability of five occurrences in two time periods.

Telephone calls arrive at the rate of 48 per hour at the reservation desk for Regional

Airways.

a. Find the probability of receiving 3 calls in a 5-minute interval.

b. Find the probability of receiving 10 calls in 15 minutes.

c.  Suppose that no calls are currently on hold. If the agent takes 5 minutes to complete
processing the current call, how many callers do you expect to be waiting by that time?
What is the probability that no one will be waiting?

d. Ifno calls are currently being processed, what is the probability that the agent can take
3 minutes for personal time without being interrupted?

More than 50 million guests stayed at bed and breakfasts (B&Bs) last year. The website for
the Bed and Breakfast Inns of North America, which averages approximately seven visitors
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17.

18.

19.

20.

21.

22.

per minute, enables many B&Bs to attract guests without waiting years to be mentioned in
guidebooks (7ime, September 2001).

a.  What is the probability of no website visitors in a 1-minute period?

b. What is the probability of two or more website visitors in a 1-minute period?

c.  What is the probability of one or more website visitors in a 30-second period?

d. What is the probability of five or more website visitors in a 1-minute period?

Airline passengers arrive randomly and independently at the passenger screening facility
at a major international airport. The mean arrival rate is 10 passengers per minute.

a.  What is the probability of no arrivals in a 1-minute period?

b. What is the probability of 3 or fewer arrivals in a 1-minute period?

c.  What is the probability of no arrivals in a 15-second period?

d.  What is the probability of at least 1 arrival in a 15-second period?

A random variable x is uniformly distributed between 1.0 and 1.5.
a. Show the graph of the probability density function.

b. Find P(x = 1.25).

c. Find P(1.00 = x = 1.25).

d. Find P(1.20 < x < 1.50).

Delta Airlines quotes a flight time of 2 hours, 5 minutes for its flights from Cincinnati to
Tampa. Suppose we believe that actual flight times are uniformly distributed between
2 hours and 2 hours, 20 minutes.

a. Show the graph of the probability density function for flight times.

b.  What is the probability that the flight will be no more than 5 minutes late?

¢.  What is the probability that the flight will be more than 10 minutes late?

d.  What is the expected flight time?

Most computer languages have a function that can be used to generate random numbers.
In Microsoft’s Excel, the RAND function can be used to generate random numbers be-
tween 0 and 1. If we let x denote the random number generated, then x is a continuous
random variable with the probability density function:

1 for0=x=1

0 elsewhere

fo) = {

a.  Graph the probability density function.
b.  What is the probability of generating a random number between 0.25 and 0.75?
¢. What is the probability of generating a random number with a value less than or equal

t0 0.30?
d.  Whatis the probability of generating a random number with a value greater than 0.60?
For the standard normal random variable z, compute the following probabilities:
a. P(0=z=0.83)
b. P(—157=z=0)

c. P(z>044)
d. P(z=2023)
e. P(z<1.20)

f. P(z=20.71)

For the standard normal random variable z, find z for each situation.
a. The area to the left of zis 0.9750.

b. The area between 0 and z is 0.4750.

c. The area to the left of zis 0.7291.

d. The area to the right of z is 0.1314.

e. The area to the left of z is 0.6700.

f.  The area to the right of z is 0.3300.
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23.

24.

25.

26.

27.

28.

29.

For the standard normal random variable z, find z for each situation.
The area to the left of z1is 0.2119.

The area between —z and z is 0.9030.

The area between —z and z is 0.2052.

The area to the left of z is 0.9948.

The area to the right of zis 0.6915.

o a0 o

The demand for a new product is estimated to be normally distributed with & = 200 and
o = 40. Let x be the number of units demanded, and find the following probabilities:

a. P80 = x =220)

b.  P(x = 250)

c. P(x=100)

d. P25 = x = 250)

In 2003, the average stock price for companies making up the S&P 500 was $30, and the
standard deviation was $8.20 (BusinessWeek, Special Annual Issue, Spring 2003). Assume
the stock prices are normally distributed.

a.  What is the probability that a company will have a stock price of at least $40?

b. What is the probability that a company will have a stock price no higher than $20?

¢.  How high does a stock price have to be to put a company in the top 10%?

General Hospital’s patient account division has compiled data on the age of accounts

receivable. The data collected indicate that the age of the accounts follows a normal dis-

tribution with u = 28 days and o = 8 days.

a.  What portion of the accounts is between 20 and 40 days old—that is, P(20 = x = 40)?

b. The hospital administrator is interested in sending reminder letters to the oldest 15%
of accounts. How many days old should an account be before a reminder letter
is sent?

c. The hospital administrator wants to give a discount to those accounts that pay their
balance by the twenty-first day. What percentage of the accounts will receive the
discount?

To boost holiday sales, a jewelry store in Bismarck, North Dakota, is advertising the
following promotion: “If more than seven inches of cumulative snow fall on December 24,
25, 26, 27, and 28, you get your money back on all purchase made on December 17.” To
analyze this promotion, the store manager has collected data and determined that snowfall
over this 5-day period in December is normally distributed with an average of 6 inches and
standard deviation of 0.559 inches. What is the probability that the store will have to refund
the money to its December 17 customers?

A machine fills containers with a particular product. The standard deviation of filling
weights computed from past data is 0.6 ounces. If only 2% of the containers hold less than
18 ounces, what is the mean filling weight for the machine? That is, what must u equal?
Assume that the filling weights have a normal distribution.

Consider the exponential probability density function:
1 —x/3
f(x)=§e ; forx =0

Write the formula for P(x = x).
Find P(x = 2).

Find P(x = 3).

Find P(x = 5).

Find P2 = x =5).

o ac o
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30. Internet Magazine monitors Internet service providers (ISPs) and provides statistics on
SELF test their performance. The average time to download a web page for free ISPs is approxi-
mately 20 seconds for European web pages (Internet Magazine, January 2000). Assume
the time to download a web page follows an exponential distribution.
a.  What is the probability that it will take less than 10 seconds to download a web page?
b.  What is the probability that it will take more than 30 seconds to download a web page?
c.  What is the probability that it will take between 10 and 30 seconds to download a
web page?
31. The time between arrivals of vehicles at a particular intersection follows an exponential
SELF| (&0 probability distribution with a mean of 12 seconds.
a. Sketch this exponential probability distribution.
b. What is the probability that the time between vehicle arrivals is 12 seconds or less?
¢.  What is the probability that the time between vehicle arrivals is 6 seconds or less?
d. What is the probability that there will be 30 or more seconds between arriving
vehicles?

32. The lifetime (hours) of an electronic device is a random variable with the exponential prob-
ability density function:

1
f) = m e forx=0

a.  What is the mean lifetime of the device?
b.  What is the probability that the device fails in the first 25 hours of operation?
c¢.  What is the probability that the device operates 100 or more hours before failure?

33. The time (in minutes) between telephone calls at an insurance claims office has the expo-
nential probability distribution:

f(x) = 0.50e7%  forx=0

What is the mean time between telephone calls?

What is the probability of 30 seconds or less between telephone calls?
What is the probability of 1 minute or less between telephone calls?
What is the probability of 5 or more minutes without a telephone call?

/o o

34. Sparagowski & Associates conducted a study of service times at the drive-up window of
fast-food restaurants. The average time between placing an order and receiving the order
at McDonald’s restaurants was 2.78 minutes (The Cincinnati Enquirer, July 9,2000). Wait-
ing times, such as these, frequently follow an exponential distribution.

a.  What is the probability that a customer’s service time is less than 2 minutes?
b.  What is the probability that a customer’s service time is more than 5 minutes?
¢.  What is the probability that a customer’s service time is more than 2.78 minutes?

Case Problem Specialty TOYS

Specialty Toys, Inc., sells a variety of new and innovative children’s toys and believes that
the preholiday season is the best time to introduce a new toy. Many families use this time
to look for new ideas for December holiday gifts. When Specialty has a new toy with good
market potential, it chooses an October market entry date.

In order to get toys in its stores by October, Specialty places one-time orders with its
manufacturers in June or July of each year. Demand for children’s toys can be highly
volatile. If a new toy catches on, a sense of shortage in the marketplace often increases the
demand to very high levels and large profits can be realized. On the other hand, new toys
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can also flop, leaving Specialty stuck with high levels of inventory that must be sold at re-
duced prices. The most important question the company faces is deciding how many units
of a new toy should be purchased to meet expected sales demand. If too few are purchased,
sales will be lost; if too many are purchased, profits will be reduced because of low prices
realized in clearance sales.

For the coming season, Specialty plans to introduce a new product called Weather
Teddy. This variation of a talking teddy bear is made by a company in Taiwan. When a child
presses Teddy’s hand, the bear begins to talk. With the aid of a built-in barometer, Teddy
says one of five responses that predict the weather conditions. The responses range from “It
looks to be a very nice day! Have fun” to “I think it may rain today. Don’t forget your um-
brella.” Tests with the product show that even though it is not a perfect weather predictor,
its predictions are surprisingly good. Several of Specialty’s managers claimed Teddy gave
predictions of the weather that were as good as the local television weather forecasters.

Specialty faces the decision of how many Weather Teddy units to order for the coming
holiday season. Members of the management team recommended order quantities of
15,000, 18,000, 24,000, and 28,000. Considerable disagreement concerning the market
potential is evidenced by the different order quantities suggested. The product management
team has asked you for an analysis of the stock-out probabilities for various order quanti-
ties, an estimate of the profit potential, and help in making an order quantity recommenda-
tion. Specialty expects to sell Weather Teddy for $24, and the cost is $16 per unit. If
inventory remains after the holiday season, Specialty will sell all surplus inventory for
$5 per unit. After reviewing the sales history of similar products, Specialty’s senior sales
forecaster predicted an expected demand of 20,000 units with a 0.95 probability that
demand would be between 10,000 units and 30,000 units.

Managerial Report

Prepare a managerial report that addresses the following issues and recommends an order
quantity for the Weather Teddy product:

1. Use the sales forecaster’s prediction to describe a normal probability distribution
that can be used to approximate the demand distribution. Sketch the distribution and
show its mean and standard deviation.

2. Compute the probability of a stock-out for the order quantities suggested by mem-
bers of the management team.

3. Compute the projected profit for the order quantities suggested by the management
team under three scenarios. Worst case: sales = 10,000 units; most likely case:
sales = 20,000 units; and best case: sales = 30,000 units.

4. One of Specialty’s managers felt that the profit potential was so great that the order
quantity should have a 70% chance of meeting demand and only a 30% chance of
any stock-outs. What quantity would be ordered under this policy, and what is the
projected profit under the three scenarios in part 3?

5. Provide your own recommendation for an order quantity and note the associated
profit projections. Provide a rationale for your recommendation.

Computing Discrete Probabilities with Excel

Excel has the capability of computing probabilities for several discrete probability distri-
butions including the binomial and Poisson. In this appendix, we describe how Excel can be
used to compute the probabilities for any binomial probability distribution. The procedures



The Excel functions
BINOM.DIST and
POISSON.DIST are only
recognized by Excel 2010.
Earlier versions of Excel
will use the function
names BINOMDIST and
POISSON, respectively, to
compute the same values
using the same steps.

Appendix 3.2

Appendix 3.2 Computing Probabilities for Continuous Distributions with Excel 99

for the Poisson probability distributions are similar to the one we describe for the binomial
probability distribution.

Let us return to the Nastke Clothing Store problem, where the binomial probabilities of
interest are based on a binomial experiment with n = 10 and p = 0.30. We assume that the
user is interested in the probability of x = 4 successes in the 10 trials. The following steps
describe how to use Excel to produce the desired binomial probability:

Step 1. Select a cell in the worksheet where you want the binomial probability to
appear
Step 2. Select the Formulas tab (see Appendix A)
Step 3. Choose the Insert Function option
Step 4. When the Insert Function dialog box appears:
Choose Statistical from the Or select a category box
Choose BINOM.DIST from the Select a function box
Click OK
Step 5. When the Function Arguments dialog box appears:
Enter 4 in the Number_s box (the value of x)
Enter 10 in the Trials box (the value of n)
Enter 0.30 in the Probability_s box (the value of p)
Enter false in the Cumulative box?
Note: At this point the desired binomial probability of 0.2001 is automatically
computed and appears near the bottom of the dialog box.
Click OK and the binomial probability will appear in the worksheet cell
requested in Step 1.

A user who wants other binomial probabilities may obtain the information without
repeating the steps for each probability desired. Perhaps the easiest alternative is to stay in
step 5. After the four entries have been made and the first probability appears, simply return
to the Number_s box and insert a new value of x. The new probability will appear. Repeated
changes can be made in the dialog box, including changes to the trials, probability, and/or
cumulative boxes. For each change, the desired probability will appear. When OK is
selected, only the last binomial probability will be placed in the worksheet.

If the user wants to insert multiple binomial probabilities into the worksheet, the desired
values of x are entered into the worksheet first. Then, in step 5, the user enters the cell loca-
tion of one of the values of x in the numbers box. After completing the steps for one binomial
probability, individuals experienced with Excel can use Excel’s Copy command to copy the
binomial function into the cells where the other binomial probabilities are to appear.

The Excel procedure for generating Poisson probabilities is similar to the procedure
just described. Step 4 can be used to select the POISSON.DIST function name. The dia-
log box in step 5 will guide the user through the input values required to compute the desired
probabilities.

Computing Probabilities for Continuous
Distributions with Excel
Excel has the capability of computing probabilities for several continuous probability dis-

tributions, including the normal and exponential probability distributions. In this appendix,
we describe how Excel can be used to compute probabilities for any normal probability

?Placing false in the cumulative box provides the probability of exactly four successes. Placing true in this box provides the
cumulative probability of four or fewer successes.
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distribution. The procedures for the exponential and other continuous probability distribu-
tions are similar to the one we describe for the normal probability distribution.

Let us return to the Grear Tire Company problem, where the tire mileage was described
by a normal probability distribution with u = 36,500 and o = 5000. Assume we are inter-
ested in the probability that tire mileage will exceed 40,000 miles. The following steps de-
scribe how to use Excel to compute the desired normal probability:

Step 1. Select a cell in the worksheet where you want the normal probability to appear
Step 2. Select the Formulas tab (see Appendix A)
Step 3. Choose the Insert Function option
Step 4. When the Insert Function dialog box appears:
Choose Statistical from the Or select a category box
Choose NORMLDIST from the Select a function box
Click OK
Step 5. When the Function Arguments dialog box appears:
Enter 40000 in the X box
Enter 36500 in the Mean box
Enter 5000 in the Standard_dev box
Enter true in the Cumulative box
Click OK

At this point, 0.7580 will appear in the cell selected in step 1, indicating that the cumula-
tive probability that the tire mileage is less than or equal to 40,000 miles is 0.7580. There-
fore, the probability that tire mileage will exceed 40,000 miles is 1 — 0.7580 = 0.2420.

Excel uses an inverse computation to convert a given cumulative normal probability into a
value for the random variable. For example, what mileage guarantee should Grear offer if the
company wants no more than 10% of the tires to be eligible for the guarantee? To compute
the mileage guarantee by using Excel, follow the procedure just described. However, two
changes are necessary: In step 4, choose NORML.INV from the Select a function box; in
step 5, enter the cumulative probability of 0.10 in the Probability box and then enter the
mean and the standard deviation. When OK is selected in step 5, the tire mileage guaran-
tee of 30,092, or approximately 30,100, miles appears in the worksheet.

The Excel procedure for generating exponential probabilities is similar to the procedure
just described. Step 4 can be used to choose the EXPON.DIST function name. The dialog
box in step 5 will guide the user through the input values required to compute the desired
probability. Note that the value entered in the Lambda box is 1/w. When OK is selected in
step 5, the cumulative exponential probability appears in the worksheet.



